Probabilistic Graphical Models

Raquel Urtasun and Tamir Hazan

TTI Chicago
April 4, 2011

Bayesian Networks and independences

Not every distribution independencies can be captured by a directed graph

- Regularity in the parameterization of the distribution that cannot be captured in the graph structure, e.g., XOR example

$$
P(x, y, z)= \begin{cases}1 / 12 & \text { if } x \oplus y \oplus z=\text { false } \\ 1 / 6 & \text { if } x \oplus y \oplus z=\text { true }\end{cases}
$$

- $(X \perp Y) \in \mathcal{I}(P)$
- Z is not independent of X given Y or Y given X.
- An l-map is the network $X \rightarrow Z \leftarrow Y$.
- This is not a perfect map as $(X \perp Z) \in \mathcal{I}(P)$
- Symmetric variable-level independencies that are not naturally expressed with a Bayesian network.
- Independence assumptions imposed by the structure of the DBN are not appropriate, e.g., misconception example

Misconception example

(a)

(b)

(c)

- (a) Two independencies: $(A \perp C \mid D, B)$ and $(B \perp D \mid A, C)$
- Can we encode this with a BN?
- (b) First attempt: encodes $(A \perp C \mid D, B)$ but it also implies that $(B \perp D \mid A)$ but dependent given both A, C
- (c) Second attempt: encodes $(A \perp C \mid D, B)$, but also implies that B and D are marginally independent.

Undirected graphical models I

- So far we have seen directed graphical models or Bayesian networks
- BN do not captured all the independencies, e.g., misconception example,

- We want a representation that does not require directionality of the influences. We do this via an undirected graph.
- Undirected graphical models, which are useful in modeling phenomena where the interaction between variables does not have a clear directionality.
- Often simpler perspective on directed models, in terms of the independence structure and of inference.

Undirected graphical models II

- As in BN, the nodes in the graph represent the variables
- The edges represent direct probabilistic interaction between the neighboring variables
- How to parametrize the graph?
- In BN we used CPD (conditional probabilities) to represent distribution of a node given others
- For undirected graphs, we use a more symmetric parameterization that captures the affinities between related variables.
- Given a set of random variables \mathbf{X} we define a factor as a function from $\operatorname{Val}(\mathbf{X})$ to \Re.
- The set of variables \mathbf{X} is called the scope of the factor.
- Factors can be negative. In general, we restrict the discussion to positive factors

Misconception example once more...

- We can write the joint probability as

$$
p(A, B, C, D)=\frac{1}{Z} \phi_{1}(A, B) \phi_{2}(B, C) \phi_{3}(C, D) \phi_{4}(A, D)
$$

- Z is the partition function and is used to normalized the probabilities

$$
Z=\sum_{A, B, C, D} \phi_{1}(A, B) \phi_{2}(B, C) \phi_{3}(C, D) \phi_{4}(A, D)
$$

- It is called function as it depends on the parameters: important for learning.
- For positive factors, the higher the value of ϕ, the higher the compatibility.
- This representation is very flexible.

Query about probabilities

Assignment				Unnormalized	Normalized
a^{0}	b^{0}				
a^{0}	b^{0}	c^{0}	d^{0}	c^{0}	d^{1}
a^{0}	b^{0}	c^{1}	d^{0}	3000000	0.04
a^{0}	b^{0}	c^{1}	d^{1}	300000	0.04
a^{0}	b^{1}	c^{0}	d^{0}	30	$4.1 \cdot 10^{-6}$
a^{0}	b^{1}	c^{0}	d^{1}	500	$6.9 \cdot 10^{-5}$
a^{0}	b^{1}	c^{1}	d^{0}	500	$6.9 \cdot 10^{-5}$
a^{0}	b^{1}	c^{1}	d^{1}	500000	0.69
a^{1}	b^{0}	c^{0}	d^{0}	500	$6.9 \cdot 10^{-5}$
a^{1}	b^{0}	c^{0}	d^{1}	100	$1.4 \cdot 10^{-5}$
a^{1}	b^{0}	c^{1}	d^{0}	1000000	0.14
a^{1}	b^{0}	c^{1}	d^{1}	100	$1.4 \cdot 10^{-5}$
a^{1}	b^{1}	c^{0}	d^{0}	100	$1.4 \cdot 10^{-5}$
a^{1}	b^{1}	c^{0}	d^{1}	10	$1.4 \cdot 10^{-6}$
a^{1}	b^{1}	c^{1}	d^{0}	100000	0.014
a^{1}	b^{1}	c^{1}	d^{1}	100000	0.014
			100000	0.014	

- What's the $p\left(b^{0}\right)$? Marginalize the other variables!

Misconception example once more...

\[

\]

- We can write the joint probability as

$$
p(A, B, C, D)=\frac{1}{Z} \phi_{1}(A, B) \phi_{2}(B, C) \phi_{3}(C, D) \phi_{4}(A, D)
$$

- Use the joint distribution to query about conditional probabilities by summing out the other variables.
- Tight connexion between the factorization and the independence properties

$$
\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z} \quad \text { iff } \quad p(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\phi_{1}(\mathbf{X}, \mathbf{Z}) \phi_{2}(\mathbf{Y}, \mathbf{Z})
$$

- We see that in the example, $(A \perp C \mid D, B)$ and $(B \perp D \mid A, C)$

Factors

- A factor can represent a joint distribution over D by defining $\phi(\mathbf{D})$.
- A factor can represent a CPD $p(X \mid \mathbf{D})$ by defining $\phi(\mathbf{D} \cup X)$
- But joint and CPD are more restricted, i.e., normalization constraints.
- Associating parameters over edges is not enough
- We need to associate factors over sets of nodes, i.e., higher order terms

Factor product

- Given 3 disjoint set of variables $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$, and factors $\phi_{1}(\mathbf{X}, \mathbf{Y}), \phi_{2}(\mathbf{Y}, \mathbf{Z})$, the factor product is defined as

$$
\psi(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\phi_{1}(\mathbf{X}, \mathbf{Y}) \phi_{2}(\mathbf{Y}, \mathbf{Z})
$$

						a^{1}	b^{1}	c^{1}	0.5-0.5
						a^{1}	b^{1}	c^{2}	0.5-0.7
						a^{1}	b^{2}	c^{1}	0.8.0.1
						a^{1}	b^{2}	c^{2}	0.8-0.2
a^{1}	b^{1}	0.5				a^{2}	b^{1}	c^{1}	0.1-0.5
a^{1}	b^{2}	0.8	b^{1}	c^{1}	0.5	a^{2}	b^{1}	c^{2}	0.1-0.7
a^{2}	b^{1}	0.1	b^{1}	c^{2}	0.7	a^{2}	b^{2}	c^{1}	0.0 .1
a^{2}	b^{2}	0	b^{2}	c^{1}	0.1	a^{2}	b^{2}	c^{2}	0.0.2
a^{3}	b^{1}	0.3	b^{2}	c^{2}	0.2	a^{3}	b^{1}	c^{1}	0.3-0.5
a^{3}	b^{2}	0.9				a^{3}	b^{1}	c^{2}	0.3-0.7
						a^{3}	b^{2}	c^{1}	0.9-0.1
						a^{3}	b^{2}	c^{2}	0.9-0.2

Gibbs distributions and Markov networks

- A distribution P_{ϕ} is a Gibbs distribution parameterized with a set of factors $\phi_{1}\left(\mathbf{D}_{1}\right), \cdots, \phi_{m}\left(\mathbf{D}_{m}\right)$ if it is defined as

$$
P_{\phi}\left(X_{1}, \cdots, X_{n}\right)=\frac{1}{Z} \phi_{1}\left(\mathbf{D}_{1}\right) \times \cdots \times \phi_{m}\left(\mathbf{D}_{m}\right)
$$

and the partition function is defined as

$$
Z=\sum_{X_{1}, \cdots,, X_{n}} \phi_{1}\left(\mathbf{D}_{1}\right) \times \cdots \times \phi_{m}\left(\mathbf{D}_{m}\right)
$$

- The factors do NOT represent marginal probabilities of the variables of their scope. A factor is only one contribution to the joint.
- A distribution P_{ϕ} with $\phi_{1}\left(\mathbf{D}_{1}\right), \cdots, \phi_{m}\left(\mathbf{D}_{m}\right)$ factorizes over a Markov network \mathcal{H} if each \mathbf{D}_{i} is a complete subgraph of \mathcal{H}
- The factors that parameterize a Markov network are called clique potentials

Maximal cliques

- One can reduce the number of factors by using factors of the maximal cliques

- This obscures the structure
- What's the P_{ϕ} on the left?
- And on the right?
- What's the relationship between the factors?

Example: Pairwise MRF

- Undirected graphical model very popular in applications such as computer vision: segmentation, stereo, de-noising
- The graph has only node potentials $\phi_{i}\left(X_{i}\right)$ and pairwise potentials $\phi_{i, j}\left(X_{i}, X_{j}\right)$
- Grids are particularly popular, e.g., pixels in an image with 4-connectivity

Reduced Markov Networks I

- Conditioning on an assignment \mathbf{u} to a subset of variables \mathbf{U} can be done by
- Eliminating all entries that are inconsistent with the assignment
- Re-normalizing the remaining entries so that they sum to 1

								b^{1}	c^{1}	0.50.5
								b^{1}	c^{2}	0.50.7
								b^{2}	c^{1}	0.8.0.1
a^{1}								b^{2}	c^{2}	0.80 .2
	b^{1}	0.5						b^{1}	c^{1}	0.1-0.5
a^{1}	b^{2}	0.8	b^{1}	c^{1}	0.5			b^{1}	c^{2}	0.1-0.7
a^{2}	b^{1}	0.1	b^{1}	c^{2}	0.7			b^{2}	c^{1}	$0 \cdot 0.1$
a^{2}	b^{2}	0	b^{2}	${ }^{1}$	0.1			b^{2}	c^{2}	0.0 .2
a^{3}	b^{1}	0.3	b^{2}	c^{2}	0.2			b^{1}	c^{1}	0.30.5
a^{3}	b^{2}	0.9						b^{1}	c^{2}	0.30 .7
								b^{2}	c^{1}	0.9.0.1
								b^{2}	c^{2}	0.90.2

(Original)

a^{1}	b^{1}	c^{1}	0.25
a^{1}	b^{2}	c^{1}	0.08
a^{2}	b^{1}	c^{1}	0.05
a^{2}	b^{2}	c^{1}	0
a^{3}	b^{1}	c^{1}	0.15
a^{3}	b^{2}	c^{1}	0.09

(Cond. on c^{1})

Reduced Markov Networks

- Let \mathcal{H} be a Markov network over \mathbf{X} and let $\mathbf{U}=u$ be the context. The reduced network $\mathcal{H}[u]$ is a Markov network over the nodes $\mathbf{W}=\mathbf{X}-\mathbf{U}$ where we have an edge between X and Y if there is an edge between then in \mathcal{H}

- If $\mathbf{U}=$ Grade?
- If $\mathbf{U}=\{$ Grade, SAT $\}$?

Markov Network Independencies I

- As in BN, the graph encodes a set of independencies.
- Probabilistic influence flows along the undirected paths in the graph.
- It is blocked if we condition on the intervening nodes
- A path $X_{1}-\cdots-X_{k}$ is "active" given the observed variables $\mathbf{E} \subseteq \mathcal{X}$ if none of the X_{i} is in \mathbf{E}.

- A set of nodes \mathbf{Z} separates \mathbf{X} and \mathbf{Y} in \mathcal{H}, i.e., $\operatorname{sep}_{\mathcal{H}}(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z})$, if there exists no active path between any node $X \in \mathbf{X}$ and $Y \in Y$ given \mathbf{Z}.
- The definition of separation is monotonic
if $\quad \operatorname{sep}_{\mathcal{H}}(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z})$ then $\quad \operatorname{sep}_{\mathcal{H}}\left(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z}^{\prime}\right) \quad$ for any $Z^{\prime} \supseteq Z$

Markov Network Independencies II

- If P is a Gibbs distribution that factorizes over \mathcal{H}, then \mathcal{H} is an I-map for P, i.e., $I(H) \subseteq I(P)$ (soundness of separation)
- Proof: Suppose \mathbf{Z} separates \mathbf{X} from \mathbf{Y}. Then we can write

$$
p\left(X_{1}, \cdots, X_{n}\right)=\frac{1}{Z} f(\mathbf{X}, \mathbf{Z}) g(\mathbf{Y}, \mathbf{Z})
$$

- A distribution is positive if $P(x)>0$ for all x.
- Hammersley-Clifford theorem: If P is a positive distribution over \mathcal{X} and \mathcal{H} is an I-map for P, then P is a Gibbs distribution that factorizes over \mathcal{H}

$$
p(\mathbf{x})=\frac{1}{Z} \prod_{c} \phi_{c}\left(\mathbf{x}_{c}\right)
$$

- It is not the case that every pair of nodes that are not separated in \mathcal{H} are dependent in every distribution which factorizes over \mathcal{H}
- If X and Y are not separated given \mathbf{Z} in \mathcal{H}, then X and Y are dependent given Z in some distribution that factorizes over \mathcal{H}.

Independence assumptions I

In a BN we specify local Markov assumptions and d-separation. In Markov networks we have
(1) Global assumption: A set of nodes \mathbf{Z} separates \mathbf{X} and \mathbf{Y} if there is no active path between any node $X \in \mathbf{X}$ and $Y \in \mathbf{Y}$ given \mathbf{Z}.

$$
\mathcal{I}(\mathcal{H})=\left\{(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}) \quad: \quad \operatorname{sep}_{\mathcal{H}}(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z})\right\}
$$

(2) Pairwise Markov assumption: X and Y are independent give all the other nodes in the graph if no direct connection exists between them

$$
\mathcal{I}_{p}(\mathcal{H})=\{(X \perp Y \mid \mathcal{X}-\{X, Y\}) \quad: \quad X-Y \notin \mathcal{X}\}
$$

(3) Markov blanket assumption: X is independent of the rest of the nodes given its neighbors

$$
\mathcal{I}_{l}(\mathcal{H})=\left\{\left(X \perp \mathcal{X}-\{X\}-M B_{\mathcal{H}}(X) \mid M B_{\mathcal{H}}(X)\right) \quad: \quad X \in \mathcal{X}\right\}
$$

A set \mathbf{U} is a Markov blanket of X if $X \notin \mathbf{U}$ and if \mathbf{U} is a minimal set of nodes such that $(X \perp \mathcal{X}-\{X\}-\mathbf{U} \mid \mathbf{U}) \in \mathcal{I}$

Independence assumptions II

(Markov blanket)

- In general $\mathcal{I}(\mathcal{H}) \subseteq \mathcal{I}_{l}(\mathcal{H}) \subseteq \mathcal{I}_{p}(\mathcal{H})$
- If P satisfies $\mathcal{I}(\mathcal{H})$, then it satisfies $\mathcal{I}_{l}(\mathcal{H})$
- If P satisfies $\mathcal{I}_{l}(\mathcal{H})$, then it satisfies $\mathcal{I}_{p}(\mathcal{H})$
- If P is a positive distribution and satisfies $\mathcal{I}_{p}(\mathcal{H})$ then it satisfies $\mathcal{I}_{l}(\mathcal{H})$

From distributions to graphs I

- The notion of I-map is not enough: as in BN the complete graph is an I-map for any distribution, but does not imply any independencies
- For a given distribution, we want to construct a minimal I-map based on the local indep. assumptions
(1) Pairwise: Add an edge between all pairs of nodes that do NOT satisfy $(X \perp Y \mid \mathcal{X}-\{X, Y\})$
(2) Markov blanket: For each variable X we define the neighbors of X all the nodes that render X independent of the rest of nodes. Define a graph by introducing and edge for all X and all $Y \in M B_{P}(X)$.
- If P is positive distribution, there is a unique Markov blanket of X in $\mathcal{I}(P)$, denoted $M B_{P}(X)$

From distributions to graphs II

- If P is a positive distribution, and let \mathcal{H} be the graph defined by introducing an edge $\{X, Y\}$ for which P does NOT satisfied $(X \perp Y \mid \mathcal{X}-\{X, Y\})$, then \mathcal{H} is the unique minimal I-map for P.
- Minimal I-map is the one that if we remove one edge is not an I-map.
- Proof:
- \mathcal{H} is an I-map for P since P by construction satisfies $\mathcal{I}_{p}(P)$ which for positive distributions equals $\mathcal{I}(P)$.
- To prove that it's minimal, if we eliminate an edge $\{X, Y\}$ the graph would imply ($X \perp Y \mid \mathcal{X}-\{X, Y\}$), which is false for P, otherwise edge omitted when constructing \mathcal{H}.
- To prove that it's unique: any other I-map must contain the same edges, and it's either equal or contain additional edges, and thus it is not minimal
- If P is a positive distribution, and for each node let $M B_{P}(X)$ be a minimal set of nodes \mathbf{U} satisfying $(X \perp \mathcal{X}-\{X\}-\mathbf{U} \mid \mathbf{U}) \in \mathcal{I}$. Define \mathcal{H} by introducing an edge $\{X, Y\}$ for all X and all $Y \in M B_{P}(X)$. Then \mathcal{H} is the unique minimal I-map of P.

Examples of deterministic relations

- Not every distribution has a perfect map
- Even for positive distributions
- Example is the V-structure, where minimal I-map is the fully connected graph

- It fails to capture the marginal independence $(X \perp Y)$ that holds in P

