
Probabilistic Graphical Models

Raquel Urtasun and Tamir Hazan

TTI Chicago

April 25, 2011

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 1 / 25



Summary

This week we saw:

VE via message-passing.

Sum-product BP.

Today we are going to see:

Belief update algorithm.

How to do more complex inference tasks.

How to compute the clique tree.

Junction tree algorithm

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 2 / 25



Previous algorithm: Sum product BP

(calibration algorithm)

(message computation)

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 3 / 25



Clique Tree measure

Def: We define the clique tree measure of a calibrated tree T as

βT =

∏
i∈VT βi (Ci )∏

(i−j)∈ET µi,j(Si,j)

where
µi,j(Si,j) =

∑
Ci−Si,j

βi (Ci ) =
∑

Ci−Si,j

βj(Cj)

Theorem: Let T be a clique tree over Φ, and let βi (Ci ) be a set of calibrated
potentials for T . Then P̂Φ(X ) ∝ βT iff for each i ∈ VT we have that
βi (Ci ) ∝ P̂Φ(Ci ).

For a proof see page 333 in D. Koller book.

We can view the clique tree as an alternative representation of the joint measure,

which directly gives the clique marginals.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 4 / 25



Belief update

Derive an alternative message passing which is mathematically equivalent to
the previous one.

Consider again the previous algorithm: two messages are passed along
(i − j).

Assume that the first message is pass from Cj to Ci .

The return message will be passed when Ci has received the messages from
all its neighbors.

At this point Ci has all the information

βi = ψi

∏
k∈Nbi

δk→i

To avoid double counting, the final potential βi is not used when computing
the message passed to Cj . Thus

δi→j =
∑

Ci−Si,j

ψi

∏
k∈(Nbi−{j})

δk→i

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 5 / 25



Message passing with division

An alternative possibility is to multiply all the messages, and then divide by
the δj→i to avoid the double counting.

Def: Let X and Y be disjoint sets of variables, and let φ1(X,Y) and φ2(Y)
be two factors. We define the factor division φ2/φ1 to be the factor with
scope X,Y defined as

ψ(X,Y) =
φ1(X,Y)

φ2(Y)

The factor division is done component by component, and we define
0/0 = 0.

It is not defined if the numerator is not 0 and the denominator is.

We can compute the message by

δi→j(Si,j) =

∑
Ci−Si,j

βi

δj→i (Si,j)

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 6 / 25



Example

Chain network A− B − C − D.

First messages from C1 to C2 and C2 to C3.

What are δ1→2 and δ2→3?

Using the previous CTree-Sum-Product-Calibrate, what’s δ2→1?

What would it be in the new sum product division algorithm?

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 7 / 25



Sum product divide message-passing

Each clique Ci maintains its fully updated beliefs βi .

These beliefs are the product of its initial potential with all of the message
updates it has received from its neighbors.

Store at each sepset Si,j the previous message µi,j that was passed along the
edge (i − j) regardless of the direction.

Whenever a message is passed along the edge it’s divided by the old one to
avoid double counting.

This is correct regardless of the clique that send the message along the edge.

This algorithm can be view as maintaining a set of beliefs over the cliques in
the tree.

The message passing takes the beliefs of one clique and uses it to update
the beliefs of a neighbor.

This algorithm is called belief update message passing

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 8 / 25



Sum Product Divide

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 9 / 25



Properties of Sum Product Divide

This process is correct even if we send multiple messages.

We will like to do this with a minimum number of messages.

In the sum product BP algorithm, we said that we need to send 2 messages
for each edge.

In this case is the same. We guarantee convergence when we have a
calibrated tree ∑

Ci−Si,j

βi = µi,j(Si,j) =
∑

Cj−Si,j

βj

At convergence, each pair of neighboring cliques must agree on the variables
in the sepset, and the message µi,j is the sepset marginal.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 10 / 25



Clique Tree Invariant

The Sum Product Belief algorithm can also be interpreted as a
reparameterization of the distribution P̂Φ.

At the convergence of any belief update calibration process we have

P̂Φ(X ) =

∏
i∈VT βi (Ci )∏

(i−j)∈ET µi,j(Si,j)

The same property holds at the start of the algorithm where the numerator is∏
i∈VT

ψi =
∏
i∈VT

∏
φ:α(φ)=i

φ =
∏
φ∈Φ

φ = P̂Φ

and the denominator is 1.

This property is called the Clique tree invariant, and is preserved across
the entire belief update message passing process.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 11 / 25



Clique Tree Invariant more formally

Theorem: Let T be a clique tree, and {βi}, {µi,j} be some set of clique and
sepset beliefs for the tree such that the following eq. holds.

P̂Φ(X ) =

∏
i∈VT βi (Ci )∏

(i−j)∈ET µi,j(Si,j)

Assume that we now execute a BP message passing step from Ci to Cj , and let
{β′j}, {µ′i,j} be the new beliefs after that step. Then the same equation holds for
{β′j}, {µ′i,j}.

Proof: A message from Ci to Cj only changes βj and µi,j . By definition of the
message send

β′j = βj
µ′i,j
µi,j

Thus
βj
µi,j

=
β′j
µ′i,j

Therefore the clique tree invariant property holds initially and for every

message-passing step.
Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 12 / 25



Building equivalence Sum product and Belief update

Both sum-product and belief update should be equal to the clique marginals.

We have
βi = ψi ·

∏
(i−j)∈ET

δj→i

substituting this into the clique tree invariant we have

P̂Φ(X ) =

∏
i∈VT

βi∏
(i−j)∈ET

µi,j

=

∏
Ci
ψi ·

(∏
j :(i−j)∈ET

δj→i

)
∏

(i−j)∈ET
µi,j

=

∏
Ci
ψi ·

(∏
(i−j)∈ET

δj→i · δi→j

)
∏

(i−j)∈ET
µi,j

On the other hand
P̂Φ(X ) =

∏
i∈VT

ψi

It follows that ∏
(i−j)∈ET

δj→i (Si,j) · δi→j(Si,j) =
∏

(i−j)∈ET

µi,j(Si,j)

As the messages have different scopes, then
δj→i (Si,j) · δi→j(Si,j) = µi,j(Si,j).

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 13 / 25



Equivalence of Sum Product and Belief-update messages

Theorem: Consider a set of sum-prod init. potentials {ψi : i ∈ VT } and
messages {δi→j , δj→i : (i − j) ∈ ET } and a set of beliefs {βi : i ∈ VT } and
messages {µi,j : (i − j) ∈ ET } for which the following equations hold

βi = ψi ·
∏

(i−j)∈ET

δj→i

µi,j(Si,j) = δj→i (Si,j) · δi→j(Si,j)

For any pair of neighboring cliques Ci ,Cj , let {δ′i→j , δ
′
j→i : (i − j) ∈ VT } be the

set of sum product messages from a single run of the message, and let
{β′i : i ∈ VT } and messages {µ′i,j : (i − j) ∈ ET } be the set of beliefs updated
with a single run as well. Then the two equations also hold for the new beliefs
δ′i→j , β

′
i , µ
′
i,j .

There is an equivalence between both algorithms, and thus they both
converge to the marginals.

We can derive a two pass algorithm.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 14 / 25



Two pass algorithm

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 15 / 25



Answering queries: new evidence

All variables that we were interested to do a query over were in the same
clique.

Suppose that we have done our calibration and now we receive more
evidence, how can we modify the calibrated tree?

The most naive approach is run again the sum-product BP or belief update
algorithm.

We can obtained P̂Φ(X ,Z = z) by zeroing out entries that are inconsistent
with Z = z .

P̂Φ(X ,Z = z) = 1I{Z = z} ·
∏
φ∈Φ

φ = 1I{Z = z}
∏

i∈VT βi (Ci )∏
(i−j)∈ET µi,j(Si,j)

If calibrated before, for cliques that contain this variable, we can just
multiply by 1I{Z = z}.
To calibrate the other cliques, we need to transmit the information from Ci

to Cj via the cliques in the path.

Thus the entire clique can be calibrated using an entire pass.
Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 16 / 25



Answering queries: queries outside the clique

If we retract evidence is not that simple, as we have lost information once
we zero out.

Consider a query P(Y|e) where Y is not present together in a single clique.

Naive approach is construct a clique tree where we force all the variables to
be in the same clique.

Alternative approach is to do VE over a calibrated tree.

Compute the joint P̂Φ(Y) by using the beliefs in a calibrated tree to define
factors corresponding to conditional probabilities.

Then perform variable elimination over the resulting factors.

Show example of a chain in the board.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 17 / 25



Out of clique algorithm

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 18 / 25



Answering queries: multiple queries

Calibrated tree T over Φ, and we want P̂Φ(X ,Y ) for every pair of variables.

Naive: Run VE in the calib. graph for every pair of variables, i.e.,

(
n
2

)
.

Better approach is to execute this process gradually, constructing a table for
each Ci ,Cj that contains P̂Φ(Ci ,Cj) in the order of the distance between Ci

and Cj in the tree.

When they are neighbors P̂Φ(Ci |Cj) =
βj (Cj )

µi,j (Ci∩Cj )

From these we can compute P̂Φ(Ci ,Cj).

For non neighbors, let Cl be the neighbor of Cj that is one step closer in the
tree to Ci .

By construction we have already computed P̂Φ(Ci ,Cl) and P̂Φ(Cl ,Cj).

Since (Ci ⊥ Cj |Cl) we can compute

P̂Φ(Ci ,Cj) =
∑
Cl−Ci

P̂Φ(Ci ,Cl)P̂Φ(Cj |Cl)

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 19 / 25



Constructing the Clique Tree

Two basic approaches

1 From Variable Elimination

2 Direct graph manipulation

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 20 / 25



Clique tree from VE

An execution of VE can be associated with a cluster graph.

A cluster Ci corresponds to the factor ψi generated during the execution of
the algorithm.

An undirected edge connects Ci and Cj when τi is used in the computation
of ψj .

This cluster graph is a tree and satisfies the running intersection property,
hence it’s a clique tree.

Each factor in an execution of VE with an ordering ≺ is a subset of a clique
in the induced graph IΦ,≺.

Every maximal clique is a factor in the computation.

It is standard to reduce the tree to only contain maximal cliques by
removing it and connecting to the neighbors of the removed clique.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 21 / 25



Example

(Elimination order J, L,S ,H,C ,D, I ,G )

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 22 / 25



Clique tree from chordal graph

We proved that the induced graph I≺,Φ is a chordal graph.

Any chordal graph can be used as the basis for inference.

We construct a chordal graph H∗ that contains the edges in HΦ. Finding
minimum triangulation is NP hard. Heuristics used.

We find the maximal cliques and we connect them: finding the maximal
cliques is NP hard.

For chordal graphs we can use the maximum cardinality and collect the
maximum cliques generated this way.
Start with a family each of which is guaranteed to be a clique and do
greedy search connecting nodes until it no longer induces a fully
connected subgraph.
Connect the edges by maximum cardinality or maximum spanning tree.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 23 / 25



Junction tree algorithm

Clique trees are called junction trees

If the graph is a BN then moralize it.

Introduce the evidence.

Triangulate the graph to make it chordal.

Construct a junction tree (clique tree) from the triangulated graph.

Propagate the probabilities using message passing, via sum-product BP or
belief update.

For graphs of large treewidth this is very inefficient.

The treewidth measures the number of graph vertices mapped onto any tree

node in an optimal tree decomposition.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 24 / 25



Example

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 25 / 25


	Introduction

