Learning \& Inference in Graphical Models Friday, April 1, 2011

Instructors: Raquel Urtasun (rurtasun@ttic.edu) Tamir Hazan (tamir@ttic.edu)

- Monday, Wednesday, Friday I:30-2:20
http://ttic.uchicago.edu/~rurtasun/courses/GraphicalModels/graphical models.html

Reminder

- Bayesian network is a way to describe a joint probability

$$
p(I, D, G, S, L) \stackrel{\text { def }}{=} p(I) P(D) p(G \mid I, D) p(S \mid I) p(L \mid G)
$$

- Implicit independence statements!
- For example: $I \perp D$ (proof sketch, chain rule)

$$
p(I, D, G, S, L)=p(I) P(D \mid I) p(G \mid I, D) p(S \mid I, D, G) p(L \mid I, D, G, S)
$$

- independence from connectivity

$$
x_{i} \perp x_{\text {non-descendants }(i)} \mid x_{\text {parents }(i)}
$$

d-separation

- (a,b,c):"dependence" is active if Z is not observed
- (d):"dependence" is active if Z is observed.

d-separation

- A path in the graph is active given evidence if any of the v-structure (or one of its descendants) is observed

and no other node is observed.

d-separation

- direct-separation: X_{I}, X_{J} are dseparated given X_{K} if there is no active path between nodes in $i \in I, j \in J$ given that nodes in K are observed.
- The independency map of the graph is the set of independencies of is d-sep

$$
I(G)=\left\{X_{I} \perp X_{J} \mid X_{K} \quad: d-\operatorname{sep}\left(X_{I}, X_{J} ; X_{K}\right)\right\}
$$

- Future (next week): $I(G) \subset I(P)$

d-separation

$$
I(G) \subset I(P)
$$

- The converse is not true. We can construct a graph $A \rightarrow B$ without separation but with statistical independence:

$$
p(a, b)=p(a) p(b \mid a)
$$

$$
\begin{aligned}
& p(b=1 \mid a=1)=p(b=1 \mid a=0)=p \\
& p(b=0 \mid a=1)=p(b=0 \mid a=0)=1-p
\end{aligned}
$$

d-separation

- d-separation reduces statistical independencies (hard) to connectivity in graphs (easy)
- Sets are independent is there are no active paths between them (there are exponentially many paths).

Algorithm for d-separation

- Find candidates for v-structures:

Mark (from leaves to root) all nodes that are observed or that have observed descendants

- Go over paths from X to Y (BFS) stopping when encountering "blocked" node.
"Blocked" is unmarked and in the middle of a v-structure or Observed and not in the middle of a v-structured.

BFS (Breadth-first search)

I-Equivalence

- Two directed graphs G_{1}, G_{2} are I-equivalent if their d-sep induce the same independencies, $I\left(G_{1}\right)=I\left(G_{2}\right)$

I-Equivalence

- Claim: If $I\left(G_{1}\right)=I\left(G_{2}\right)$ and

$$
p\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} p\left(x_{i} \mid x_{\text {parents }_{G_{1}}(i)}\right)
$$

then

$$
p\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} p\left(x_{i} \mid x_{\text {parents }_{G_{2}}(i)}\right)
$$

- Proof:

$$
p(x, y, z)=p(x) p(z \mid x) p(y \mid z)
$$

$$
=p(y) p(z \mid y) p(x \mid z)=p(z) p(x \mid z) p(y \mid z)
$$

Distributions to Graphs

- Every distribution can be represented by a direct graph (i.e. the chain rule).
- Not every distribution independencies can be exactly described by a direct graph

$$
\begin{aligned}
& P(x, y, z)= \begin{cases}1 / 12 & \begin{array}{ll}
x \oplus y \oplus z=\text { false } \\
1 / 6 & x \oplus y \oplus z=\text { true }
\end{array} \\
X \perp Y, Z \backslash X|Y, Z \backslash Y| X\end{cases}
\end{aligned}
$$

however $X \perp Z$

Distributions to Graphs

- Can we learn / find a good / exact graphical model for a probability? Chapter 18

