Probabilistic Graphical Models

Raquel Urtasun and Tamir Hazan

TTI Chicago

April 18, 2011

Inference: conditional probabilities

- Today we will look into inference in exact inference in graphical models.
- In particular, we will look into variable elimination.
- The factorization of the network is going to be critical in our ability to perform inference.
- We will focus on conditional probability queries

$$
p(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})=\frac{P(\mathbf{Y}, \mathbf{e})}{P(\mathbf{e})}
$$

- Let $\mathbf{W}=\mathcal{X}-\mathbf{Y}-\mathbf{E}$ be the random variables that are neither the query nor the evidence. Each of this joint distributions can be computed by marginalizing the other variables.

$$
p(\mathbf{Y}, \mathbf{e})=\sum_{\mathbf{w}} P(\mathbf{Y}, \mathbf{e}, \mathbf{w})
$$

and the probability of the evidence is

$$
P(\mathbf{e})=\sum_{\mathbf{y}, \mathbf{w}} P(\mathbf{y}, \mathbf{e}, \mathbf{w})
$$

Reuse of computation

- We can reuse the computation as follows

$$
P(\mathbf{e})=\sum_{\mathbf{y}, \mathbf{w}} P(\mathbf{y}, \mathbf{e}, \mathbf{w})=\sum_{y} P(\mathbf{y}, \mathbf{e})
$$

- We can now compute the conditional by dividing the probabilities

$$
p(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})=\frac{P(\mathbf{Y}, \mathbf{e})}{P(\mathbf{e})}
$$

- This process is taking the marginal probabilities $p\left(\mathbf{y}^{1}, \mathbf{e}\right), \cdots, p\left(\mathbf{y}^{k}, \mathbf{e}\right)$ and renormalizing the entries to sum to 1 .

Complexity of inference

- Summing up all the terms has an exponential number of computations.
- Worst case analysis, it is NP-hard.
- Approximate inference in the worst case is also NP-hard.
- It's the same in Bayesian networks and Markov networks.
- In practice there is hope, worst case is not what we care about!

Basic idea of variable elimination

- The structure of the graph helps inference.
- We can use dynamic programming to do efficient inference.
- Let's start with a simple chain $A \rightarrow B \rightarrow C \rightarrow D$.
- Let's assume we want to compute $P(B)$.
- With no assumption:

$$
P(B)=\sum_{a} P(a) P(B \mid a)
$$

- All this information in the Bayesian network: we have the CPD of $P(a)$ and $P(B \mid a)$.
- The same for $P(C)$

$$
P(C)=\sum_{b} P(C \mid b) P(b)
$$

and the information in the CPD.

- This algorithm computes sets of values at a time, an entire distribution.

Complexity of a chain

- Example of a chain $X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow X_{n}$, and each node has k values.
- We can compute at each step

$$
P\left(X_{i+1}\right)=\sum_{x_{i}} P\left(X_{i+1} \mid x_{i}\right) P\left(x_{i}\right)
$$

- We need to multiply $P\left(x_{i}\right)$ with each CPD $P\left(X_{i+1} \mid X_{i}\right)$ for each value of x_{i}.
- $P\left(X_{i}\right)$ has k values, and the CPD $P\left(X_{i+1} \mid X_{i}\right)$ has k^{2} values.
- k^{2} multiplications and $k(k-1)$ additions.
- The cost of the total chain is $\mathcal{O}\left(n k^{2}\right)$.
- By comparison, generating the full joint and summing it up has complexity $\mathcal{O}\left(k^{n}\right)$.
- We have done inference over the joint without generating it explicitly.

Let's be a bit more explicit...

- The joint probability by the chain rule in BN is

$$
p(A, B, C, D)=p(A) p(B \mid A) p(C \mid B) p(D \mid C)
$$

- In order to compute $P(D)$ we have to sum up all the values

$$
P(D)=\sum_{a, b, c} p(A, B, C, D)
$$

Let's be a bit more explicit...

$$
\begin{array}{rlll}
& P\left(a^{1}\right) & P\left(b^{1} \mid a^{1}\right) & P\left(c^{1} \mid b^{1}\right) \\
+ & P\left(a^{2}\right) & P\left(b^{1}\left|a^{1}\right| c^{1}\right) \\
+ & P\left(a^{1}\right) & P\left(b^{2} \mid a^{1}\right) & P\left(c^{1} \mid b^{1}\right) \\
+ & P\left(d^{1} \mid b^{2}\right) & P\left(d^{1} \mid c^{1}\right) \\
+ & P\left(a^{2}\right) & P\left(b^{2} \mid a^{2}\right) & P\left(c^{1} \mid b^{2}\right) \\
+ & \left.P\left(a^{1}\right) \mid c^{1}\right) \\
+ & P\left(b^{1} \mid a^{1}\right) & P\left(c^{2} \mid b^{1}\right) & P\left(d^{1} \mid c^{2}\right) \\
+ & P\left(a^{1} \mid a^{2}\right) & P\left(c^{2} \mid b^{1}\right) & P\left(d^{1} \mid c^{2}\right) \\
+ & P\left(a^{2}\right) & P\left(b^{2} \mid a^{2}\right) & P\left(c^{2} \mid b^{2}\right) \\
\\
& P\left(c^{2} \mid b^{2}\right) & P\left(d^{1} \mid c^{2}\right) \\
& P\left(a^{1} \mid c^{2}\right) \\
+ & P\left(b^{1} \mid a^{1}\right) & P\left(c^{1} \mid b^{1}\right) & P\left(d^{2} \mid c^{1}\right) \\
+ & P\left(b^{1} \mid a^{2}\right) & P\left(c^{1} \mid b^{1}\right) & P\left(d^{2} \mid c^{1}\right) \\
+ & P\left(a^{2}\right) & P\left(b^{2} \mid a^{1}\right) & P\left(c^{1} \mid b^{2}\right) \\
+ & P\left(d^{2} \mid c^{1}\right) & P\left(c^{1} \mid b^{2}\right) & P\left(d^{2} \mid c^{1}\right) \\
+ & P\left(a^{1}\right) & P\left(b^{1} \mid a^{1}\right) & P\left(c^{2} \mid b^{1}\right) \\
+ & P\left(d^{2} \mid c^{2}\right) \\
+ & P\left(b^{1} \mid a^{2}\right) & P\left(c^{2} \mid b^{1}\right) & P\left(d^{2} \mid c^{2}\right) \\
+ & P\left(a^{2}\right) & P\left(b^{2} \mid a^{1}\right) & P\left(c^{2}\right) \\
\left.+b^{2}\right) & P\left(c^{2} \mid b^{2}\right) & P\left(d^{2} \mid c^{2}\right) \\
\left.c^{2}\right)
\end{array}
$$

- There is structure on the summation, e.g., repeated $P\left(c^{1} \mid b^{1}\right) P\left(d^{1} \mid c^{1}\right)$.
- Let's modify the computation to first compute

$$
P\left(a^{1}\right) P\left(b^{1} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{1} \mid a^{2}\right)
$$

Let's be a bit more explicit...

- Let's modify the computation to first compute

$$
P\left(a^{1}\right) P\left(b^{1} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{1} \mid a^{2}\right)
$$

- Then we get

$$
\begin{array}{rlll}
& \left(P\left(a^{1}\right) P\left(b^{1} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{1} \mid a^{2}\right)\right) & P\left(c^{1} \mid b^{1}\right) & P\left(d^{1} \mid c^{1}\right) \\
+\left(\left(a^{1}\right) P\left(b^{2} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{2} \mid a^{2}\right)\right) & P\left(c^{1} \mid b^{2}\right) & P\left(d^{1} \mid c^{1}\right) \\
+\left(\left(P\left(a^{1}\right) P\left(b^{1} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{1} \mid a^{2}\right)\right)\right. & P\left(c^{2} \mid b^{1}\right) & P\left(d^{1} \mid c^{2}\right) \\
+\left(\left(P\left(a^{1}\right) P\left(b^{2} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{2} \mid a^{2}\right)\right)\right. & P\left(c^{2} \mid b^{2}\right) & P\left(d^{1} \mid c^{2}\right) \\
& \left(P\left(a^{1}\right) P\left(b^{1} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{1} \mid a^{2}\right)\right) & P\left(c^{1} \mid b^{1}\right) & P\left(d^{2} \mid c^{1}\right) \\
+\left(P\left(a^{1}\right) P\left(b^{2} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{2} \mid a^{2}\right)\right) & P\left(c^{1} \mid b^{2}\right) & P\left(d^{2} \mid c^{1}\right) \\
+\left(P\left(a^{1}\right) P\left(b^{1} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{1} \mid a^{2}\right)\right) & P\left(c^{2} \mid b^{1}\right) & P\left(d^{2} \mid c^{2}\right) \\
+\left(P\left(a^{1}\right) P\left(b^{2} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{2} \mid a^{2}\right)\right) & P\left(c^{2} \mid b^{2}\right) & P\left(d^{2} \mid c^{2}\right)
\end{array}
$$

- Certain terms are repeated multiple times

$$
\begin{aligned}
& P\left(a^{1}\right) P\left(b^{1} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{1} \mid a^{2}\right) \\
& P\left(a^{1}\right) P\left(b^{2} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{2} \mid a^{2}\right)
\end{aligned}
$$

- We define $\tau_{1}: \operatorname{Val}(B) \rightarrow \Re, \quad \tau_{1}\left(b^{i}\right)=P\left(a^{1}\right) P\left(b^{i} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{i} \mid a^{2}\right)$

Let's be a bit more explicit...

- We now have

$$
\begin{array}{rll}
& \tau_{1}\left(b^{1}\right) & P\left(c^{1} \mid b^{1}\right) \\
+ & P\left(d^{1} \mid c^{1}\right) \\
+ & \tau_{1}\left(b^{2}\right) & P\left(c^{1} \mid b^{2}\right) \\
+ & P\left(d^{1} \mid c^{1}\right) \\
+ & \tau_{1}\left(b^{1}\right) & P\left(c^{2} \mid b^{2}\right) \\
& P\left(c^{2} \mid b^{2}\right) & P\left(d^{1} \mid c^{2}\right) \\
& & \\
& \tau_{1}\left(b^{1}\right) & P\left(d^{1} \mid c^{2}\right) \\
+ & \tau_{1}\left(b^{2}\right) & P\left(c^{1} \mid b^{2}\right) \\
+ & P\left(d^{2} \mid c^{1}\right) \\
+ & \tau_{1}\left(b^{1}\right) & P\left(c^{2} \mid b^{1}\right) \\
+ & \tau_{1}\left(b^{2}\right) & P\left(c^{2} \mid b^{2}\right) \\
\left.c^{2}\right) & P\left(d^{2} \mid c^{2}\right)
\end{array}
$$

- We can once more reverse the order of the product and the sum and get

$$
\begin{array}{rll}
\left(\tau_{1}\left(b^{1}\right) P\left(c^{1} \mid b^{1}\right)+\tau_{1}\left(b^{2}\right) P\left(c^{1} \mid b^{2}\right)\right) & P\left(d^{1} \mid c^{1}\right) \\
+ & \left(\tau_{1}\left(b^{1}\right) P\left(c^{2} \mid b^{1}\right)+\tau_{1}\left(b^{2}\right) P\left(c^{2} \mid b^{2}\right)\right) & P\left(d^{1} \mid c^{2}\right) \\
+ & \left(\tau_{1}\left(b^{1}\right) P\left(c^{1} \mid b^{1}\right)+\tau_{1}\left(b^{2}\right) P\left(c^{1} \mid b^{2}\right)\right) & P\left(d^{2} \mid c^{1}\right) \\
+ & \left(\tau_{1}\left(b^{1}\right) P\left(c^{2} \mid b^{1}\right)+\tau_{1}\left(b^{2}\right) P\left(c^{2} \mid b^{2}\right)\right) & P\left(d^{2} \mid c^{2}\right)
\end{array}
$$

- We have other repetitive patterns.

Let's be a bit more explicit...

- We define $\tau_{2}: \operatorname{Val}(C) \rightarrow \Re$, with

$$
\begin{aligned}
& \tau_{2}\left(c^{1}\right)=\tau_{1}\left(b^{1}\right) P\left(c^{1} \mid b^{1}\right)+\tau_{1}\left(b^{2}\right) P\left(c^{1} \mid b^{2}\right) \\
& \tau_{2}\left(c^{2}\right)=\tau_{1}\left(b^{1}\right) P\left(c^{2} \mid b^{1}\right)+\tau_{1}\left(b^{2}\right) P\left(c^{2} \mid b^{2}\right)
\end{aligned}
$$

- Thus we can compute the joint $P(A, B, C, D)$ as

$$
\begin{aligned}
\tau_{2}\left(c^{1}\right) & P\left(d^{1} \mid c^{1}\right) \\
+\tau_{2}\left(c^{2}\right) & P\left(d^{1} \mid c^{2}\right) \\
& \\
\tau_{2}\left(c^{1}\right) & P\left(d^{2} \mid c^{1}\right) \\
+\tau_{2}\left(c^{2}\right) & P\left(d^{2} \mid c^{2}\right)
\end{aligned}
$$

Even more explicit...

- The joint is

$$
P(D)=\sum_{A, B, C} p(A, B, C, D)=\sum_{A, B, C} P(A) P(B \mid A) P(C \mid B) P(D \mid C)
$$

- We can push the summation

$$
P(D)=\sum_{C} P(D \mid C) \sum_{B} P(C \mid B) \sum_{A} P(B \mid A) P(A)
$$

- Let's call $\psi_{1}(A, B)=P(A) P(B \mid A)$ and $\tau_{1}(B)=\sum_{A} \psi_{1}(A, B)$.
- We can define $\psi_{2}(B, C)=\tau_{1}(B) P(C \mid B)$ and $\tau_{2}(C)=\sum_{B} \psi_{1}(B, C)$.
- This is $\tau_{2}(C)$ that we can use in the final computation.
- This procedure is dynamic programming: computation is inside out instead of outside in.

Summary

- Worst case analysis says that computing the joint is NP-hard.
- Even approximating it is NP-hard.
- In practice due to the structure of the Bayesian network some subexpressions in the joint depend only on a subset of variables.
- We can catch up computations that are otherwise computed exponentially many times.

Variable elimination

- We want to go beyond chains!
- We are going to look into Bayesian networks.
- Recall that a factor $\phi: \operatorname{Val}(\mathbf{X}) \rightarrow \Re$ with scope \mathbf{X}.
- Variable elimination is going to manipulate factors.
- Let \mathbf{X} be a set of variables, and $Y \notin \mathbf{X}$ a variable and $\phi(\mathbf{X}, Y)$ be a factor.
- We define factor marginalization to be a factor ψ over \mathbf{X} such that

$$
\psi(\mathbf{X})=\sum_{Y} \phi(\mathbf{X}, Y)
$$

- This is called summing out Y in ϕ

Variable elimination

- We only sum up the entries that \mathbf{X} matches up

a^{1}	b^{1}	c^{1}	0.25			
a^{1}	b^{1}	c^{2}	0.35			
a^{1}	b^{2}	c^{1}	0.08			
a^{1}	b^{2}	c^{2}	0.16	a^{1}	c^{1}	0.33
a^{2}	b^{1}	c^{1}	0.05	a^{1}	c^{2}	0.51
a^{2}	b^{1}	c^{2}	0.07	a^{2}	c^{1}	0.05
a^{2}	b^{2}	c^{1}	0	a^{2}	c^{2}	0.07
a^{2}	b^{2}	c^{2}	0	a^{3}	c^{1}	0.24
a^{3}	b^{1}	c^{1}	0.15	a^{3}	c^{2}	0.39
a^{3}	b^{1}	c^{2}	0.21			
a^{3}	b^{2}	c^{1}	0.09			
a^{3}	b^{2}	c^{2}	0.18			

- Marginalizing a joint distribution $P(\mathbf{X}, \mathbf{Y})$ onto \mathbf{X} in a BN corresponds to summing out the variables \mathbf{Y} in the factor corresponding to P.

Some properties

- If we sum out all the variables in a normalized distribution, what do we get?
- If we sum out all the variables in an unnormalized distribution, what do we get?
- Important property is that sum and product are commutative, and the product is associative $\left(\phi_{1} \phi_{2}\right) \phi_{3}=\phi_{1}\left(\phi_{2} \phi_{3}\right)$.
- Therefore, if $X \notin \operatorname{Scope}\left(\phi_{1}\right)$ then

$$
\sum_{X}\left(\phi_{1} \phi_{2}\right)=\phi_{1} \sum_{X} \phi_{2}
$$

Chain example again

- Let's look at the chain again

$$
P(A, B, C, D)=\phi_{A} \phi_{B} \phi_{C} \phi_{D}
$$

- The marginal distribution over D

$$
\begin{aligned}
P(D) & =\sum_{A, B, C} \phi_{A} \phi_{B} \phi_{C} \phi_{D} \\
& =\sum_{C}\left(\phi_{D} \sum_{B}\left(\phi_{C} \sum_{A}\left(\phi_{B} \phi_{A}\right)\right)\right)
\end{aligned}
$$

where we have used the limited scope of the factors.

- Marginalizing involves taking the product of all CPDs and sum over all but the variables in the query.
- We can do this in any order we want; some more efficient than others.
- The sum product inference task is

$$
\sum_{Z} \prod_{\phi \in \Phi} \phi
$$

Sum-product variable elimination

- Effective as the scope is limited, we push in some of the summations.
- A simple instance of this is the sum-product variable elimination algorithm.
- Idea: We sum out variables one at a time.
- When we do this, we multiply all the factors that have this variable as scope, generating a product factor.
- We sum out the variable from this product factor, generating a new factor, which enters the set of factors to deal with.

Sum-product variable elimination

- Theorem: Let \mathbf{X} be a set of variables, and let Φ be a set of factors, such that for each $\phi \in \Phi$, $\operatorname{Scope}(\phi) \subseteq \mathbf{X}$. Let $Y \subset \mathbf{X}$ be a set of query variables, and let $\mathbf{Z}=\mathbf{X}-\mathbf{Y}$. Then for every ordering \prec over \mathbf{Z}, the Sum-Product-Variable-Elimination $(\Phi, \mathbf{Z}, \prec)$ returns a factor $\phi(\mathbf{Y})$ such that

$$
\phi(\mathbf{Y})=\sum_{\mathbf{Z}} \prod_{\phi \in \Phi} \phi
$$

- We can apply this to a BN with variables $\mathbf{Y}=\left\{Y_{1}, \cdots, Y_{k}\right\}$, where Φ is all the CPDs

$$
\Phi=\left\{\phi X_{i}\right\}_{i=1}^{n}=\left\{P\left(X_{i} \mid P a_{X_{i}}\right)_{i=1}^{n}\right\}
$$

We apply the elimination algorithm to the set $\left\{Z_{1}, \cdots, Z_{m}\right\}=\mathcal{X}-\mathbf{Y}$.

- We can apply the same algorithm to a Markov network, where the factors are the clique potentials.
- For Markov networks, the procedure returns an unnormalized distribution. We need to renormalize.

Example of BN

- The joint distribution
$p(C, D, I, G, S, L, H, J)=p(C) p(D \mid C) p(I) p(G \mid D, I) p(L \mid G) P(S \mid I) P(J \mid S, L) p(H \mid J, G)$ with factors

$$
\begin{array}{r}
p(C, D, I, G, S, L, H, J)=\phi_{c}(C) \phi_{D}(C, D) \phi_{I}(I) \phi_{G}(G, D, I) \phi_{L}(L, G) \\
\phi_{S}(S, I) \phi_{J}(J, S, L) \phi_{H}(H, J, G)
\end{array}
$$

- Let's do variable elimination with ordering $\{C, D, I, H, G, S, L\}$ on the board!

Elimination Ordering

- We can pick any order we want, but some orderings introduce factors with much larger scope.

Step	Variable eliminated	Factors used	Variables involved	New factor
1	C	$\phi_{C}(C), \phi_{D}(D, C)$	C, D	$\tau_{1}(D)$
2	D	$\phi_{G}(G, I, D), \tau_{1}(D)$	G, I, D	$\tau_{2}(G, I)$
3	I	$\phi_{I}(I), \phi_{S}(S, I), \tau_{2}(G, I)$	G, S, I	$\tau_{3}(G, S)$
4	H	$\phi_{H}(H, G, J)$	H, G, J	$\tau_{4}(G, J)$
5	G	$\tau_{4}(G, J), \tau_{3}(G, S), \phi_{L}(L, G)$	G, J, L, S	$\tau_{5}(J, L, S)$
6	S	$\tau_{5}(J, L, S), \phi_{J}(J, L, S)$	J, L, S	$\tau_{6}(J, L)$
7	L	$\tau_{6}(J, L)$	J, L	$\tau_{7}(J)$

- Alternative ordering...

Step	Variable eliminated	Factors used	Variables involved	New factor
1	G	$\phi_{G}(G, I, D), \phi_{L}(L, G), \phi_{H}(H, G, J)$	G, I, D, L, J, H	$\tau_{1}(I, D, L, J, H)$
2	I	$\phi_{I}(I), \phi_{S}(S, I), \tau_{1}(I, D, L, S, J, H)$	S, I, D, L, J, H	$\tau_{2}(D, L, S, J, H)$
3	S	$\phi_{J}(J, L, S), \tau_{2}(D, L, S, J, H)$	D, L, S, J, H	$\tau_{3}(D, L, J, H)$
4	L	$\tau_{3}(D, L, J, H)$	D, L, J, H	$\tau_{4}(D, J, H)$
5	H	$\tau_{4}(D, J, H)$	D, J, H	$\tau_{5}(D, J)$
6	C	$\tau_{5}(D, J), \phi_{D}(D, C)$	D, J, C	$\tau_{6}(D, J)$
7	D	$\tau_{6}(D, J)$	D, J	$\tau_{7}(J)$

Semantics of Factors

- In the previous example the factors were marginal or conditional probabilities, but this is not true in general.

- The result of eliminating X is not a marginal or conditional probability of the network

$$
\tau(A, B, C)=\sum_{X} P(X) P(A \mid X) P(C \mid B, X)
$$

B not on the left side as $P(B \mid A)$ has not been multiplied. It is also not $P(A, C \mid B)$, why?

