Probabilistic Graphical Models

Raquel Urtasun and Tamir Hazan

TTI Chicago

April 27, 2011

Monday in class...

- A general VE algorithm that can be implemented via message passing in a clique tree.
- Let \mathcal{T} be a clique tree with cliques $\mathbf{C}_1, \cdots, \mathbf{C}_k$.
- Compute the initial potentials by multiplying the factors associated with each clique.
- Use the clique tree data structure to pass messages between neighboring clique.
- The messages are send towards the root.
- For each factor ϕ let's call $\alpha(\phi)$ the assigned clique.
- We define the initial clique potential of C_j as

$$\psi_j(\mathbf{C}_j) = \prod_{\phi:\alpha(\phi)=j} \phi$$

• This definition of ψ is different from the VE ψ . Why?

Clique Tree Message Passing II

• As each factor is assigned to exactly one clique

$$\prod_{\phi \in \Phi} \phi = \prod_j \psi_j$$

- Let **C**_r be the root.
- Perform sum-product VE over the cliques, starting from the leaves of the tree.
- For each clique **C**_i, let Nb_i be the set of indices of cliques that are neighbors of **C**_i.
- Let $p_r(i)$ be the upstream neighbor, i.e., the next one in the path to the root.
- For each clique **C**_{*i*}, the message is computed by multiplying incoming messages from its downstream neighbors with its initial clique potential, resulting in a factor which scope is the clique.
- We sum out all the variables except those in the sepset between C_i and C_{pr(i)}, and sends message to its upstream neighbor C_{pr(i)}.

- When the root clique has received all messages, it multiplies them with its own initial potential.
- The final clique potential is

$$\beta_r(\mathbf{C}_r) = \sum_{\mathcal{X} - \mathbf{C}_r} \prod_{\phi \in \Phi} \phi$$

As we will prove later

 $\hat{P}_{\Phi}(\mathbf{C}_r) = \beta_r(\mathbf{C}_r)$

Algorithm

Algorithm 10.1 Upward pass of variable elimination in clique tree Procedure CTree-Sum-Product-Up Φ , // Set of factors Τ. // Clique tree over Φ // Initial assignment of factors to cliques α. C_r // Some selected root clique Initialize-Cliques while C_r is not ready 23 Let C_i be a ready clique $\delta_{i \rightarrow p_r(i)}(S_{i,p_r(i)}) \leftarrow \text{SP-Message}(i, p_r(i))$ 4 $\mathbf{5}$ $\beta_r \leftarrow \psi_r \cdot \prod_{k \in NbG_r} \delta_{k \rightarrow r}$ return β_r 6

Procedure Initialize-Cliques (

$$\begin{array}{c}1 & \text{for each clique } C_i \\2 & \psi_i[C_i] \leftarrow \prod_{\phi_j : \alpha(\phi_j)=i} \phi \\3 \end{array}$$

- Assume C_6 is the root.
- Which orderings are possible?
- And if C_1 is the root?

- We can use the algorithm to compute the marginal probability of any set of query nodes **Y**.
- We select the clique that contain them as the root **C**_r, and perform the clique tree message passing towards that root.
- We then extract $\hat{P}_{\phi}(\mathbf{Y})$ from the final potential by summing out the other variables $\mathbf{C}_r \mathbf{Y}$.
- We can also compute the partition function. How?

- We need to show that this algorithm when applied to a clique tree that satisfies the family preservation and the running intersection properties, computes the desire expressions to get the marginal probabilities.
- A variable X is eliminated only when a message is sent from C_i to C_j and $X \in C_i$ and $X \notin C_j$.

Prop: Let X be a variable that it's eliminated when a message is pass from C_i to C_j . Then X does not appear anywhere in the tree on the C_j side of the edge (i - j).

- Proof by contradiction, assume X appears in some other clique C_k which is on the other side of C_j. Then C_j is on the path from C_i to C_k.
- However we assume that X appears in C_i and C_k but not C_j .
- This is a violation of the running intersection property.

Semantic interpretation of the messages

- For an edge (i − j) let F_{≺(i→j)} be the set of factors in the cliques on the C_i side of the edge.
- Let V_{≺(i→j)} be the set of variables that appear on the C_i side but are not on the sepset.

- What's $\mathcal{F}_{\prec(3\rightarrow 5)}$? And $\mathcal{V}_{\prec(3\rightarrow 5)}$?
- The message passed between C_i and C_j is the product of all factors in *F*_{≺(i→j)}, sum out all the variables not in the sepset.

Messages

Theorem: Let $\delta_{i \to j}$ be a message from C_i to C_j , then

$$\delta_{i \to j}(\mathbf{S}_{i,j}) = \sum_{\mathcal{V}_{\prec(i \to j)}} \prod_{\phi \in \mathcal{F}_{\prec(i \to j)}} \phi$$

- Proof by induction. For the leaves **C**_i it is true by examining the operations in the clique.
- If C_i is not a leaf node, let's consider the expression on the right.
- Let i_1, \dots, i_m be the neighboring cliques of C_i other than C_j .
- V_{≺(i→j)} is the disjoint union of V_{≺(ik→i)} for k = 1, · · · , m and the variables eliminated at C_i itself.
- $\mathcal{F}_{\prec(i \rightarrow j)}$ is the disjoint union of the $\mathcal{F}_{\prec(i_k \rightarrow i)}$ and the factors \mathcal{F}_i from which ψ_i was computed. Thus the right hand side is

$$\sum_{\mathbf{Y}_i} \sum_{\mathcal{V}_{\prec (i_1 \to i)}} \cdots \sum_{\mathcal{V}_{\prec (i_m \to i)}} \left(\prod_{\phi \in \mathcal{F}_{\prec (i_1 \to i)}} \phi\right) \cdots \cdots \left(\prod_{\phi \in \mathcal{F}_{\prec (i_m \to i)}} \phi\right) \cdot \left(\prod_{\phi \in \mathcal{F}_i} \phi\right)$$

Continuation of proof

$$\sum_{\mathbf{Y}_i} \sum_{\mathcal{V}_{\prec (i_1 \to i)}} \cdots \sum_{\mathcal{V}_{\prec (i_m \to i)}} \left(\prod_{\phi \in \mathcal{F}_{\prec (i_1 \to i)}} \phi \right) \cdots \cdots \left(\prod_{\phi \in \mathcal{F}_{\prec (i_m \to i)}} \phi \right) \cdot \left(\prod_{\phi \in \mathcal{F}_i} \phi \right)$$

• None of the variables in $\mathcal{V}_{\prec(i_k
ightarrow i)}$ appears in any other factor, thus

$$\sum_{\mathbf{Y}_i} \left(\prod_{\phi \in \mathcal{F}_i} \phi\right) \cdot \sum_{\mathcal{V}_{\prec (i_1 \to i)}} \left(\prod_{\phi \in \mathcal{F}_{\prec (i_1 \to i)}} \phi\right) \cdots \cdots \sum_{\mathcal{V}_{\prec (i_m \to i)}} \left(\prod_{\phi \in \mathcal{F}_{\prec (i_m \to i)}} \phi\right)$$

• Using the inductive hypothesis and the definition of ψ_i we have

$$\sum_{\mathbf{Y}_i} \psi_i \cdot \delta_{i_1 \to i} \cdot \cdots \cdot \delta_{i_m \to i}$$

• This is the operation to compute $\delta_{i \to j}$

- Cond. independence allows the message over the sepset to completely summarize the information on one side of the clique tree that is necessary for the other side.
- Let C_r be the root clique in a clique tree, and let $\beta_r(C_r)$ be computed as in Algorithm 10.1 then

$$eta_r(\mathbf{C}_r) = \sum_{\mathcal{X} - \mathbf{C}_r} \hat{P}_{\phi}(\mathcal{X})$$

Algorithm

Algorithm 10.1 Upward pass of variable elimination in clique tree Procedure CTree-Sum-Product-Up Φ , // Set of factors Τ. // Clique tree over Φ // Initial assignment of factors to cliques α. C_r // Some selected root clique Initialize-Cliques while C_r is not ready 23 Let C_i be a ready clique $\delta_{i \rightarrow p_r(i)}(S_{i,p_r(i)}) \leftarrow \text{SP-Message}(i, p_r(i))$ 4 $\mathbf{5}$ $\beta_r \leftarrow \psi_r \cdot \prod_{k \in NbG_r} \delta_{k \rightarrow r}$ return β_r 6

Procedure Initialize-Cliques (

$$\begin{array}{c}1 & \text{for each clique } C_i \\2 & \psi_i[C_i] \leftarrow \prod_{\phi_j : \alpha(\phi_j)=i} \phi \\3 \end{array}$$

- Cond. independence allows the message over the sepset to completely summarize the information on one side of the clique tree that is necessary for the other side.
- Let C_r be the root clique in a clique tree, and let $\beta_r(C_r)$ be computed as in Algorithm 10.1 then

$$\beta_r(\mathbf{C}_r) = \sum_{\mathcal{X}-\mathbf{C}_r} \hat{P}_{\phi}(\mathcal{X})$$

- This algorithm applies to BN and Markov networks, with and without evidence.
- In Markov networks obtain the partition function by

$$Z_r = \sum_{\mathbf{C}_r} \beta_r(\mathbf{C}_r)$$

Complexity of VE in Clique Tree

- In some applications we are interested in computing the marginal probability for a large set of variables.
- Let's consider the task of computing the posterior distribution over every random variable in the network.
- If we do inference separately for each variable, the number of messages is O(nc), with c the cost of a single execution of clique tree inference.
- Less naive is to run the algorithm once for every clique, the number of messages is O(Kc), with K the number of cliques.
- We can do better.

Clique Calibration

- The computation between two neighboring cliques **C**_i, **C**_j does not depend on the choice of root, only on the side on which the root is.
- This follows from the theorem that we just proved where

$$\delta_{i \to j}(\mathbf{S}_{i,j}) = \sum_{\mathcal{V}_{\prec (i \to j)}} \prod_{\phi \in \mathcal{F}_{\prec (i \to j)}} \phi$$

- Therefore, each clique tree has two messages associated with it: one for each direction.
- The complexity is then $\mathcal{O}(2(c-1))$, with c the number of cliques.
- **Def:** Let \mathcal{T} be a clique tree. We say that C_i is ready to transmit to a neighbor C_j , when C_i has messages from all of its neighbors except for C_j .
- We can have an asynchronous algorithm, where when C_i is ready to transmit, it computes δ_{i→j}(S_{i,j}).
- This is computed by multiplying all the incoming messages with the initial potentials and marginalizing out the variables C_i - S_{i,j}.

Calibration Algorithm or Sum-product BP

$\begin{array}{l} \mbox{(calibration algorithm)} \\ \mbox{Procedure SP-Message (} \\ i, // sending clique \\ j // receiving clique \\) \\ 1 & \psi(C_i) \leftarrow \psi_i \cdot \prod_{k \in (\mathrm{Nb}_i - \{j\})} \delta_{k \rightarrow i} \\ 2 & \tau(S_{i,j}) \leftarrow \sum_{C_i - S_{i,j}} \psi(C_i) \\ 3 & \mathrm{return } \tau(S_{i,j}) \end{array}$

(message computation)

- The calibration algorithm is also called **Sum product Belief Propagation**.
- The algorithm is defined asynchronously, with each clique sending a message when ready.
- Is this process guaranteed to terminate?
- This algorithm is equivalent to another algorithm where there is an upward pass and a downward pass.
- In the upward pass we pick a root and send messages towards it.
- When the process is complete, the root has all messages and sends them downward, until the leaves.
- The asynchronous algorithm is equivalent to this one, where the root is simply the first clique that happens to obtain messages form all of its neighbors.

(Upward pass: C_5 is the root, upward pass)

(First step downward pass: C_5 sends message to C_3)

Assume that for each clique C_i, β_i(C_i) is computed as in Algorithm 10.2 (i.e., Sum product Belief Propagation) then

$$eta_i(\mathbf{C}_i) = \sum_{\mathcal{X} - \mathbf{C}_i} \hat{P}_{\phi}(\mathcal{X})$$

- For this to be true, the message δ_{i→j} has to be computed based on the initial potential ψ_i, and not the modified potential β_i.
- Otherwise we do double-counting.
- At the end of the algorithm, each clique has the marginal probability over the variables of the scope.
- We compute the marginal over a single variable by selecting a clique that contains this variable in the scope, and marginalizing the other variables.

- If X appears in two cliques, they should agree in their marginals.
- Def: A clique tree *T* with potentials β_i(C_i) for each clique C_i is said to be calibrated if for all pairs of neighboring cliques we have that

$$\sum_{\mathbf{C}_i-\mathbf{S}_{i,j}}\beta_i(\mathbf{C}_i)=\sum_{\mathbf{C}_j-\mathbf{S}_{i,j}}\beta_j(\mathbf{C}_j)$$

- Sum product BP computes the posterior probability of all variables using only twice the computation of the upwards pass!
- Thus the cost is $\mathcal{O}(2c)$.
- Remember that the cost was $\mathcal{O}(nc)$ for independent computations and $\mathcal{O}(Kc)$ when it's done for each clique.

Calibrated Trees and Distribution

• A calibrated tree can be viewed as an alternative representation for \hat{P}_{Φ} .

Assignment maxa

assignment			u	marc						
a^0	b^0	d^0		600	000					
a^0	b^0	d^1		300030			Assignment		m	
a^0	b^1	d^0		5000500			b^0	d^0		6
a^0	b^1	d^1		1000			b^0	d^1		13
a^1	b^0	d^0		20			b^1	d^0		51
a^1	b^0	d^1		1000100			b^1	d^1		2
a^1	b^1	d^0		100010						-
a^1	b^1	d^1		200	000					
	β	[A]	B. 1	D^{1}				1	$(1_{2})(B)$	(D)
	/- 1	. [,	_ ,-	- 1					-1,2(-	- /
	A	ssig	nme	ent	Unn	orr	naliz	ed	Norm	alize
	a^0	b^0	c^0	d^0			3000	00		0.0
	a^0	b^0	c^0	d^1			3000	00		0.0
	a^0	b^0	c^1	d^0			3000	00		0.0
	a^0	b^0	c^1	1 d^{1}			30		$4.1 \cdot 10^{-1}$	
	a^0	b^1	c^0	0 d^{0}			500		$6.9 \cdot 10^{-1}$	
	a^0	b^1	c^0	d^1			5	00	6.9	$\cdot 10^{-10}$
	a^0	b^1	c^1	d^0		Ę	50000	00		0.6
	a^0	b^1	c^1	d^1			5	00	6.9	$\cdot 10^{-1}$
	a^1	b^0	c^0	0 d^{0}		100		$1.4 \cdot 10^{-1}$		
	a^1	b^0	c^0	0 d^{1}			1000000		0.1	
	-1	10	1	1 d^{0}			100		$1.4 \cdot 10^{-1}$	
	a-	0	<i>c</i>	u	1		1	00	1.4	· 10

Ass	signr	\max_A				
b^0	c^0	d^0	300100			
b^0	c^0	d^1	1300000			
b^0	c^1	d^0	300100			
b^0	c^1	d^1	130			
b^1	c^0	d^0	510			
b^1	c^0	d^1	100500			
b^1	c^1	d^0	5100000			
b^1	c^1	d^1	100500			
$\beta_2[B, C, D]$						

 $\max_{A,C}$

1300130 5100510

201000

Assignment				Unnormalized	Normalized
a^0	b^0	c^0	d^0	300000	0.04
a^0	b^0	c^0	d^1	300000	0.04
a^0	b^0	c^1	d^0	300000	0.04
a^0	b^0	c^1	d^1	30	$4.1 \cdot 10^{-6}$
a^0	b^1	c^0	d^0	500	$6.9 \cdot 10^{-5}$
a^0	b^1	c^0	d^1	500	$6.9 \cdot 10^{-5}$
a^0	b^1	c^1	d^0	5000000	0.69
a^0	b^1	c^1	d^1	500	$6.9 \cdot 10^{-5}$
a^1	b^0	c^0	d^0	100	$1.4 \cdot 10^{-5}$
a^1	b^0	c^0	d^1	1000000	0.14
a^1	b^0	c^1	d^0	100	$1.4 \cdot 10^{-5}$
a^1	b^0	c^1	d^1	100	$1.4 \cdot 10^{-5}$
a^1	b^1	c^0	d^0	10	$1.4 \cdot 10^{-6}$
a^1	b^1	c^0	d^1	100000	0.014
a^1	b^1	c^1	d^0	100000	0.014
a^1	b^1	c^1	d^1	100000	0.014

- Consider the case of a chain A B C D.
- What are the cliques?
- What's β_i(C_i)?
- What's $\hat{P}_{\Phi}(C|B)$?
- And $\hat{P}_{\Phi}(A, B, C)$?
- Can I compute the joint $\hat{P}_{\Phi}(A, B, C)$ in multiple ways?