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Bayesian Networks and independences

Not every distribution independencies can be captured by a directed graph

Regularity in the parameterization of the distribution that cannot be
captured in the graph structure, e.g., XOR example

P(x , y , z) =

{
1/12 if x ⊕ y ⊕ z = false
1/6 if x ⊕ y ⊕ z = true

(X ⊥ Y ) ∈ I(P)
Z is not independent of X given Y or Y given X .
An I-map is the network X → Z ← Y .
This is not a perfect map as (X ⊥ Z ) ∈ I(P)

Symmetric variable-level independencies that are not naturally expressed
with a Bayesian network.

Independence assumptions imposed by the structure of the DBN are not
appropriate, e.g., misconception example
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Misconception example

(a) (b) (c)

(a) Two independencies: (A ⊥ C |D,B) and (B ⊥ D|A,C )

Can we encode this with a BN?

(b) First attempt: encodes (A ⊥ C |D,B) but it also implies that (B ⊥ D|A)
but dependent given both A,C

(c) Second attempt: encodes (A ⊥ C |D,B), but also implies that B and D
are marginally independent.
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Undirected graphical models I

So far we have seen directed graphical models or Bayesian networks

BN do not captured all the independencies, e.g., misconception example,

We want a representation that does not require directionality of the
influences. We do this via an undirected graph.

Undirected graphical models, which are useful in modeling phenomena where
the interaction between variables does not have a clear directionality.

Often simpler perspective on directed models, in terms of the independence
structure and of inference.
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Undirected graphical models II

As in BN, the nodes in the graph represent the variables

The edges represent direct probabilistic interaction between the neighboring
variables

How to parametrize the graph?

In BN we used CPD (conditional probabilities) to represent distribution
of a node given others
For undirected graphs, we use a more symmetric parameterization that
captures the affinities between related variables.

Given a set of random variables X we define a factor as a function from
Val(X) to <.

The set of variables X is called the scope of the factor.

Factors can be negative. In general, we restrict the discussion to positive
factors
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Misconception example once more...

We can write the joint probability as

p(A,B,C ,D) =
1

Z
φ1(A,B)φ2(B,C )φ3(C ,D)φ4(A,D)

Z is the partition function and is used to normalized the probabilities

Z =
∑

A,B,C ,D

φ1(A,B)φ2(B,C )φ3(C ,D)φ4(A,D)

It is called function as it depends on the parameters: important for learning.

For positive factors, the higher the value of φ, the higher the compatibility.

This representation is very flexible.
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Query about probabilities

What’s the p(b0)? Marginalize the other variables!
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Misconception example once more...

We can write the joint probability as

p(A,B,C ,D) =
1

Z
φ1(A,B)φ2(B,C )φ3(C ,D)φ4(A,D)

Use the joint distribution to query about conditional probabilities by
summing out the other variables.

Tight connexion between the factorization and the independence properties

X ⊥ Y|Z iff p(X,Y,Z) = φ1(X,Z)φ2(Y,Z)

We see that in the example, (A ⊥ C |D,B) and (B ⊥ D|A,C )
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Factors

A factor can represent a joint distribution over D by defining φ(D).

A factor can represent a CPD p(X |D) by defining φ(D ∪ X )

But joint and CPD are more restricted, i.e., normalization constraints.

Associating parameters over edges is not enough

We need to associate factors over sets of nodes, i.e., higher order terms
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Factor product

Given 3 disjoint set of variables X,Y,Z, and factors φ1(X,Y), φ2(Y,Z), the
factor product is defined as

ψ(X,Y,Z) = φ1(X,Y)φ2(Y,Z)
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Gibbs distributions and Markov networks

A distribution Pφ is a Gibbs distribution parameterized with a set of
factors φ1(D1), · · · , φm(Dm) if it is defined as

Pφ(X1, · · · ,Xn) =
1

Z
φ1(D1)× · · · × φm(Dm)

and the partition function is defined as

Z =
∑

X1,··· ,,Xn

φ1(D1)× · · · × φm(Dm)

The factors do NOT represent marginal probabilities of the variables of their
scope. A factor is only one contribution to the joint.

A distribution Pφ with φ1(D1), · · · , φm(Dm) factorizes over a Markov
network H if each Di is a complete subgraph of H

The factors that parameterize a Markov network are called clique potentials
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Maximal cliques

One can reduce the number of factors by using factors of the maximal
cliques

This obscures the structure

What’s the Pφ on the left?

And on the right?

What’s the relationship between the factors?
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Example: Pairwise MRF

Undirected graphical model very popular in applications such as computer
vision: segmentation, stereo, de-noising

The graph has only node potentials φi (Xi ) and pairwise potentials
φi,j(Xi ,Xj)

Grids are particularly popular, e.g., pixels in an image with 4-connectivity
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Reduced Markov Networks I

Conditioning on an assignment u to a subset of variables U can be done by

Eliminating all entries that are inconsistent with the assignment
Re-normalizing the remaining entries so that they sum to 1

(Original) (Cond. on c1)
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Reduced Markov Networks

Let H be a Markov network over X and let U = u be the context. The
reduced network H[u] is a Markov network over the nodes W = X−U where
we have an edge between X and Y if there is an edge between then in H

If U = Grade?

If U = {Grade,SAT}?
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Markov Network Independencies I

As in BN, the graph encodes a set of independencies.

Probabilistic influence flows along the undirected paths in the graph.

It is blocked if we condition on the intervening nodes

A path X1 − · · · − Xk is ”active” given the observed variables E ⊆ X if none
of the Xi is in E.

A set of nodes Z separates X and Y in H, i.e., sepH(X; Y|Z), if there exists
no active path between any node X ∈ X and Y ∈ Y given Z.

The definition of separation is monotonic

if sepH(X; Y|Z) then sepH(X; Y|Z′) for any Z ′ ⊇ Z
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Markov Network Independencies II

If P is a Gibbs distribution that factorizes over H, then H is an I-map for P,
i.e., I (H) ⊆ I (P) (soundness of separation)

Proof: Suppose Z separates X from Y. Then we can write

p(X1, · · · ,Xn) =
1

Z
f (X,Z)g(Y,Z)

A distribution is positive if P(x) > 0 for all x .

Hammersley-Clifford theorem: If P is a positive distribution over X and H
is an I-map for P, then P is a Gibbs distribution that factorizes over H

p(x) =
1

Z

∏
c

φc(xc)

It is not the case that every pair of nodes that are not separated in H are
dependent in every distribution which factorizes over H
If X and Y are not separated given Z in H, then X and Y are dependent
given Z in some distribution that factorizes over H.
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Independence assumptions I

In a BN we specify local Markov assumptions and d-separation. In Markov
networks we have

1 Global assumption: A set of nodes Z separates X and Y if there is no
active path between any node X ∈ X and Y ∈ Y given Z.

I(H) = {(X ⊥ Y|Z) : sepH(X; Y|Z)}

2 Pairwise Markov assumption: X and Y are independent give all the other
nodes in the graph if no direct connection exists between them

Ip(H) = {(X ⊥ Y |X − {X ,Y }) : X − Y /∈ X}

3 Markov blanket assumption: X is independent of the rest of the nodes
given its neighbors

Il(H) = {(X ⊥ X − {X} −MBH(X )|MBH(X )) : X ∈ X}

A set U is a Markov blanket of X if X /∈ U and if U is a minimal set of
nodes such that (X ⊥ X − {X} −U|U) ∈ I
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Independence assumptions II

(Markov blanket)

In general I(H) ⊆ Il(H) ⊆ Ip(H)

If P satisfies I(H), then it satisfies Il(H)

If P satisfies Il(H), then it satisfies Ip(H)

If P is a positive distribution and satisfies Ip(H) then it satisfies Il(H)
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From distributions to graphs I

The notion of I-map is not enough: as in BN the complete graph is an I-map
for any distribution, but does not imply any independencies

For a given distribution, we want to construct a minimal I-map based on the
local indep. assumptions

1 Pairwise: Add an edge between all pairs of nodes that do NOT satisfy
(X ⊥ Y |X − {X ,Y })

2 Markov blanket: For each variable X we define the neighbors of X all
the nodes that render X independent of the rest of nodes. Define a
graph by introducing and edge for all X and all Y ∈ MBP(X ).

If P is positive distribution, there is a unique Markov blanket of X in I(P),
denoted MBP(X )
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From distributions to graphs II

If P is a positive distribution, and let H be the graph defined by introducing
an edge {X ,Y } for which P does NOT satisfied (X ⊥ Y |X − {X ,Y }), then
H is the unique minimal I-map for P.

Minimal I-map is the one that if we remove one edge is not an I-map.

Proof:

H is an I-map for P since P by construction satisfies Ip(P) which for
positive distributions equals I(P).
To prove that it’s minimal, if we eliminate an edge {X ,Y } the graph
would imply (X ⊥ Y |X − {X ,Y }), which is false for P, otherwise edge
omitted when constructing H.
To prove that it’s unique: any other I-map must contain the same
edges, and it’s either equal or contain additional edges, and thus it is
not minimal

If P is a positive distribution, and for each node let MBP(X ) be a minimal
set of nodes U satisfying (X ⊥ X − {X} −U|U) ∈ I. Define H by
introducing an edge {X ,Y } for all X and all Y ∈ MBP(X ). Then H is the
unique minimal I-map of P.
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Examples of deterministic relations

Not every distribution has a perfect map

Even for positive distributions

Example is the V-structure, where minimal I-map is the fully connected
graph

It fails to capture the marginal independence (X ⊥ Y ) that holds in P
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