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nce: conditional probabilities

@ Today we will look into inference in exact inference in graphical models.
@ In particular, we will look into variable elimination.

@ The factorization of the network is going to be critical in our ability to
perform inference.

@ We will focus on conditional probability queries
P(Y,e)

p(YIE=e)= Ple)

@ Let W =X —Y — E be the random variables that are neither the query nor
the evidence. Each of this joint distributions can be computed by
marginalizing the other variables.

p(Y,e)=> P(Y,e,w)

and the probability of the evidence is

P(e) = Z P(y,e,w)
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Reuse of computation

@ We can reuse the computation as follows

P(e):ZP(y7eaw):ZP(y’e)
y,w y

@ We can now compute the conditional by dividing the probabilities

P(Y.e)
YIE=e) =
PIYIE =€) =
@ This process is taking the marginal probabilities p(y*,e),--- , p(y*, e) and

renormalizing the entries to sum to 1.
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Complexity of inference

@ Summing up all the terms has an exponential number of computations.
@ Worst case analysis, it is NP-hard.
@ Approximate inference in the worst case is also NP-hard.

@ It's the same in Bayesian networks and Markov networks.

In practice there is hope, worst case is not what we care about!

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 18, 2011



Basic idea of variable elimination

The structure of the graph helps inference.
We can use dynamic programming to do efficient inference.

Let’s start with a simple chain A— B — C — D.

Let's assume we want to compute P(B).

With no assumption:

P(B) = P(a)P(Bla)

@ All this information in the Bayesian network: we have the CPD of P(a) and
P(B|a).

@ The same for P(C)
P(C) = _ P(C|p)P(b)
b
and the information in the CPD.

@ This algorithm computes sets of values at a time, an entire distribution.
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Complexity of a chain

@ Example of a chain X; — X5 — -+ — X,,, and each node has k values.
@ We can compute at each step

P(Xiy1) = Z P(Xiy1]xi) P(xi)

Xi

@ We need to multiply P(x;) with each CPD P(X;;1|X;) for each value of x;.
@ P(X;) has k values, and the CPD P(X;;1|X;) has k? values.

@ k2 multiplications and k(k — 1) additions.

@ The cost of the total chain is O(nk?).

@ By comparison, generating the full joint and summing it up has complexity
O(k").

@ We have done inference over the joint without generating it explicitly.
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Let's be a bit more explicit...

@ The joint probability by the chain rule in BN is
p(A, B, C,D) = p(A)p(B|A)p(C|B)p(D|C)
@ In order to compute P(D) we have to sum up all the values

P(D) = p(A B,C,D)

a,b,c
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Let's be a bit more explicit...

P(a') P |a') P(cH[b') P(d']|e)
+ P(a?) P |a®) P(c'|b) P(d*|eh)
+ P(a') P(#?|al) P2 P(d] )
+ P(a?) P#?|a®) Pt | V) P(d|eh)
+ P(a') P('|a') P(2 b)) P(d']|c?)
+ P(a®) P |a®) P(|b) P(d|eh)
+ P(at) P |al) P b)) Pd|eh)
+ P(a®) P(#?|a®) P(c*|b?) P(d'|e?)

P(a') P! [al) Pt |b) P(d*|eh)
+ P(a?) P |a®) Pt |b) P(d?|eh)
+ P(a*) P2 |a') Pt | 1) P(d®|eh)
+ P(a®) P(B*|a?) P(c'|B?) P(d|c")
+ P(al) P |al) P(2|BY) P(d?]R)
+ P(a®) P('|a?) P( b)) P(d®]|c?)
+ P(at) P#?|at) P(2 V) Pd|eh)
+ P(a®) P(p*|a?) P(?|b?) P(d®|c?)

@ There is structure on the summation, e.g., repeated P(c!|b')P(d*|c?).

@ Let's modify the computation to first compute

P(aY)P(b*|a") + P(a*)P(b'|a?)
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Let's be a bit more explicit...

@ Let's modify the computation to first compute
P(a')P(b'|a) + P(a*)P(b'|a%)

@ Then we get

(P(a)P(b" | @) + P(a®)P(b! | a®)) P(c'|b') P(d"|c')
+ (P(a")P(b? | a') + P(a®)P(b* | @*)) P(c' |b°) P(d' |c")
+ (P(a)P(b! | a'] + P(a®)P(b" [ a®)) P(c*|b') P(d'|c?)
+ (P(ah)P(b? | a') + P(a®)P(b? | a?)) P(Z|b?) P(d | )

(P(a')P(b! | a') + P(a®) P(b | a )) P(ct|b') P(d®|ch)
+ (Pla')P(b* | o)+ P(a®)P(b? | a*)) P(c'|b?) P(d®|c)
+ (P(a?)P(b! | a') + P(a®)P(b! [ a®)) P(SE|bY) P(d* |2
+ (Pla')P(b? | a') + P(a®)P(b? | a*)) P(&|4?) P(d*| &)

@ Certain terms are repeated multiple times
P(a')P(b'|a") + P(a*)P(b'|a%)
P(a')P(b?|a") + P(a®)P(b*|a*)

@ We define 71 : Val(B) — R, m1(b') = P(at)P(b'|al) + P(a?)P(b|a?)
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Let's be a bit more explicit...

@ We now have

A

+++
o

‘won'e

TRRR

233N

+
+ 71
+
@ We can once more reverse the order of the product and the sum and get

(ra(6")P(c! | bY) + m(B?)P(c! [ 6)) P(d! | <))
+ ()P ) +n(b")P(e® [0)) P | )

@ We have other repetitive patterns.
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Let's be a bit more explicit...

@ We define 1, : Val(C) — R, with
m(ct) = m(bY)P(ctb) + T (b?)P(ct|b?)
() = m(b")P(2|b') + 11(b?)P(?|b?)

@ Thus we can compute the joint P(A, B, C, D) as

m2(c!)  P(d"|ch)
+ Tg(cz) P(dl \62)

Tao(ct)  P(d?|ct)
+ 7(c?) P(d%|?)
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Even more explicit...

@ The joint is
P(D)= Y p(A,B.C,D)= > P(A)P(BJA)P(C|B)P(D|C)

A,B,C A,B,C

@ We can push the summation

P(D) =) P(DIC)Y_ P(C|B) ) P(BIA)P(A)
C

B A

Let's call ¢1(A, B) = P(A)P(B|A) and 71(B) = ", v1(A, B).
We can define 9»(B, C) = (B)P(C|B) and m(C) = >_ g ¥1(B, C).

This is 72(C) that we can use in the final computation.

This procedure is dynamic programming: computation is inside out instead
of outside in.
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@ Worst case analysis says that computing the joint is NP-hard.
@ Even approximating it is NP-hard.

@ In practice due to the structure of the Bayesian network some subexpressions
in the joint depend only on a subset of variables.

@ We can catch up computations that are otherwise computed exponentially
many times.
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Variable elimination

@ We want to go beyond chains!

@ We are going to look into Bayesian networks.

@ Recall that a factor ¢ : Val(X) — R with scope X.

@ Variable elimination is going to manipulate factors.

@ Let X be a set of variables, and Y ¢ X a variable and ¢(X, Y') be a factor.

@ We define factor marginalization to be a factor 1 over X such that

D(X) = d(X,Y)
Y

@ This is called summing out Y in ¢
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Variable elimination

@ We only sum up the entries that X matches up

al | b ¢! 0.25
al | b! | 0.35
a' [b?|c 0.08
a' [b? | 0.16
a? [ bt [ et 0.05
a? | b! | € 007
a? [ b? | ¢ Q

a? | b? | ¢ 0

al | bl || 015
al | b!¢?| 021
ad | b? | ¢! 0.09
a® [b? [ 0.18

al | ¢! 033
al [¢? | 051
a? | ¢! | 005
a? | ¢ | 0.07
a® | ¢ | 024
ad | ¢ | 0.39

@ Marginalizing a joint distribution P(X,Y) onto X in a BN corresponds to
summing out the variables Y in the factor corresponding to P.
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Some properties

@ If we sum out all the variables in a normalized distribution, what do we get?

@ If we sum out all the variables in an unnormalized distribution, what do we
get?

@ Important property is that sum and product are commutative, and the
product is associative (¢102)d3 = ¢1(d203).

@ Therefore, if X ¢ Scope(¢1) then

D (¢162) =1 > o2

X
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Chain example again

@ Let's look at the chain again
P(A,B,C,D) = ¢adpdcop
@ The marginal distribution over D

P(D) = > ¢adsdceo

= ;;C(% §Bj <¢c EAZ (%m)))

where we have used the limited scope of the factors.

@ Marginalizing involves taking the product of all CPDs and sum over all but
the variables in the query.

@ We can do this in any order we want; some more efficient than others.
@ The sum product inference task is

2 11¢

Z ¢cd
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Sum-product variable elimination

@ Effective as the scope is limited, we push in some of the summations.

@ A simple instance of this is the sum-product variable elimination
algorithm.

@ |dea: We sum out variables one at a time.

o When we do this, we multiply all the factors that have this variable as
scope, generating a product factor.

o We sum out the variable from this product factor, generating a new
factor, which enters the set of factors to deal with.
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Algorithm 9.1 Sum-Produet Variable Elimination algorithm

Procedure Sum-Product-Variable-Elimination (

$. |/ Set of factors
Z. |/ Setof variables to be eliminated
< // Orderingon Z
)
1 Let Z1,...,Zg be an ordering of Z such that
2 Zi<Z; iff i< j
3 fori=1,...,k
1 ¢ — Sum-Product-Eliminate-Var(®, Z;)
5 9" lgea®
6 return ¢*
Procedure Sum-Product-Eliminate-Var (
®. /) Set of factors
Z |/ Variable to be eliminated
)
1 O'— {pe® : Ze Seope[d]}
9 O D — D
3 Ve Tlscar @
1 Te— Y0

return " U {7}
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Sum-product variable elimination

@ Theorem: Let X be a set of variables, and let ® be a set of factors, such
that for each ¢ € ®, Scope(¢) C X. Let Y C X be a set of query variables,
and let Z =X — Y. Then for every ordering < over Z, the
Sum-Product-Variable-Elimination(®, Z, <) returns a factor ¢(Y) such that

o(Y)=>_ [ ¢

Z ¢cod

@ We can apply this to a BN with variables Y = {Y7,---, Yk}, where ® is all
the CPDs
® = {ox }iey = {P(Xi|Pax)/_1 }

We apply the elimination algorithm to the set {71, -+ ,Z,} =X - Y.

@ We can apply the same algorithm to a Markov network, where the factors
are the clique potentials.

@ For Markov networks, the procedure returns an unnormalized distribution.
We need to renormalize.
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Example of BN

Coherence

@ The joint distribution
p(C,D,1,G,S,LH,J) = p(C)p(D|C)p(1)p(G|D, 1p(LIG)P(S|1)P(J|S, L)p(H|J, G)
with factors
p(C,D,1,G,S,L,H,J) = ¢(C)pn(C, D)gi(1)ds(G, D, 1)¢r(L, G)
os(S,Nés(4,S, L)ou(H, J, G)

@ Let's do variable elimination with ordering {C, D, !, H, G, S, L} on the board!
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Elimination Ordering

@ We can pick any order we want, but some orderings introduce factors with
much larger scope.

Step | Variable Factors Variables New
eliminated used involved factor
1 C ¢c(C), ¢p(D,C) C,D (D)
2 D ¢a(G,I,D), 71(D) G.I,D | 7=(G,I)
3 I ¢1(I). $s(S, 1), 72(G,T) G,S,I | m(G,S)
4 H ¢u(H,G,J) H,G,J 74(G, J)
5 G 74(G, J), 13(G,S), (L, G) | G,J,L,S | 75(J,L,S)
6 S 75(J, L, S), ¢5(J, L, S) JL,S 76(J, L)
7 L 76(J, L) J L 77(J)
@ Alternative ordering...
Step Variable Factors Variables New
eliminated used involved factor
1 G ¢c(G,I,D), ¢.(L,G), pg(H,G,J) | G.I,D,L,J.H | 7(I,D,L,J . H)
2 I or(I), ¢s(S, 1), n(I,D,L,S,J,H) | S,I,D,L,J,H | 7o(D,L,S,J,H)
3 S ¢s(J,L,S), 2(D, L, S, J, H) D,L,S,J,H 73(D,L,J,H)
4 L 73(D,L,J,H) D, L,J H T4(D, J, H)
5 H T4(D, J, H) D, JJH 75(D,J)
6 c 75(D,J), ¢p(D,C) D, J,C (D, J)
7 D 76(D, J) D, J 7(J)
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Semantics of Factors

@ In the previous example the factors were marginal or conditional
probabilities, but this is not true in general.

@ The result of eliminating X is not a marginal or conditional probability of

the network
(A, B, C) ZP P(AIX)P(C|B, X)

B not on the left side as P(B|A) has not been multiplied. It is also not
P(A, C|B), why?
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