Probabilistic Graphical Models

Raquel Urtasun and Tamir Hazan

TTI Chicago

April 4, 2011

Bayesian Networks and independences

Not every distribution independencies can be captured by a directed graph

• Regularity in the parameterization of the distribution that cannot be captured in the graph structure, e.g., XOR example

$$P(x, y, z) = \begin{cases} 1/12 & \text{if } x \oplus y \oplus z = \text{false} \\ 1/6 & \text{if } x \oplus y \oplus z = \text{true} \end{cases}$$

•
$$(X \perp Y) \in \mathcal{I}(P)$$

- Z is not independent of X given Y or Y given X.
- An I-map is the network $X \to Z \leftarrow Y$.
- This is not a perfect map as $(X \perp Z) \in \mathcal{I}(P)$
- Symmetric variable-level independencies that are not naturally expressed with a Bayesian network.
- Independence assumptions imposed by the structure of the DBN are not appropriate, e.g., misconception example

Misconception example

- (a) Two independencies: $(A \perp C | D, B)$ and $(B \perp D | A, C)$
- Can we encode this with a BN?
- (b) First attempt: encodes $(A \perp C | D, B)$ but it also implies that $(B \perp D | A)$ but dependent given both A, C
- (c) Second attempt: encodes $(A \perp C | D, B)$, but also implies that B and D are marginally independent.

Undirected graphical models I

- So far we have seen directed graphical models or Bayesian networks
- BN do not captured all the independencies, e.g., misconception example,

- We want a representation that does not require directionality of the influences. We do this via an undirected graph.
- Undirected graphical models, which are useful in modeling phenomena where the interaction between variables does not have a clear directionality.
- Often simpler perspective on directed models, in terms of the independence structure and of inference.

Undirected graphical models II

- As in BN, the **nodes** in the graph represent the variables
- The **edges** represent direct probabilistic interaction between the neighboring variables
- How to parametrize the graph?
 - In BN we used CPD (conditional probabilities) to represent distribution of a node given others
 - For undirected graphs, we use a more symmetric parameterization that captures the affinities between related variables.
- Given a set of random variables **X** we define a **factor** as a function from $Val(\mathbf{X})$ to \Re .
- The set of variables **X** is called the **scope** of the factor.
- Factors can be negative. In general, we restrict the discussion to positive factors

Misconception example once more...

• We can write the joint probability as

$$p(A, B, C, D) = \frac{1}{Z}\phi_1(A, B)\phi_2(B, C)\phi_3(C, D)\phi_4(A, D)$$

• Z is the partition function and is used to normalized the probabilities

$$Z = \sum_{A,B,C,D} \phi_1(A,B)\phi_2(B,C)\phi_3(C,D)\phi_4(A,D)$$

- It is called function as it depends on the parameters: important for learning.
- For positive factors, the higher the value of ϕ , the higher the compatibility.
- This representation is very flexible.

Query about probabilities

Α

С

D

A	ssig	nme	nt	Unnormalized	Normalized
a^0	b^0	c^0	d^0	300000	0.04
a^0	b^0	c^0	d^1	300000	0.04
a^0	b^0	c^1	d^0	300000	0.04
a^0	b^0	c^1	d^1	30	$4.1 \cdot 10^{-6}$
a^0	b^1	c^0	d^0	500	$6.9 \cdot 10^{-5}$
a^0	b^1	c^0	d^1	500	$6.9 \cdot 10^{-5}$
a^0	b^1	c^1	d^0	5000000	0.69
a^0	b^1	c^1	d^1	500	$6.9 \cdot 10^{-5}$
a^1	b^0	c^0	d^0	100	$1.4 \cdot 10^{-5}$
a^1	b^0	c^0	d^1	1000000	0.14
a^1	b^0	c^1	d^0	100	$1.4 \cdot 10^{-5}$
a^1	b^0	c^1	d^1	100	$1.4 \cdot 10^{-5}$
a^1	b^1	c^0	d^0	10	$1.4 \cdot 10^{-6}$
a^1	b^1	c^0	d^1	100000	0.014
a^1	b^1	c^1	d^0	100000	0.014
a^1	b^1	c^1	d^1	100000	0.014

Misconception example once more...

• We can write the joint probability as

$$p(A, B, C, D) = \frac{1}{Z}\phi_1(A, B)\phi_2(B, C)\phi_3(C, D)\phi_4(A, D)$$

- Use the joint distribution to query about conditional probabilities by summing out the other variables.
- Tight connexion between the factorization and the independence properties

$$\mathbf{X} \perp \mathbf{Y} | \mathbf{Z}$$
 iff $p(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) = \phi_1(\mathbf{X}, \mathbf{Z}) \phi_2(\mathbf{Y}, \mathbf{Z})$

• We see that in the example, $(A \perp C | D, B)$ and $(B \perp D | A, C)$

- A factor can represent a joint distribution over D by defining $\phi(\mathbf{D})$.
- A factor can represent a CPD $p(X|\mathbf{D})$ by defining $\phi(\mathbf{D} \cup X)$
- But joint and CPD are more restricted, i.e., normalization constraints.
- Associating parameters over edges is not enough
- We need to associate factors over sets of nodes, i.e., higher order terms

Given 3 disjoint set of variables X, Y, Z, and factors φ₁(X, Y), φ₂(Y, Z), the factor product is defined as

$$\psi(\mathsf{X},\mathsf{Y},\mathsf{Z})=\phi_1(\mathsf{X},\mathsf{Y})\phi_2(\mathsf{Y},\mathsf{Z})$$

Gibbs distributions and Markov networks

A distribution P_φ is a Gibbs distribution parameterized with a set of factors φ₁(D₁), · · · , φ_m(D_m) if it is defined as

$$P_{\phi}(X_1,\cdots,X_n)=rac{1}{Z}\phi_1(\mathbf{D}_1)\times\cdots\times\phi_m(\mathbf{D}_m)$$

and the partition function is defined as

$$Z = \sum_{X_1, \cdots, X_n} \phi_1(\mathbf{D}_1) \times \cdots \times \phi_m(\mathbf{D}_m)$$

- The factors do NOT represent marginal probabilities of the variables of their scope. A factor is only one contribution to the joint.
- A distribution P_φ with φ₁(D₁), · · · , φ_m(D_m) factorizes over a Markov network H if each D_i is a complete subgraph of H
- The factors that parameterize a Markov network are called clique potentials

• One can reduce the number of factors by using factors of the maximal cliques

- This obscures the structure
- What's the P_{ϕ} on the left?
- And on the right?
- What's the relationship between the factors?

Example: Pairwise MRF

- Undirected graphical model very popular in applications such as computer vision: segmentation, stereo, de-noising
- The graph has only node potentials $\phi_i(X_i)$ and pairwise potentials $\phi_{i,j}(X_i, X_j)$
- Grids are particularly popular, e.g., pixels in an image with 4-connectivity

- $\bullet\,$ Conditioning on an assignment u to a subset of variables U can be done by
 - Eliminating all entries that are inconsistent with the assignment
 - Re-normalizing the remaining entries so that they sum to 1

α^1	b^1	C^1	0.25
al	b²	C^1	0.08
a²	b1	c^1	0.05
۵²	b²	C^1	0
α³	b^1	c^1	0.15
α ³	b²	c^1	0.09

(Cond. on c^1)

Let H be a Markov network over X and let U = u be the context. The reduced network H[u] is a Markov network over the nodes W = X - U where we have an edge between X and Y if there is an edge between then in H

- If **U** = Grade?
- If $\mathbf{U} = \{ Grade, SAT \}$?

Markov Network Independencies I

- As in BN, the graph encodes a set of independencies.
- Probabilistic influence flows along the undirected paths in the graph.
- It is blocked if we condition on the intervening nodes
- A path X₁ − · · · − X_k is "active" given the observed variables E ⊆ X if none of the X_i is in E.

- A set of nodes Z separates X and Y in H, i.e., sep_H(X; Y|Z), if there exists no active path between any node X ∈ X and Y ∈ Y given Z.
- The definition of separation is monotonic
 - $\text{if} \quad sep_{\mathcal{H}}(\mathbf{X};\mathbf{Y}|\mathbf{Z}) \quad \text{then} \quad sep_{\mathcal{H}}(\mathbf{X};\mathbf{Y}|\mathbf{Z}') \quad \text{for any } Z' \supseteq Z \\$

Markov Network Independencies II

- If P is a Gibbs distribution that factorizes over \mathcal{H} , then \mathcal{H} is an I-map for P, i.e., $I(\mathcal{H}) \subseteq I(\mathcal{P})$ (soundness of separation)
- Proof: Suppose Z separates X from Y. Then we can write

$$p(X_1,\cdots,X_n)=\frac{1}{Z}f(\mathbf{X},\mathbf{Z})g(\mathbf{Y},\mathbf{Z})$$

- A distribution is **positive** if P(x) > 0 for all x.
- Hammersley-Clifford theorem: If *P* is a positive distribution over \mathcal{X} and \mathcal{H} is an I-map for *P*, then *P* is a Gibbs distribution that factorizes over \mathcal{H}

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{c} \phi_{c}(\mathbf{x}_{c})$$

- It is not the case that every pair of nodes that are not separated in ${\cal H}$ are dependent in every distribution which factorizes over ${\cal H}$
- If X and Y are not separated given Z in H, then X and Y are dependent given Z in some distribution that factorizes over H.

In a BN we specify local Markov assumptions and d-separation. In Markov networks we have

Global assumption: A set of nodes **Z** separates **X** and **Y** if there is no active path between any node $X \in \mathbf{X}$ and $Y \in \mathbf{Y}$ given **Z**.

$$\mathcal{I}(\mathcal{H}) = \{ (\mathbf{X} \perp \mathbf{Y} | \mathbf{Z}) : sep_{\mathcal{H}}(\mathbf{X}; \mathbf{Y} | \mathbf{Z}) \}$$

Pairwise Markov assumption: X and Y are independent give all the other nodes in the graph if no direct connection exists between them

$$\mathcal{I}_{p}(\mathcal{H}) = \{ (X \perp Y | \mathcal{X} - \{X, Y\}) : X - Y \notin \mathcal{X} \}$$

Markov blanket assumption: X is independent of the rest of the nodes given its neighbors

$$\mathcal{I}_{l}(\mathcal{H}) = \{ (X \perp \mathcal{X} - \{X\} - MB_{\mathcal{H}}(X) | MB_{\mathcal{H}}(X)) : X \in \mathcal{X} \}$$

A set **U** is a Markov blanket of X if $X \notin \mathbf{U}$ and if **U** is a minimal set of nodes such that $(X \perp \mathcal{X} - \{X\} - \mathbf{U}|\mathbf{U}) \in \mathcal{I}$

Independence assumptions II

(Markov blanket)

- In general $\mathcal{I}(\mathcal{H}) \subseteq \mathcal{I}_l(\mathcal{H}) \subseteq \mathcal{I}_p(\mathcal{H})$
- If *P* satisfies $\mathcal{I}(\mathcal{H})$, then it satisfies $\mathcal{I}_l(\mathcal{H})$
- If P satisfies $\mathcal{I}_l(\mathcal{H})$, then it satisfies $\mathcal{I}_p(\mathcal{H})$
- If P is a positive distribution and satisfies $\mathcal{I}_p(\mathcal{H})$ then it satisfies $\mathcal{I}_l(\mathcal{H})$

- The notion of I-map is not enough: as in BN the complete graph is an I-map for any distribution, but does not imply any independencies
- For a given distribution, we want to construct a minimal I-map based on the local indep. assumptions
 - Pairwise: Add an edge between all pairs of nodes that do NOT satisfy (X \pm Y | \mathcal{X} - {X, Y})
 - 2 Markov blanket: For each variable X we define the neighbors of X all the nodes that render X independent of the rest of nodes. Define a graph by introducing and edge for all X and all $Y \in MB_P(X)$.
- If P is positive distribution, there is a unique Markov blanket of X in I(P), denoted MB_P(X)

From distributions to graphs II

- If P is a positive distribution, and let H be the graph defined by introducing an edge {X, Y} for which P does NOT satisfied (X ⊥ Y | X - {X, Y}), then H is the unique minimal I-map for P.
- Minimal I-map is the one that if we remove one edge is not an I-map.
- Proof:
 - \mathcal{H} is an I-map for P since P by construction satisfies $\mathcal{I}_p(P)$ which for positive distributions equals $\mathcal{I}(P)$.
 - To prove that it's minimal, if we eliminate an edge {X, Y} the graph would imply (X ⊥ Y | X − {X, Y}), which is false for P, otherwise edge omitted when constructing H.
 - To prove that it's unique: any other I-map must contain the same edges, and it's either equal or contain additional edges, and thus it is not minimal
- If *P* is a positive distribution, and for each node let $MB_P(X)$ be a minimal set of nodes **U** satisfying $(X \perp \mathcal{X} \{X\} \mathbf{U}|\mathbf{U}) \in \mathcal{I}$. Define \mathcal{H} by introducing an edge $\{X, Y\}$ for all *X* and all $Y \in MB_P(X)$. Then \mathcal{H} is the unique minimal I-map of P.

Examples of deterministic relations

- Not every distribution has a perfect map
- Even for positive distributions
- Example is the V-structure, where minimal I-map is the fully connected graph

• It fails to capture the marginal independence $(X \perp Y)$ that holds in P