Probabilistic Graphical Models

Raquel Urtasun and Tamir Hazan

TTI Chicago
April 8, 2011

Factor Graphs

- \mathcal{H} does not reveal the structure of the Gibbs parameterization: maximum cliques vs subsets of them.
- Example: For a complete graph, we could have one factor per edge or a single clique potential for the whole graph
- Factor graphs can distinguish these cases.
- A factor graph is an undirected graph containing variables nodes and factor nodes. There are only edges between the variable nodes and the factor nodes. Each factor node is associated with a single factor, which scope is the set of variables that are neighbors in the graph.

- What's the Gibbs distribution?

Example: segmentation

- The graph has only node potentials $\phi_{i}\left(X_{i}\right)$ and pairwise potentials $\phi_{i, j}\left(X_{i}, X_{j}\right)$
- Grids are particularly popular, e.g., pixels in an image with 4-connectivity

- What's the factor graph?

Energy-based models: log-linear models

- It is common to work in terms of energies: negative logs of the factors
- Where small energy means more probable

$$
p\left(X_{1}, \cdots, X_{n}\right)=\frac{1}{Z} \exp \left[-\sum_{i=1}^{m} \epsilon_{i}\left(\mathbf{D}_{i}\right)\right]
$$

where $\epsilon(\mathbf{D})=-\ln \phi(\mathbf{D})$ is called an energy function

- It is called log-linear model as the exponent is a linear function.
- Any Markov network parameterized using positive factors can be converted to this representation.

Misconception example

- Factor domain:

\[

\]

- Log domain: $\epsilon(\mathbf{D})=-\ln \phi(\mathbf{D})$. We see preference of \mathbf{D} and A to have the same value.

\[

\]

Notion of feature

- Let \mathbf{D} be a subset of variables. We define a feature $f(\mathbf{D})$ to be an indicator function for some event defined in \mathbf{D}, f takes value 1 for some values $y \in \operatorname{Val}(\mathbf{D})$, and 0 otherwise.

$$
\begin{aligned}
& \epsilon(C, D)= \begin{cases}-4.61 & \text { if } C \neq D \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- This can be represented with a feature $f(C, D)$ which takes value 1 when $C \neq D$.
- The energy is a constant multiply by $f(C, D)$

Definition log-linear model

A distribution P is a \log linear model over a Markov network \mathcal{H} if it is associated with:

- a set of features $\Phi=\left\{f_{1}\left(\mathbf{D}_{1}\right), \cdots, f_{m}\left(\mathbf{D}_{m}\right)\right\}$, where each \mathbf{D}_{i} is a complete subgraph in \mathcal{H}.
- A set of weights w_{1}, \cdots, w_{m} such that

$$
p\left(X_{1}, \cdots, X_{n}\right)=\frac{1}{Z} \exp \left[-\sum_{i=1}^{m} w_{i} f_{i}\left(\mathbf{D}_{i}\right)\right]
$$

- Importantly, we can have several features over the same scope.
- This representation is more compact for many distributions, especially with variables with large domains.

Example: Ising model

- Captures the energy of a set of interacting atoms.
- Each atom $X_{i} \in\{-1,+1\}$, whose value is the direction of the atom spin.
- The energy of the edges is symmetric and makes a contribution when $X_{i}=X_{j}$ (both atoms with the same spin).
- Also individual node potentials that encode the bias of the individual atoms
- The energy associated is

$$
P\left(x_{1}, \cdots, x_{n}\right)=\frac{1}{Z} \exp \left(\sum_{i<j} w_{i, j} x_{i} x_{j}-\sum_{i} u_{i} x_{i}\right)
$$

- The energy can be written as

$$
\epsilon(\mathbf{x})=-\frac{1}{2}(\mathbf{x}-\mu)^{T} \mathbf{W}(\mathbf{x}-\mu)+c
$$

with $\boldsymbol{\mu}=-\mathbf{W}^{-1} \mathbf{u}, \quad c=\frac{1}{2} \boldsymbol{\mu}^{\top} \mathbf{W} \boldsymbol{\mu}$

- Often modulated by a temperature $p(\mathbf{x})=\frac{1}{Z} \exp (-\epsilon(\mathbf{x}) / T)$
- T small makes distribution picky

What is the factor graph of an Ising model?

- The energy associated is

$$
P\left(x_{1}, \cdots, x_{n}\right)=\frac{1}{Z} \exp \left(\sum_{i<j} w_{i, j} x_{i} x_{j}-\sum_{i} u_{i} x_{i}\right) .
$$

- What's the factor graph?
- What are the features?

Example: Bolzmann machine I

- Is a type of Ising model, i.e., same energy function
- The nodes are taken to have values $\{0,1\}$.
- The energy then reduces to

$$
\epsilon(\mathbf{x})=\sum_{i} \epsilon_{i}\left(x_{i}\right)+\sum_{(i, j) \in \varepsilon} \epsilon_{i, j}\left(x_{i}, x_{j}\right)
$$

with ε the set of edges

- The probability of each variable given its neighbors is $\operatorname{sigmoid}(z)$, with

$$
z=-\left(\sum_{j} w_{i, j} x_{j}\right)-w_{i}
$$

- Which is the simplest model of activation of a neuron

Example: Bolzmann machine II

- Bolzmann machines are usually defined in terms of visible units and hidden units.

(BM)

(RBM)
- A restricted Bolzmann machine does not have connections

Representation of Markov Networks

We have seen 3 representations:

- Markov networks \mathcal{H} : involves product over potentials or cliques.
- Factor graphs: product of factors.
- Set of features: product over weighted features.

Usefulness:

- Markov networks are useful for defining independencies
- Factor graphs are useful for inference
- Set of features are useful for learning

Over-parameterization

- Markov network parameterizations are over-parameterized.
- There are multiple choices of parameters that describe the same distribution

$$
\begin{aligned}
& \\
& \text { (Original Parameterization) }
\end{aligned}
$$

$\epsilon_{1}^{\prime}[A, B]$			$\epsilon_{2}^{\prime}[B, C]$		
a^{0}	b^{0}	-4.4	b^{0}	c^{0}	-3.61
a^{0}	b^{1}	1.61	b^{0}	c^{1}	+1
a^{1}	b^{0}	-1	b^{1}	c^{0}	0
a^{1}	b^{1}	2.3	b^{1}	${ }^{1}$	4.61

(New Parameterization)

- What's the energy of a particular configuration $\epsilon\left(a^{0}, b^{0}, c^{0}\right)$ in both cases?

Conversion between representations

- From BN to Markov networks via moralization
- From Markov networks to BN via triangulation

From Bayesian Networks to Markov Networks I

- We are interested in finding a minimal I-map from a distribution $P_{\mathcal{B}}$.
- The parameterization of \mathcal{B} can also be viewed as a Gibbs distribution: each CPD $P\left(X_{i} \mid P_{X_{i}}\right)$ is a factor.
- The factor satisfies additional normalization properties, and $(Z=1)$. Why?
- A BN conditioned on evidence \mathbf{E} also induces a Gibbs distribution: defined by the original factors reduced to the context $\mathbf{E}=\mathbf{e}$.
- Let \mathcal{B} be a BN over \mathcal{X}, with \mathbf{E} an observation and $\mathbf{W}=\mathcal{X}-\mathbf{E}$. Then $P_{\mathcal{B}}(\mathbf{W} \mid \mathbf{e})$ is a Gibbs distribution defined by the factors $\Phi=\left\{\phi_{X_{i}}\right\}_{X_{i} \in \mathcal{X}}$ with

$$
\phi_{X_{i}}=P_{\mathcal{B}}\left(X_{i} \mid \operatorname{Pa}_{X_{i}}\right)[\mathbf{E}=\mathbf{e}]
$$

and the partition function for this distribution is $P(\mathbf{e})$.

- To create a Markov network we need to create an edge between X_{i} and each of its parents, as well as between the parents of X_{i}.

From Bayesian Networks to Markov Networks II

- The moral graph $\mathcal{M}[\mathcal{G}]$ of a $\mathrm{BN} \mathcal{G}$ over \mathcal{X} is an undirected graph over \mathcal{X} that contains an undirected edge between X and Y if
(1) there is a directed edge between them (in either direction)
(2) X and Y are both parents of the same node.

Let's show some examples on the board !!

From Bayesian Networks to Markov Networks III

- The moral graph $\mathcal{M}[\mathcal{G}]$ of a $\mathrm{BN} \mathcal{G}$ over \mathcal{X} is an undirected graph over \mathcal{X} that contains an undirected edge between X and Y if
(1) there is a directed edge between them (in either direction)
(2) X and Y are both parents of the same node.
- For any distribution $P_{\mathcal{B}}$ such that \mathcal{B} is a parameterization of \mathcal{G}, then $\mathcal{M}[\mathcal{G}]$ is an I-map for $P_{\mathcal{B}}$.
- The moralized graph $\mathcal{M}[\mathcal{G}]$ is a minimal I-map for \mathcal{G}.
- The addition of the moralizing edges leads to the loss of some independence information, e.g., $X \rightarrow Z \leftarrow Y$, where $X \perp Y$ is lost.
- Moralization causes lost of independence if it introduces new edges.
- If \mathcal{G} is moral, then $\mathcal{M}[\mathcal{G}]$ is a perfect map of \mathcal{G}.
- If the v-structure can be short cut then it preserves the independencies

D-separation

- Let $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ be three disjoint sets of nodes in a Bayesian network \mathcal{G}. Let $\mathbf{U}=\mathbf{X} \cup \mathbf{Y} \cup \mathbf{Z}$, and let \mathcal{G}^{\prime} be the induced Bayesian network over $\mathbf{U} \cup$ Ancestoru. Let \mathcal{H} the moralized graph $\mathcal{M}\left[\mathcal{G}^{\prime}\right]$. Then

$$
d-\operatorname{sep}_{\mathcal{G}}(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z}) \quad \text { iff } \quad \operatorname{sep}_{\mathcal{H}}(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z})
$$

(BN)

$d-\operatorname{sep}_{\mathcal{G}}(D ; I \mid L) \quad d-\operatorname{sep}_{\mathcal{G}}(D ; I \mid L)$

- (center) Moralized graph for $d-\operatorname{sep}_{\mathcal{G}}(D ; I \mid L), \mathbf{U}=\{D, I, L\}$.
- (right) Moralized graph for $d-\operatorname{sep}_{\mathcal{G}}(D ; I \mid L), \mathbf{U}=\{D, I, L, A\}$.
- If a distribution $P_{\mathcal{B}}$ factorizes according to \mathcal{G}, then \mathcal{G} is an I-map fo P.

From Markov Networks to Bayesian Networks

- More difficult transformation, and the BN can be considerably larger.

- Order was $\{A, B, C, D, E, F\}$, but different ordering has the same problems
- It must add edges so that the resulting graph is chordal, i.e., all loops have been partitioned into triangles.
- This process is called triangulation.
- The addition of edges leads to the loss of independence information, i.e., in the example ($C \perp D \mid A, F$).

