Probabilistic Graphical Models

Raquel Urtasun and Tamir Hazan

TTI Chicago

April 8, 2011

Factor Graphs

- \mathcal{H} does not reveal the structure of the Gibbs parameterization: maximum cliques vs subsets of them.
- Example: For a complete graph, we could have one factor per edge or a single clique potential for the whole graph
- Factor graphs can distinguish these cases.
- A factor graph is an undirected graph containing variables nodes and factor nodes. There are only edges between the variable nodes and the factor nodes. Each factor node is associated with a single factor, which scope is the set of variables that are neighbors in the graph.

What's the Gibbs distribution?

Example: segmentation

- The graph has only node potentials $\phi_i(X_i)$ and pairwise potentials $\phi_{i,j}(X_i, X_j)$
- Grids are particularly popular, e.g., pixels in an image with 4-connectivity

• What's the factor graph?

- It is common to work in terms of energies: negative logs of the factors
- Where small energy means more probable

$$p(X_1, \cdots, X_n) = \frac{1}{Z} \exp \left[-\sum_{i=1}^m \epsilon_i(\mathbf{D}_i)\right]$$

where $\epsilon(\mathbf{D}) = -\ln \phi(\mathbf{D})$ is called an energy function

- It is called *log-linear model* as the exponent is a linear function.
- Any Markov network parameterized using positive factors can be converted to this representation.

• Factor domain:

Log domain: ϵ(D) = - ln φ(D). We see preference of D and A to have the same value.

Notion of feature

Let D be a subset of variables. We define a feature f(D) to be an indicator function for some event defined in D, f takes value 1 for some values y ∈ Val(D), and 0 otherwise.

$$\begin{array}{ccccccc} \epsilon_{1}[A,B] & \epsilon_{2}[B,C] & \epsilon_{3}[C,D] & \epsilon_{4}[D,A] \\ a^{0} & b^{0} & -3.4 \\ a^{0} & b^{1} & -1.61 \\ a^{1} & b^{0} & 0 \\ a^{1} & b^{1} & -2.3 \end{array} \begin{vmatrix} b^{0} & c^{0} & -4.61 \\ b^{0} & c^{1} & 0 \\ b^{1} & c^{0} & 0 \\ b^{1} & c^{1} & -4.61 \end{vmatrix} \begin{vmatrix} c^{0} & d^{0} & 0 \\ c^{0} & d^{1} & -4.61 \\ c^{1} & d^{0} & -4.61 \\ c^{1} & d^{1} & 0 \end{vmatrix} \begin{vmatrix} d^{0} & a^{0} & -4.61 \\ d^{0} & a^{1} & 0 \\ d^{1} & a^{0} & 0 \\ d^{1} & a^{1} & -4.61 \end{vmatrix}$$

$$\epsilon(C,D) = \begin{cases} -4.61 & \text{if } C \neq D \\ 0 & \text{otherwise} \end{cases}$$

- This can be represented with a feature f(C, D) which takes value 1 when $C \neq D$.
- The energy is a constant multiply by f(C, D)

A distribution P is a log linear model over a Markov network \mathcal{H} if it is associated with:

- a set of features $\Phi = \{f_1(\mathbf{D}_1), \dots, f_m(\mathbf{D}_m)\}$, where each \mathbf{D}_i is a complete subgraph in \mathcal{H} .
- A set of weights w_1, \dots, w_m such that

$$p(X_1,\cdots,X_n)=\frac{1}{Z}\exp\left[-\sum_{i=1}^m w_i f_i(\mathbf{D}_i)\right]$$

- Importantly, we can have several features over the same scope.
- This representation is more compact for many distributions, especially with variables with large domains.

Example: Ising model

- Captures the energy of a set of interacting atoms.
- Each atom $X_i \in \{-1, +1\}$, whose value is the direction of the atom spin.
- The energy of the edges is symmetric and makes a contribution when $X_i = X_j$ (both atoms with the same spin).
- Also individual node potentials that encode the bias of the individual atoms
- The energy associated is

$$P(x_1, \cdots, x_n) = \frac{1}{Z} \exp \left(\sum_{i < j} w_{i,j} x_i x_j - \sum_i u_i x_i \right)$$

The energy can be written as

$$\epsilon(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{W}(\mathbf{x} - \boldsymbol{\mu}) + c$$

with $\boldsymbol{\mu} = - \mathbf{W}^{-1} \mathbf{u}, \ \ \boldsymbol{c} = rac{1}{2} \boldsymbol{\mu}^{\mathsf{T}} \mathbf{W} \boldsymbol{\mu}$

- Often modulated by a temperature $p(\mathbf{x}) = \frac{1}{Z} \exp(-\epsilon(\mathbf{x})/T)$
- T small makes distribution picky

• The energy associated is

$$P(x_1, \cdots, x_n) = \frac{1}{Z} \exp\left(\sum_{i < j} w_{i,j} x_i x_j - \sum_i u_i x_i\right).$$

- What's the factor graph?
- What are the features?

Example: Bolzmann machine I

- Is a type of Ising model, i.e., same energy function
- The nodes are taken to have values $\{0, 1\}$.
- The energy then reduces to

$$\epsilon(\mathbf{x}) = \sum_i \epsilon_i(x_i) + \sum_{(i,j)\inarepsilon} \epsilon_{i,j}(x_i,x_j)$$

with ε the set of edges

• The probability of each variable given its neighbors is sigmoid(z), with

$$z = -\left(\sum_{j} w_{i,j} x_{j}\right) - w_{i}$$

• Which is the simplest model of activation of a neuron

• Bolzmann machines are usually defined in terms of visible units and hidden units.

• A restricted Bolzmann machine does not have connections

We have seen 3 representations:

- Markov networks \mathcal{H} : involves product over potentials or cliques.
- Factor graphs: product of factors.
- Set of features: product over weighted features.

Usefulness:

- Markov networks are useful for defining independencies
- Factor graphs are useful for inference
- Set of features are useful for learning

Over-parameterization

- Markov network parameterizations are over-parameterized.
- There are multiple choices of parameters that describe the same distribution

 $\begin{array}{c|cccccc} \epsilon_{1}[A,B] & \epsilon_{2}[B,C] & \epsilon_{3}[C,D] & \epsilon_{4}[D,A] \\ \hline a^{0} & b^{0} & -3.4 & b^{0} & c^{0} & -4.61 & c^{0} & d^{0} & 0 & d^{0} & a^{0} & -4.61 \\ a^{0} & b^{1} & -1.61 & b^{0} & c^{1} & 0 & c^{0} & d^{1} & -4.61 & d^{0} & a^{1} & 0 \\ a^{1} & b^{0} & 0 & b^{1} & c^{0} & 0 & c^{1} & d^{0} & -4.61 & d^{1} & a^{0} & 0 \\ a^{1} & b^{1} & -2.3 & b^{1} & c^{1} & -4.61 & c^{1} & d^{1} & 0 & d^{1} & a^{1} & -4.61 \\ \hline (Original Parameterization) \\ \hline \epsilon_{1}^{a}[A,B] & \epsilon_{2}^{\prime}[B,C] \\ \hline a^{0} & b^{0} & -4.4 & b^{0} & c^{0} & -3.61 & \\ a^{0} & b^{1} & 1.61 & b^{0} & c^{1} & +1 & \\ a^{1} & b^{0} & -1 & & b^{1} & c^{0} & 0 & \\ a^{1} & b^{1} & 2.3 & b^{1} & c^{1} & 4.61 & \\ \end{array}$

(New Parameterization)

• What's the energy of a particular configuration $\epsilon(a^0, b^0, c^0)$ in both cases?

- From BN to Markov networks via moralization
- From Markov networks to BN via triangulation

From Bayesian Networks to Markov Networks I

- We are interested in finding a minimal I-map from a distribution $P_{\mathcal{B}}$.
- The parameterization of B can also be viewed as a Gibbs distribution: each CPD P(X_i|Pa_{Xi}) is a factor.
- The factor satisfies additional normalization properties, and (Z = 1). Why?
- A BN conditioned on evidence **E** also induces a Gibbs distribution: defined by the original factors reduced to the context **E** = **e**.
- Let \mathcal{B} be a BN over \mathcal{X} , with **E** an observation and $\mathbf{W} = \mathcal{X} \mathbf{E}$. Then $P_{\mathcal{B}}(\mathbf{W}|\mathbf{e})$ is a Gibbs distribution defined by the factors $\Phi = \{\phi_{X_i}\}_{X_i \in \mathcal{X}}$ with

$$\phi_{X_i} = P_{\mathcal{B}}(X_i | Pa_{X_i})[\mathbf{E} = \mathbf{e}]$$

and the partition function for this distribution is $P(\mathbf{e})$.

• To create a Markov network we need to create an edge between X_i and each of its parents, as well as between the parents of X_i.

- The **moral graph** $\mathcal{M}[\mathcal{G}]$ of a BN \mathcal{G} over \mathcal{X} is an undirected graph over \mathcal{X} that contains an undirected edge between X and Y if
 - there is a directed edge between them (in either direction)
 - **2** X and Y are both parents of the same node.

Let's show some examples on the board !!

From Bayesian Networks to Markov Networks III

- The moral graph $\mathcal{M}[\mathcal{G}]$ of a BN \mathcal{G} over \mathcal{X} is an undirected graph over \mathcal{X} that contains an undirected edge between X and Y if
 - there is a directed edge between them (in either direction)
 - 2 X and Y are both parents of the same node.
- For any distribution P_B such that B is a parameterization of G, then M[G] is an I-map for P_B.
- The moralized graph $\mathcal{M}[\mathcal{G}]$ is a minimal I-map for \mathcal{G} .
- The addition of the moralizing edges leads to the loss of some independence information, e.g., X → Z ← Y, where X ⊥ Y is lost.
- Moralization causes lost of independence if it introduces new edges.
- If \mathcal{G} is moral, then $\mathcal{M}[\mathcal{G}]$ is a perfect map of \mathcal{G} .
- If the v-structure can be short cut then it preserves the independencies

D-separation

• Let $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ be three disjoint sets of nodes in a Bayesian network \mathcal{G} . Let $\mathbf{U} = \mathbf{X} \cup \mathbf{Y} \cup \mathbf{Z}$, and let \mathcal{G}' be the induced Bayesian network over $\mathbf{U} \cup Ancestor_{\mathbf{U}}$. Let \mathcal{H} the moralized graph $\mathcal{M}[\mathcal{G}']$. Then

$$d - sep_{\mathcal{G}}(\mathbf{X}; \mathbf{Y} | \mathbf{Z})$$
 iff $sep_{\mathcal{H}}(\mathbf{X}; \mathbf{Y} | \mathbf{Z})$

- (center) Moralized graph for $d sep_{\mathcal{G}}(D; I|L)$, $\mathbf{U} = \{D, I, L\}$.
- (right) Moralized graph for $d sep_{\mathcal{G}}(D; I|L)$, $\mathbf{U} = \{D, I, L, A\}$.
- If a distribution $P_{\mathcal{B}}$ factorizes according to \mathcal{G} , then \mathcal{G} is an I-map fo P.

From Markov Networks to Bayesian Networks

• More difficult transformation, and the BN can be considerably larger.

- Order was $\{A, B, C, D, E, F\}$, but different ordering has the same problems
- It must add edges so that the resulting graph is **chordal**, i.e., all loops have been partitioned into triangles.
- This process is called **triangulation**.
- The addition of edges leads to the loss of independence information, i.e., in the example $(C \perp D | A, F)$.