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Monday in class...

(C5 is the root)
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Clique Tree Message Passing I

A general VE algorithm that can be implemented via message passing in a
clique tree.

Let T be a clique tree with cliques C1, · · · ,Ck .

Compute the initial potentials by multiplying the factors associated with
each clique.

Use the clique tree data structure to pass messages between neighboring
clique.

The messages are send towards the root.

For each factor φ let’s call α(φ) the assigned clique.

We define the initial clique potential of Cj as

ψj(Cj) =
∏

φ:α(φ)=j

φ

This definition of ψ is different from the VE ψ. Why?
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Clique Tree Message Passing II

As each factor is assigned to exactly one clique∏
φ∈Φ

φ =
∏
j

ψj

Let Cr be the root.

Perform sum-product VE over the cliques, starting from the leaves of the
tree.

For each clique Ci , let Nbi be the set of indices of cliques that are neighbors
of Ci .

Let pr (i) be the upstream neighbor, i.e., the next one in the path to the root.

For each clique Ci , the message is computed by multiplying incoming
messages from its downstream neighbors with its initial clique potential,
resulting in a factor which scope is the clique.

We sum out all the variables except those in the sepset between Ci and
Cpr(i), and sends message to its upstream neighbor Cpr(i).
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Clique Tree Message Passing III

When the root clique has received all messages, it multiplies them with its
own initial potential.

The final clique potential is

βr (Cr ) =
∑
X−Cr

∏
φ∈Φ

φ

As we will prove later
P̂Φ(Cr ) = βr (Cr )
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Algorithm

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 27, 2011 6 / 24



Example

Assume C6 is the root.

Which orderings are possible?

And if C1 is the root?
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Computing Marginals

We can use the algorithm to compute the marginal probability of any set of
query nodes Y.

We select the clique that contain them as the root Cr , and perform the
clique tree message passing towards that root.

We then extract P̂φ(Y) from the final potential by summing out the other
variables Cr − Y.

We can also compute the partition function. How?
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Correctness

We need to show that this algorithm when applied to a clique tree that
satisfies the family preservation and the running intersection properties,
computes the desire expressions to get the marginal probabilities.

A variable X is eliminated only when a message is sent from Ci to Cj and
X ∈ Ci and X /∈ Cj .

Prop: Let X be a variable that it’s eliminated when a message is pass from Ci to
Cj . Then X does not appear anywhere in the tree on the Cj side of the edge
(i − j).

Proof by contradiction, assume X appears in some other clique Ck which is
on the other side of Cj . Then Cj is on the path from Ci to Ck .

However we assume that X appears in Ci and Ck but not Cj .

This is a violation of the running intersection property.
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Semantic interpretation of the messages

For an edge (i − j) let F≺(i→j) be the set of factors in the cliques on the Ci

side of the edge.

Let V≺(i→j) be the set of variables that appear on the Ci side but are not on
the sepset.

What’s F≺(3→5)? And V≺(3→5)?

The message passed between Ci and Cj is the product of all factors in
F≺(i→j), sum out all the variables not in the sepset.
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Messages

Theorem: Let δi→j be a message from Ci to Cj , then

δi→j(Si,j) =
∑
V≺(i→j)

∏
φ∈F≺(i→j)

φ

Proof by induction. For the leaves Ci it is true by examining the operations
in the clique.

If Ci is not a leaf node, let’s consider the expression on the right.

Let i1, · · · , im be the neighboring cliques of Ci other than Cj .

V≺(i→j) is the disjoint union of V≺(ik→i) for k = 1, · · · ,m and the variables
eliminated at Ci itself.

F≺(i→j) is the disjoint union of the F≺(ik→i) and the factors Fi from which
ψi was computed. Thus the right hand side is

∑
Yi

∑
V≺(i1→i)

· · ·
∑
V≺(im→i)

 ∏
φ∈F≺(i1→i)

φ

 · · · · ·
 ∏
φ∈F≺(im→i)

φ

 ·
 ∏
φ∈Fi

φ


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Continuation of proof

∑
Yi

∑
V≺(i1→i)

· · ·
∑
V≺(im→i)

 ∏
φ∈F≺(i1→i)

φ

 · · · · ·
 ∏
φ∈F≺(im→i)

φ

 ·
 ∏
φ∈Fi

φ


None of the variables in V≺(ik→i) appears in any other factor, thus

∑
Yi

 ∏
φ∈Fi

φ

 · ∑
V≺(i1→i)

 ∏
φ∈F≺(i1→i)

φ

 · · · · · ∑
V≺(im→i)

 ∏
φ∈F≺(im→i)

φ



Using the inductive hypothesis and the definition of ψi we have∑
Yi

ψi · δi1→i · · · · · ·δim→i

This is the operation to compute δi→j
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Independences

Cond. independence allows the message over the sepset to completely
summarize the information on one side of the clique tree that is necessary
for the other side.

Let Cr be the root clique in a clique tree, and let βr (Cr ) be computed as in
Algorithm 10.1 then

βr (Cr ) =
∑
X−Cr

P̂φ(X )
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Algorithm
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Independences

Cond. independence allows the message over the sepset to completely
summarize the information on one side of the clique tree that is necessary
for the other side.

Let Cr be the root clique in a clique tree, and let βr (Cr ) be computed as in
Algorithm 10.1 then

βr (Cr ) =
∑
X−Cr

P̂φ(X )

This algorithm applies to BN and Markov networks, with and without
evidence.

In Markov networks obtain the partition function by

Zr =
∑
Cr

βr (Cr )
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Complexity of VE in Clique Tree

In some applications we are interested in computing the marginal probability
for a large set of variables.

Let’s consider the task of computing the posterior distribution over every
random variable in the network.

If we do inference separately for each variable, the number of messages is
O(nc), with c the cost of a single execution of clique tree inference.

Less naive is to run the algorithm once for every clique, the number of
messages is O(Kc), with K the number of cliques.

We can do better.
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Clique Calibration

The computation between two neighboring cliques Ci , Cj does not depend
on the choice of root, only on the side on which the root is.

This follows from the theorem that we just proved where

δi→j(Si,j) =
∑
V≺(i→j)

∏
φ∈F≺(i→j)

φ

Therefore, each clique tree has two messages associated with it: one for
each direction.

The complexity is then O(2(c − 1)), with c the number of cliques.

Def: Let T be a clique tree. We say that Ci is ready to transmit to a
neighbor Cj , when Ci has messages from all of its neighbors except for Cj .

We can have an asynchronous algorithm, where when Ci is ready to
transmit, it computes δi→j(Si,j).

This is computed by multiplying all the incoming messages with the initial
potentials and marginalizing out the variables Ci − Si,j .
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Calibration Algorithm or Sum-product BP

(calibration algorithm)

(message computation)
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Sum-Product BP

The calibration algorithm is also called Sum product Belief Propagation.

The algorithm is defined asynchronously, with each clique sending a message
when ready.

Is this process guaranteed to terminate?

This algorithm is equivalent to another algorithm where there is an upward
pass and a downward pass.

In the upward pass we pick a root and send messages towards it.

When the process is complete, the root has all messages and sends them
downward, until the leaves.

The asynchronous algorithm is equivalent to this one, where the root is
simply the first clique that happens to obtain messages form all of its
neighbors.
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Example

(Upward pass: C5 is the root, upward pass)

(First step downward pass: C5 sends message to C3)
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Marginals and Sum Product BP I

Assume that for each clique Ci , βi (Ci ) is computed as in Algorithm 10.2
(i.e., Sum product Belief Propagation) then

βi (Ci ) =
∑
X−Ci

P̂φ(X )

For this to be true, the message δi→j has to be computed based on the
initial potential ψi , and not the modified potential βi .

Otherwise we do double-counting.

At the end of the algorithm, each clique has the marginal probability over
the variables of the scope.

We compute the marginal over a single variable by selecting a clique that
contains this variable in the scope, and marginalizing the other variables.
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Marginals and Sum Product BP II

If X appears in two cliques, they should agree in their marginals.

Def: A clique tree T with potentials βi (Ci ) for each clique Ci is said to be
calibrated if for all pairs of neighboring cliques we have that∑

Ci−Si,j

βi (Ci ) =
∑

Cj−Si,j

βj(Cj)

Sum product BP computes the posterior probability of all variables using
only twice the computation of the upwards pass!

Thus the cost is O(2c).

Remember that the cost was O(nc) for independent computations and
O(Kc) when it’s done for each clique.
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Calibrated Trees and Distribution

A calibrated tree can be viewed as an alternative representation for P̂Φ.
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Another example

Consider the case of a chain A− B − C − D.

What are the cliques?

What’s βi (Ci )?

What’s P̂Φ(C |B)?

And P̂Φ(A,B,C )?

Can I compute the joint P̂Φ(A,B,C ) in multiple ways?
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