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Summary

Previously in class
@ Representation of directed and undirected networks
@ Inference in these networks

e Exact inference in trees via message passing
o Inference via sampling
e Inference via optimization

@ Two tasks of inference:

e marginals
o MAP assignment

The rest of this course:
@ Parameter learning

@ Structure learning (if time)

Today we will refresh your memory about what learning is.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models May 23, 2011 2 /30



How to acquire a model?

@ Possible things to do:

o Use expert knowledge to determine the graph and the potentials.
o Use learning to determine the potentials, i.e., parameter learning.
o Use learning to determine the graph, i.e., structure learning.

@ Manual design is difficult to do and can take a long time for an expert.

@ We usually have access to a set of examples from the distribution we wish to
model, e.g., a set of images segmented by a labeler.

@ We call this task of constructing a model from a set of instances model
learning.
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More rigorous definition

@ Lets assume that the domain is governed by some underlying distribution
P*, which is induced by some network model M* = (K*, *).

@ We are given a dataset D of M samples from P*.

@ The standard assumption is that the data instances are independent and
identically distributed (11D).

@ We are also given a family of models M, and our task is to learn some
model M in this family that defines a distribution P .

@ We can learn model parameters for fix structure, or structure and model
parameters.

@ We might be interested in returning a single model, a set of hypothesis that
are likely, a probability distribution over models, or even a confidence of the
model we return.
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Goal of learning

@ The goal of learning is to return a model M that precisely captures the
distribution P* from which our data was sampled.

@ This is in general not achievable because

e computational reasons.
o limited data only provides a rough approximation of the true underlying
distribution.

@ We need to select M to construct the " best” approximation to M*.

@ What is "best"?
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This depends on what we want to do

© Density estimation: we are interested in marginals.
@ Specific prediction tasks: we are interested in conditional probabilities.

© Structure or knowledge discovery: we are interested in the model itself.
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1) Learning as density estimation

@ We want to answer probabilistic inference queries.

@ In this setting we can reformulate the learning problem as density
estimation.

@ We want to construct M as "close” as possible to P*.
@ How do we evaluate "closeness”?

@ Relative entropy is one possibility

D(P*[|P) = Ec.p- llog (’;8)]

o D(P*||P) = 0 iff the two distributions are the same.

@ It measures the " compression loss” (in bits) of using P instead of P*.

@ Problem: In general we do not know P*.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models May 23, 2011 7 /30



Expected log-likelihood

@ We can simplify this metric for any two distributions over X’

P*(€)
P(¢)

D(P*||P) = E¢wp- [|0g ( )1 = Hp(X) — Ecp- {Iog "5(5)]

@ The first term does not depend on P.

@ We can then maximize the expected log-likelihood

Ecp- [Iog ’5(5)}

@ It assigns high probability to instances sampled from P*, so to reflect the
true distribution.

@ We can now compare models, but since we are not computing Hp(X'), we
don’t know how close we are to the optimum.
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Likelihood, Loss and Risk

We are interested in the (log) likelihood of the data given a model, called
the log-loss log P(D, M).

This is an example of loss function.

A loss function Joss(¢, M) measures the loss that a model M makes on a
particular instance £.

When instances are sampled from some distribution P*, our goal is to find
the model that minimizes the expected loss or risk

E¢p- [loss(&, M)]

P* is unknown, but we can approximate the expectation using the empirical
average, i.e., empirical risk

Ep [loss(&, M)] Z loss(§, M)
IDI o
It is intuitive in the case of log loss, where

M
M) = H P(fva
m=1
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2) Specific Prediction Task

@ We want to predict a set of variables Y given some others X, e.g.,
segmentation.

@ We concentrate on predicting P(Y|X).
@ A model trained should be able to produce P(Y|x) and the MAP assignment

argmax P(y|x)
y

@ An example of loss metric is the classification error

Egyyr |[HP(YIX)}]

which is the probability over all (x,y) pairs sampled from P* that our
classifier selects the right label.

@ This metric is not well suited for situations with multiple labels. Why?
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Better Metrics

@ Hamming loss counts the number of variables in which the MAP differs
from the ground truth label.

@ Conditional log-likelihood takes into account the confidence in the
prediction

E(x,y)~P= [Iog P(Y|X)]

@ Unlike the density estimation, we do not have to predict the distribution
over X.

@ We negate this expression to get a loss, and compute an empirical estimate
by taking the average with respect to D.

@ Good choice if we know that we are only going to care about this task.
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3) Knowledge Discovery

@ We hope that looking at the learned model we can discover something
about P*

e What are the direct and undirect dependencies.
o Nature of the dependencies, e.g., positive or negative correlation.

@ We may want to learn the structure of the model.
@ Simple statistical models (e.g., looking at correlations) can be used.

@ But the learned network can have a direct causal interpretation and reveal
finer structure, e.g., distinguish between direct and undirect dependencies.

@ In this setting we care about discovering the correct model M* | rather than
a different model M that induces a distribution similar to M*.

@ Metric is in terms of the differences between M* and M.
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This is not always achievable

@ The true model might not be identifiable

e e.g., Bayesian network with several |-equivalent structures.

o In this case the best we can hope is to discover an l-equivalent
structure.

e Problem is worst when the amount of data is limited and the
relationships are weak.

@ When the number of variables is large relative to the amount of training
data: pairs that appear strongly correlated just by chance.

@ In knowledge discovery it is very important to asses the confidence in a
prediction.

@ Taking into account the number of data available and the number of
hypothesis.
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Learning as optimization

@ We define a numerical criteria that we would like to optimize.
@ Learning is generally treated as an optimization problem where we have

o Hypothesis space: a set of candidate models.
e Objective function: a criterion for our preference for the models.

@ We can formulate learning as finding a high-scoring model within our model
class.

@ Different approaches choose different hypothesis spaces and different
objective functions.
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Empirical Risk

@ Choose a model M that optimizes the expectation of a particular loss

E¢p- [loss(&, M)]

@ We don't know P* so we use an empirical estimate by defining the empirical
distribution

Po(A) = = 3" Uem € A)

@ The prob. of the event A is the fraction of training examples that satisfy A.
@ Pp is a prob. distribution.

@ Let &,&, -+ be a sequence of IID samples from P*(X), and let
Dy = (&1, ,&m), then

lim Pp, (A) = P*(A)

M— o0

@ For sufficiently large training set, Pp is close to P* with high probability.
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Empirical Risk and Overfitting

@ We can use Pp as a proxy.

@ Unfortunately a naive implementation will not work, e.g, consider the case of
N random binary variables, and M number of training examples, e.g.,
N =100, M = 1000

@ Empirical risk minimization tends to overfit the data.

@ Problem when using empirical risk as a surrogate for our true risk:
Generalization to unseen examples.
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Bias-Variance trade off

@ If the hypothesis space is very limited, it might not be able to represent P*,
even with unlimited data.

@ This type of limitation is called bias, as the learning is limited on how close
it can approximate the target distribution.

@ If we select a highly expressive hypothesis class, we might represent better
the data.

@ When we have small amount of data, multiple models can fit well, or even
better than the true model.

@ Moreover, small perturbations on D will result in very different estimates.
@ This limitation is call the variance.

@ There is an inherent bias-variance trade off when selecting the hypothesis
class.

@ Error due to both things: bias and variance.
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How to avoid overfitting?

@ Hard constraints, by selecting a less expressive hypothesis class
@ Soft preference for simpler models: Occam Razor.

@ Augment the objective function with regularization.

objective(¢, M) = loss(£, M) + R(M)
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Evaluating Generalization Per

Procedure Evaluate (

M, '/ parameters to evaluate
D // test data set
)
1 loss «+— O
2 for m = M
3 loss « loss + loss(E[m] : M)
| return -

M

Procedure Train-And-Test (

LearnProc, // Learning procedure
Dyrain: // Training data
test: Test data

J
I M LearnProc(Dypyin)
2 return Evaluate(M, Dypagy

Procedure Holdout-Test (

LearnProc, // Learning procedure
D, //Dataset
Ptest Fraction of data for testing
) D, // Data set

K, number of cross validation folds

1 Randomly reshuffle instances in D )
2 M pain «— round(M - (1 — pieg
3 ,Dif".‘“*; (€[ ( E[(M _p"r}'n 1 Randomly reshuffle instances in D
s train 1o sl Ttrain 2 Partition D into K disjoint datasets Dy,..., Dy
‘ Diest '*T{;.[ﬂingigll_+ (lllj e P&[A“J]] ) 3 loss +— O
& return Train-And-Test(LearnProc, Dypin. Diest
L ; 4 fork=1,... K
o . 5 D+~ D-Dy
Procedure Cress-Vahda.t\on ( 6 loss « lass + Train-And-Test(LearnProc, D_x, D)
LearnProc, // Learning procedure 7 return L
K

2011
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Goodness of fit

@ Cross-validation and hold out test do not allow us to evaluate whether our
learned model captures everything that we need in the distribution.

@ In statistics, goodness of fit.

@ After learning the model parameters, we can evaluate if the data behaves as
if it was sampled from the this distribution.

@ Compare properties of the training data f(Dyn.in) and of datasets generated
from the model of the same size f(D).

@ Many choices of f, e.g., empirical log-loss Ep [loss(&, M)] is the entropy for
the model.

@ Look at the tales to compute the significance.

@ This can be approximate with the variance of the log-loss as a function of M.
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PAC bounds |

@ We hope that a model that achieves low training loss also achieves low
expected loss (risk).

@ We cannot guarantee with certainty the quality of our learned model.

@ This is because the data is sample stochastically from P*, and it might be
unlucky sample.

@ The goal is to prove that the model is approximately correct: for most D,
the learning procedure returns a model whose error is low.

@ Assume that we have the relative entropy to the true distribution as our loss
function.

@ Let Pj; be the distribution over datasets D of size M sampled |ID from P*.

@ Assume that we have a learner L that given D returns M (p).
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PAC bounds Il

@ We want to prove results of the form: with M large enough
Pu({D : D(P*|[Prmyp)) < €}) 214

with € > 0 the approximation parameter and § our confidence parameter.

@ For sufficiently large M, for most datasets D of size M sampled from P~*,
the learning procedure applied to D will learn a close approximation to P*.

@ This bound can only be obtained if the hypothesis class can be correctly
represent P*.

@ Such a setting is called consistent.
@ In many cases this is not included in the hypothesis class.

@ In this case, the best we can hope to get error at most ¢ worse than the
lowest error found within our hypothesis space.

@ The expected loss beyond the minimal possible error is called the excess
risk.
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Generative vs Discriminative Training |

@ We often know in advance that we want to perform a particular task, e.g.,
predicting Y from X.

@ The training procedure we have described is to compute the joint
distribution P*(Y, X).

@ This is called generative training as we train the model to generate all the
variables.

@ We can also do discriminative training, where the goal is to get P(Y|X) as
close as possible to P*(Y|X).

@ The model that is trained generatively can be used for the prediction task.

@ However, the discriminatively trained model does not model P(X), and
cannot say anything about these variables.

@ Discriminative training in BN changes the meaning of the parameters and
they no longer correspond to conditional distributions of P*.

@ Discriminative training is done in the context of undirected models, i.e.,
conditional random fields (CRFs).
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Generative vs Discriminative Training Il

@ Generative models have a higher bias, as they make assumptions about the
form of P(X).

Discriminative models make assumptions only about P(Y/|X).

The bias reduces the ability of the model to overfit the data, and thus
generative models work usually better with small training sets.

@ Discriminative models make less assumptions and thus they are less impacted
by their incorrect assumptions, and work better with larger training sets.

Discriminative models can make use of a much reacher feature set. This can
result in much higher classification performance, e.g., segmentation.
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Learning tasks

The input to the learning is
@ Some prior knowledge, or constraints about M.

@ A set D of IID samples.

The output of the learning is a model M, which may include the structure, the
parameters or both.

The learning problem varies along 3 axis

@ The output: type of graphical model we are trying to learn, i.e, BN or
Markov network.

@ The extent of the constraints we are given on X.

@ The extent to which the data in our training set is fully observed.
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Model Constraints

Extent that our input constrains the hypothesis space, i.e., the class of models
that we are allow to learn.

@ We are given a graph structure, and we have to learn only (some of) the
parameters.

@ Learn both the parameters and the structure.

@ We might not even know the complete set of variables over which P* is
defined, i.e., we might only observe some subset of variables.

The less prior knowledge we are given, the larger the hypothesis space. This
complexity depends on

@ statistical: If we restrict too much it might be unable to represent P*. If

the model is too flexible, we might have models with high score and bad fit
to P*.

@ computational: the richer the hypothesis class, the more difficult to search.
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Data observability

@ Fully observed: each training instance sees all the variables.

@ Partially observed: In each training instance, some variables are not
observed, e.g., patients and medical tests.

@ Hidden variables: The value of certain variables is never observed in any of
the training instances. This arrives if we don't know all the variables, but
also if we simple don't have observations for some.
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Missing data

@ If the data is missing, we have to hypothesize their value.

@ The larger the number of these variables, the less reliable we can
hypothesize.

@ For the task of knowledge discovery the hidden variables might be very
important.
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Taxonomy of Learning Tasks in BN

Hidden
Complete data Missing data variables
« lterated optimization | + Symmetrical
) to local maximum, solutions
Known structure | Closed form solution | | inference on network | » Infinite # of
multiple times solutions

Unknown
structure,
known variables

+ Combinatorial
optimization over
structures

+ score has closed
form

« Inference over
multiple different
network structures
* no closed form for
score

Unknown vars

N/A

N/A

+ infinite number of
possible solutions
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my of Learning Tasks in Markov Networks

Hidden
Complete data Missing data variables
* Convex optimization |, non-convex oroblem
problem solved ¢ prod! + Symmetrical
optimally via numerical | * lterated optimization | ooy igng
Known structure o to local maximum )
oplimizstion « Infe & | * Infinite # of
- inference on network | " INerence on nework | ooy, iong
multipls times multiple times
+ Combinatorial and
numerical formulations
Unknown + Can be solved via
structure, convex optimization
known variables | « Inference over
multiple different
network structures
+ Infinite number
Unknown vars | N/A N/A of possible
solutions
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