Learning \& Inference in Graphical Models Monday, March 30, 2011

Instructors: Raquel Urtasun (rurtasun@ttic.edu) Tamir Hazan (tamir@ttic.edu)

- Monday, Wednesday, Friday I:30-2:20
http://ttic.uchicago.edu/~rurtasun/courses/GraphicalModels/graphical models.html

Bayesian Networks

- Motivation: Medical Diagnostic

Probability $\mathrm{p}(\mathrm{d}, \mathrm{xI}, \ldots, \mathrm{xn})$ over symptoms and diseases:
$x \mid=0$ if patient has no fever. $x I=I$ if patient has fever.
$x 2=0$ if patient does not cough. $\times 2=1$ otherwise.
d is a disease: flu, ear infection, lung infection, ...

- Given the symptoms, what is the probability of a disease?

Bayesian Networks

- Given the symptoms, what is the probability of a disease?
p(flu | cough, fever) >? p(no flu | cough, fever)
- Problems:
I) There are exponentially many entries in the probability distribution (at least $2^{\wedge} n$ possibilities). Each entry typed need to be compared to other entries.

2) One need to marginalize out the diseases. Summing over exponentially many elements.

Independence

- If $\mathrm{xI}, \ldots, \mathrm{xn}$ are independent then

$$
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{1}\right) \cdots p\left(x_{n}\right)
$$

- $2^{\wedge} n$ entries can be described by $2 n$ numbers

Naive Bayes

- $d=$ is a disease name
- xl,...,xn are the patient symptoms.
- Assume $X_{1} \perp \cdots \perp X_{n} \mid D$
- $p\left(d, x_{1}, \ldots, x_{n}\right)=p(d) p\left(x_{1} \mid d\right) \cdots p\left(x_{n} \mid d\right)$

- The experts need to type $D+2 n D$ entries.

Naive Bayes

- Prediction is efficient:

$$
\frac{p\left(d=f l u \mid x_{1}, \ldots, x_{n}\right)}{p\left(d=e a r \mid x_{1}, \ldots, x_{n}\right)}=\frac{p(d=f l u)}{p(d=e a r)} \prod_{i=1}^{n} \frac{p\left(x_{i} \mid d=f l u\right)}{p\left(x_{i} \mid d=e a r\right)}
$$

- Statistical assumptions are too restrictive.

Bayesian Networks

- A way to describe a joint probability

$p(I, D, G, S, L)=p(I) P(D) p(G \mid I, D) p(S \mid I) p(L \mid G)$
- Chain Rule:
$p(I, D, G, S, L)=p(I) P(D \mid I) p(G \mid I, D) p(S \mid I, D, G) p(L \mid I, D, G, S)$
- Implicit independence statements!

Bayesian Networks

$p(I, D, G, S, L)=p(I) P(D) p(G \mid I, D) p(S \mid I) p(L \mid G)$

- Chain Rule:
$p(I, D, G, S, L)=p(I) P(D \mid I) p(G \mid I, D) p(S \mid I, D, G) p(L \mid I, D, G, S)$
- Independence statements:

$$
D \perp I, \quad S \perp\{D, G\}|I, \quad L \perp\{I, D, S\}| G
$$

Bayesian Networks

$p(I, D, G, S, L)=p(I) P(D) p(G \mid I, D) p(S \mid I) p(L \mid G)$

- Independence statements:

$$
D \perp I, \quad S \perp\{D, G\}|I, \quad L \perp\{I, D, S\}| G
$$

- Claim:A variable is independent from its non-descendants given its parents.
- Result:There are more independence in the graph, e.g. $S \perp\{D, G, L\} \mid I$

Bayesian Networks

$p(I, D, G, S, L)=p(I) P(D) p(G \mid I, D) p(S \mid I) p(L \mid G)$

- proof of: $S \perp\{D, G, L\} \mid I$

$$
\begin{array}{r}
p(D, G, S, L \mid I)=? p(S \mid I) p(D, G, L \mid I) \\
p(D, G, L \mid I)=\frac{p(I, D, G, L)}{p(I)}=\frac{\sum_{S} p(I, D, G, S, L)}{p(I)} \\
p(S \mid I)=\frac{p(I, S)}{p(I)}=\frac{\sum_{G, D, L} p(I, D, G, S, L)}{p(I)}
\end{array}
$$

Bayesian Networks

- For general
directed graphs:

$$
p\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} p\left(x_{i} \mid x_{p a r e n t s(i)}\right)
$$

- Bayesian network encodes conditional independencies

$$
x_{i} \perp x_{n o n-d e s c e n d a n t s}(i) \mid x_{\text {parents }(i)}
$$

Independency Maps

- given a distribution $p(x I, \ldots, x n)$, we denote by $\mathrm{l}(\mathrm{p})$ its independency map, i.e. all statements of the form

$$
X_{I} \perp X_{J} \mid X_{K}
$$

for $I, J, K \subset\{1, \ldots, n\}$

- The directed graph gives some of the independencies of the distribution, through separation in directed graphs.

