Probabilistic Graphical Models

Raquel Urtasun and Tamir Hazan

TTI Chicago

April 27, 2011

Monday in class...

Clique Tree Message Passing I

- A general VE algorithm that can be implemented via message passing in a clique tree.
- Let \mathcal{T} be a clique tree with cliques $\mathbf{C}_{1}, \cdots, \mathbf{C}_{k}$.
- Compute the initial potentials by multiplying the factors associated with each clique.
- Use the clique tree data structure to pass messages between neighboring clique.
- The messages are send towards the root.
- For each factor ϕ let's call $\alpha(\phi)$ the assigned clique.
- We define the initial clique potential of \mathbf{C}_{j} as

$$
\psi_{j}\left(\mathbf{C}_{j}\right)=\prod_{\phi: \alpha(\phi)=j} \phi
$$

- This definition of ψ is different from the VE ψ. Why?

Clique Tree Message Passing II

- As each factor is assigned to exactly one clique

$$
\prod_{\phi \in \Phi} \phi=\prod_{j} \psi_{j}
$$

- Let \mathbf{C}_{r} be the root.
- Perform sum-product VE over the cliques, starting from the leaves of the tree.
- For each clique \mathbf{C}_{i}, let $N b_{i}$ be the set of indices of cliques that are neighbors of \mathbf{C}_{i}.
- Let $p_{r}(i)$ be the upstream neighbor, i.e., the next one in the path to the root.
- For each clique \mathbf{C}_{i}, the message is computed by multiplying incoming messages from its downstream neighbors with its initial clique potential, resulting in a factor which scope is the clique.
- We sum out all the variables except those in the sepset between \mathbf{C}_{i} and $\mathbf{C}_{p r(i)}$, and sends message to its upstream neighbor $\mathbf{C}_{p r(i)}$.

Clique Tree Message Passing III

- When the root clique has received all messages, it multiplies them with its own initial potential.
- The final clique potential is

$$
\beta_{r}\left(\mathbf{C}_{r}\right)=\sum_{\mathcal{X}-\mathbf{C}_{r}} \prod_{\phi \in \Phi} \phi
$$

- As we will prove later

$$
\hat{P}_{\Phi}\left(\mathbf{C}_{r}\right)=\beta_{r}\left(\mathbf{C}_{r}\right)
$$

Algorithm

```
Algorithm 10.1 Upward pass of variable elimination in clique tree
    Procedure CTree-Sum-Product-Up (
        \Phi, // Set of factors
        T, // Clique tree over \Phi
        \alpha, // Initial assignment of factors to cliques
        C}\mp@subsup{C}{r}{}// Some selected root cliqu
    )
        Initialize-Cliques
        while}\mp@subsup{C}{r}{}\mathrm{ is not ready
            Let Ci}\mathrm{ be a ready clique
            \deltai->\mp@subsup{p}{r}{}(i)
            \betar}\leftarrow\mp@subsup{\psi}{r}{}\cdot\mp@subsup{\prod}{k\in\mp@subsup{\textrm{Nb}}{\mp@subsup{C}{r}{}}{}}{}\mp@subsup{\delta}{k->r}{
            return }\mp@subsup{\beta}{r}{
    Procedure Initialize-Cliques
    )
        for each clique Ci
                \psii}[\mp@subsup{C}{i}{}]\leftarrow\mp@subsup{\prod}{\mp@subsup{\phi}{j}{}:\alpha(\mp@subsup{\phi}{j}{})=i}{}
    Procedure SP-Message (
            i, // sending clique
        j // receiving clique
    )
        \psi(\boldsymbol{C}
        \tau(\mp@subsup{\boldsymbol{S}}{\boldsymbol{i},j}{})\leftarrow\mp@subsup{\sum}{\mp@subsup{\boldsymbol{C}}{\boldsymbol{i}}{\prime-\mp@subsup{\boldsymbol{S}}{i,j}{\prime}}}{}\psi(\mp@subsup{\boldsymbol{C}}{i}{})
        return \tau(Si,j)
```


Example

- Assume \mathbf{C}_{6} is the root.
- Which orderings are possible?
- And if \mathbf{C}_{1} is the root?

Computing Marginals

- We can use the algorithm to compute the marginal probability of any set of query nodes \mathbf{Y}.
- We select the clique that contain them as the root \mathbf{C}_{r}, and perform the clique tree message passing towards that root.
- We then extract $\hat{P}_{\phi}(\mathbf{Y})$ from the final potential by summing out the other variables $\mathbf{C}_{r}-\mathbf{Y}$.
- We can also compute the partition function. How?

Correctness

- We need to show that this algorithm when applied to a clique tree that satisfies the family preservation and the running intersection properties, computes the desire expressions to get the marginal probabilities.
- A variable X is eliminated only when a message is sent from \mathbf{C}_{i} to \mathbf{C}_{j} and $X \in \mathbf{C}_{i}$ and $X \notin \mathbf{C}_{j}$.

Prop: Let X be a variable that it's eliminated when a message is pass from \mathbf{C}_{i} to
\mathbf{C}_{j}. Then X does not appear anywhere in the tree on the \mathbf{C}_{j} side of the edge $(i-j)$.

- Proof by contradiction, assume X appears in some other clique \mathbf{C}_{k} which is on the other side of \mathbf{C}_{j}. Then \mathbf{C}_{j} is on the path from \mathbf{C}_{i} to \mathbf{C}_{k}.
- However we assume that X appears in \mathbf{C}_{i} and \mathbf{C}_{k} but not \mathbf{C}_{j}.
- This is a violation of the running intersection property.

Semantic interpretation of the messages

- For an edge $(i-j)$ let $\mathcal{F}_{\prec(i \rightarrow j)}$ be the set of factors in the cliques on the \mathbf{C}_{i} side of the edge.
- Let $\mathcal{V}_{\prec(i \rightarrow j)}$ be the set of variables that appear on the \mathbf{C}_{i} side but are not on the sepset.

- What's $\mathcal{F}_{\prec(3 \rightarrow 5)}$? And $\mathcal{V}_{\prec(3 \rightarrow 5)}$?
- The message passed between \mathbf{C}_{i} and \mathbf{C}_{j} is the product of all factors in $\mathcal{F}_{\prec(i \rightarrow j)}$, sum out all the variables not in the sepset.

Messages

Theorem: Let $\delta_{i \rightarrow j}$ be a message from \mathbf{C}_{i} to \mathbf{C}_{j}, then

$$
\delta_{i \rightarrow j}\left(\mathbf{S}_{i, j}\right)=\sum_{\mathcal{V}_{\prec(i \rightarrow j)}} \prod_{\phi \in \mathcal{F} \prec(i \rightarrow j)} \phi
$$

- Proof by induction. For the leaves $\mathbf{C}_{\boldsymbol{i}}$ it is true by examining the operations in the clique.
- If \mathbf{C}_{i} is not a leaf node, let's consider the expression on the right.
- Let i_{1}, \cdots, i_{m} be the neighboring cliques of \mathbf{C}_{i} other than \mathbf{C}_{j}.
- $\mathcal{V}_{\prec(i \rightarrow j)}$ is the disjoint union of $\mathcal{V}_{\prec(i k \rightarrow i)}$ for $k=1, \cdots, m$ and the variables eliminated at \mathbf{C}_{i} itself.
- $\mathcal{F}_{\prec(i \rightarrow j)}$ is the disjoint union of the $\mathcal{F}_{\prec\left(i_{k} \rightarrow i\right)}$ and the factors \mathcal{F}_{i} from which ψ_{i} was computed. Thus the right hand side is

$$
\sum_{\mathbf{Y}_{i}} \sum_{\mathcal{V}_{\prec\left(i_{1} \rightarrow i\right)}} \cdots \sum_{\mathcal{V}_{\prec\left(i_{m} \rightarrow i\right)}}\left(\prod_{\phi \in \mathcal{F}_{\prec\left(i_{1} \rightarrow i\right)}} \phi\right) \cdots \cdot\left(\prod_{\phi \in \mathcal{F}_{\prec\left(i_{m} \rightarrow i\right)}} \phi\right) \cdot\left(\prod_{\phi \in \mathcal{F}_{i}} \phi\right)
$$

Continuation of proof

- None of the variables in $\mathcal{V}_{\prec\left(i_{k} \rightarrow i\right)}$ appears in any other factor, thus

$$
\sum_{\mathbf{Y}_{i}}\left(\prod_{\phi \in \mathcal{F}_{i}} \phi\right) \cdot \sum_{\mathcal{V}_{\prec\left(i_{1} \rightarrow i\right)}}\left(\prod_{\phi \in \mathcal{F}_{\prec\left(i_{1} \rightarrow i\right)}} \phi\right) \cdots \cdot \sum_{\mathcal{V}_{\prec\left(i_{m} \rightarrow i\right)}}\left(\prod_{\phi \in \mathcal{F} \prec\left(i_{m} \rightarrow i\right)} \phi\right)
$$

- Using the inductive hypothesis and the definition of ψ_{i} we have

$$
\sum_{\mathbf{Y}_{i}} \psi_{i} \cdot \delta_{i_{1} \rightarrow i} \cdots \cdots \cdot \delta_{i_{m} \rightarrow i}
$$

- This is the operation to compute $\delta_{i \rightarrow j}$

Independences

- Cond. independence allows the message over the sepset to completely summarize the information on one side of the clique tree that is necessary for the other side.
- Let \mathbf{C}_{r} be the root clique in a clique tree, and let $\beta_{r}\left(\mathbf{C}_{r}\right)$ be computed as in Algorithm 10.1 then

$$
\beta_{r}\left(\mathbf{C}_{r}\right)=\sum_{\mathcal{X}-\mathbf{C}_{r}} \hat{P}_{\phi}(\mathcal{X})
$$

Algorithm

```
Algorithm 10.1 Upward pass of variable elimination in clique tree
    Procedure CTree-Sum-Product-Up (
        \Phi, // Set of factors
        T, // Clique tree over \Phi
        \alpha, // Initial assignment of factors to cliques
        C}\mp@subsup{C}{r}{}// Some selected root cliqu
    )
        Initialize-Cliques
        while}\mp@subsup{C}{r}{}\mathrm{ is not ready
            Let Ci}\mathrm{ be a ready clique
            \deltai->\mp@subsup{p}{r}{}(i)
            \betar}\leftarrow\mp@subsup{\psi}{r}{}\cdot\mp@subsup{\prod}{k\in\mp@subsup{\textrm{Nb}}{\mp@subsup{C}{r}{}}{}}{}\mp@subsup{\delta}{k->r}{
            return }\mp@subsup{\beta}{r}{
    Procedure Initialize-Cliques(
    )
        for each clique Ci
                \psii}[\mp@subsup{C}{i}{}]\leftarrow\mp@subsup{\prod}{\mp@subsup{\phi}{j}{}:\alpha(\mp@subsup{\phi}{j}{})=i}{}
    Procedure SP-Message (
            i, // sending clique
        j // receiving clique
    )
        \psi(\boldsymbol{C}
        \tau(\mp@subsup{\boldsymbol{S}}{i,j}{})\leftarrow\mp@subsup{\sum}{\mp@subsup{\boldsymbol{C}}{i}{}-\mp@subsup{\boldsymbol{S}}{i,j}{\prime}}{}\psi(\mp@subsup{\boldsymbol{C}}{i}{})
        return \tau(\mp@subsup{S}{i,j}{})
```


Independences

- Cond. independence allows the message over the sepset to completely summarize the information on one side of the clique tree that is necessary for the other side.
- Let \mathbf{C}_{r} be the root clique in a clique tree, and let $\beta_{r}\left(\mathbf{C}_{r}\right)$ be computed as in Algorithm 10.1 then

$$
\beta_{r}\left(\mathbf{C}_{r}\right)=\sum_{\mathcal{X}-\mathbf{C}_{r}} \hat{P}_{\phi}(\mathcal{X})
$$

- This algorithm applies to BN and Markov networks, with and without evidence.
- In Markov networks obtain the partition function by

$$
Z_{r}=\sum_{\mathbf{C}_{r}} \beta_{r}\left(\mathbf{C}_{r}\right)
$$

Complexity of VE in Clique Tree

- In some applications we are interested in computing the marginal probability for a large set of variables.
- Let's consider the task of computing the posterior distribution over every random variable in the network.
- If we do inference separately for each variable, the number of messages is $\mathcal{O}(n c)$, with c the cost of a single execution of clique tree inference.
- Less naive is to run the algorithm once for every clique, the number of messages is $\mathcal{O}(K c)$, with K the number of cliques.
- We can do better.

Clique Calibration

- The computation between two neighboring cliques $\mathbf{C}_{i}, \mathbf{C}_{j}$ does not depend on the choice of root, only on the side on which the root is.
- This follows from the theorem that we just proved where

$$
\delta_{i \rightarrow j}\left(\mathbf{S}_{i, j}\right)=\sum_{\mathcal{V}_{\prec(i \rightarrow j)}} \prod_{\phi \in \mathcal{F}}{ }_{\text {人(i,j)}} \phi
$$

- Therefore, each clique tree has two messages associated with it: one for each direction.
- The complexity is then $\mathcal{O}(2(c-1))$, with c the number of cliques.
- Def: Let \mathcal{T} be a clique tree. We say that \mathbf{C}_{i} is ready to transmit to a neighbor \mathbf{C}_{j}, when \mathbf{C}_{i} has messages from all of its neighbors except for \mathbf{C}_{j}.
- We can have an asynchronous algorithm, where when \mathbf{C}_{i} is ready to transmit, it computes $\delta_{i \rightarrow j}\left(\mathbf{S}_{i, j}\right)$.
- This is computed by multiplying all the incoming messages with the initial potentials and marginalizing out the variables $\mathbf{C}_{i}-\mathbf{S}_{i, j}$.

Calibration Algorithm or Sum-product BP

```
Algorithm 10.2 Calibration using sum-product message passing in a clique tree
    Procedure CTree-Sum-Product-Calibrate (
        \(\Phi\), // Set of factors
        \(\mathcal{T} \quad / /\) Clique tree over \(\Phi\)
    )
        Initialize-Cliques
        while exist \(i, j\) such that \(i\) is ready to transmit to \(j\)
            \(\delta_{i \rightarrow j}\left(\boldsymbol{S}_{i, j}\right) \leftarrow\) SP-Message \((i, j)\)
        for each clique \(i\)
            \(\beta_{i} \leftarrow \psi_{i} \cdot \prod_{k \in \mathrm{Nb}_{i}} \delta_{k \rightarrow i}\)
        return \(\left\{\beta_{i}\right\}\)
```


(calibration algorithm)

```
    Procedure SP-Message (
        i, // sending clique
        j // receiving clique
    )
\(1 \quad \psi\left(\boldsymbol{C}_{i}\right) \leftarrow \psi_{i} \cdot \prod_{k \in\left(\mathrm{Nb}_{i}-\{j\}\right)} \delta_{k \rightarrow i}\)
\(2 \quad \tau\left(\boldsymbol{S}_{i, j}\right) \leftarrow \sum_{\boldsymbol{C}_{\boldsymbol{i}}-\boldsymbol{S}_{i, j}} \psi\left(\boldsymbol{C}_{i}\right)\)
3 return \(\tau\left(\boldsymbol{S}_{i, j}\right)\)
```

(message computation)

Sum-Product BP

- The calibration algorithm is also called Sum product Belief Propagation.
- The algorithm is defined asynchronously, with each clique sending a message when ready.
- Is this process guaranteed to terminate?
- This algorithm is equivalent to another algorithm where there is an upward pass and a downward pass.
- In the upward pass we pick a root and send messages towards it.
- When the process is complete, the root has all messages and sends them downward, until the leaves.
- The asynchronous algorithm is equivalent to this one, where the root is simply the first clique that happens to obtain messages form all of its neighbors.

Example

(Upward pass: \mathbf{C}_{5} is the root, upward pass)

(First step downward pass: \mathbf{C}_{5} sends message to \mathbf{C}_{3})

Marginals and Sum Product BP I

- Assume that for each clique $\mathbf{C}_{i}, \beta_{i}\left(\mathbf{C}_{i}\right)$ is computed as in Algorithm 10.2 (i.e., Sum product Belief Propagation) then

$$
\beta_{i}\left(\mathbf{C}_{i}\right)=\sum_{\mathcal{X}-\mathbf{C}_{i}} \hat{P}_{\phi}(\mathcal{X})
$$

- For this to be true, the message $\delta_{i \rightarrow j}$ has to be computed based on the initial potential ψ_{i}, and not the modified potential β_{i}.
- Otherwise we do double-counting.
- At the end of the algorithm, each clique has the marginal probability over the variables of the scope.
- We compute the marginal over a single variable by selecting a clique that contains this variable in the scope, and marginalizing the other variables.

Marginals and Sum Product BP II

- If X appears in two cliques, they should agree in their marginals.
- Def: A clique tree \mathcal{T} with potentials $\beta_{i}\left(\mathbf{C}_{i}\right)$ for each clique \mathbf{C}_{i} is said to be calibrated if for all pairs of neighboring cliques we have that

$$
\sum_{\mathbf{C}_{i}-\mathbf{S}_{i, j}} \beta_{i}\left(\mathbf{C}_{i}\right)=\sum_{\mathbf{C}_{j}-\mathbf{S}_{i, j}} \beta_{j}\left(\mathbf{C}_{j}\right)
$$

- Sum product BP computes the posterior probability of all variables using only twice the computation of the upwards pass!
- Thus the cost is $\mathcal{O}(2 c)$.
- Remember that the cost was $\mathcal{O}(n c)$ for independent computations and $\mathcal{O}(K c)$ when it's done for each clique.

Calibrated Trees and Distribution

- A calibrated tree can be viewed as an alternative representation for \hat{P}_{ϕ}.

$\|c\|$	max $_{C}$		
a^{0}	b^{0}	d^{0}	600000
a^{0}	b^{0}	d^{1}	300030
a^{0}	b^{1}	d^{0}	5000500
a^{0}	b^{1}	d^{1}	1000
a^{1}	b^{0}	d^{0}	200
a^{1}	b^{0}	d^{1}	1000100
a^{1}	b^{1}	d^{0}	100010
a^{1}	b^{1}	d^{1}	200000

$\|3\|$	Assignment 2	$\max _{A}$	
b^{0}	c^{0}	d^{0}	300100
b^{0}	c^{0}	d^{1}	1300000
b^{0}	c^{1}	d^{0}	300100
b^{0}	c^{1}	d^{1}	130
b^{1}	c^{0}	d^{0}	510
b^{1}	c^{0}	d^{1}	100500
b^{1}	c^{1}	d^{0}	5100000
b^{1}	c^{1}	d^{1}	100500

Assignment			Unnormalized	Normalized	
a^{0}	b^{0}	c^{0}	d^{0}	300000	0.04
a^{0}	b^{0}	c^{0}	d^{1}	30000	0.04
a^{0}	b^{0}	c^{1}	d^{0}	300000	0.04
a^{0}	b^{0}	c^{1}	d^{1}	30	$4.1 \cdot 10^{-6}$
a^{0}	b^{1}	c^{0}	d^{0}	500	$6.9 \cdot 10^{-5}$
a^{0}	b^{1}	c^{0}	d^{1}	500	$6.9 \cdot 10^{-5}$
a^{0}	b^{1}	c^{1}	d^{0}	500000	0.69
a^{0}	b^{1}	c^{1}	d^{1}	500	$6.9 \cdot 10^{-5}$
a^{1}	b^{0}	c^{0}	d^{0}	100	$1.4 \cdot 10^{-5}$
a^{1}	b^{0}	c^{0}	d^{1}	100000	0.14
a^{1}	b^{0}	c^{1}	d^{0}	100	$1.4 \cdot 10^{-5}$
a^{1}	b^{0}	c^{1}	d^{1}	100	$1.4 \cdot 10^{-5}$
a^{1}	b^{1}	c^{0}	d^{0}	10	$1.4 \cdot 10^{-6}$
a^{1}	b^{1}	c^{0}	d^{1}	100000	0.014
a^{1}	b^{1}	c^{1}	d^{0}	100000	0.014
a^{1}	b^{1}	c^{1}	d^{1}	100000	0.014

Another example

- Consider the case of a chain $A-B-C-D$.
- What are the cliques?
- What's $\beta_{i}\left(\mathbf{C}_{i}\right)$?
- What's $\hat{P}_{\Phi}(C \mid B)$?
- And $\hat{P}_{\Phi}(A, B, C)$?
- Can I compute the joint $\hat{P}_{\Phi}(A, B, C)$ in multiple ways?

