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Inference: conditional probabilities

Today we will look into inference in exact inference in graphical models.

In particular, we will look into variable elimination.

The factorization of the network is going to be critical in our ability to
perform inference.

We will focus on conditional probability queries

p(Y|E = e) =
P(Y, e)

P(e)

Let W = X − Y − E be the random variables that are neither the query nor
the evidence. Each of this joint distributions can be computed by
marginalizing the other variables.

p(Y, e) =
∑
w

P(Y, e,w)

and the probability of the evidence is

P(e) =
∑
y,w

P(y, e,w)
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Reuse of computation

We can reuse the computation as follows

P(e) =
∑
y,w

P(y, e,w) =
∑
y

P(y, e)

We can now compute the conditional by dividing the probabilities

p(Y|E = e) =
P(Y, e)

P(e)

This process is taking the marginal probabilities p(y1, e), · · · , p(yk , e) and
renormalizing the entries to sum to 1.
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Complexity of inference

Summing up all the terms has an exponential number of computations.

Worst case analysis, it is NP-hard.

Approximate inference in the worst case is also NP-hard.

It’s the same in Bayesian networks and Markov networks.

In practice there is hope, worst case is not what we care about!
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Basic idea of variable elimination

The structure of the graph helps inference.

We can use dynamic programming to do efficient inference.

Let’s start with a simple chain A→ B → C → D.

Let’s assume we want to compute P(B).

With no assumption:

P(B) =
∑
a

P(a)P(B|a)

All this information in the Bayesian network: we have the CPD of P(a) and
P(B|a).

The same for P(C )

P(C ) =
∑
b

P(C |b)P(b)

and the information in the CPD.

This algorithm computes sets of values at a time, an entire distribution.
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Complexity of a chain

Example of a chain X1 → X2 → · · · → Xn, and each node has k values.

We can compute at each step

P(Xi+1) =
∑
xi

P(Xi+1|xi )P(xi )

We need to multiply P(xi ) with each CPD P(Xi+1|Xi ) for each value of xi .

P(Xi ) has k values, and the CPD P(Xi+1|Xi ) has k2 values.

k2 multiplications and k(k − 1) additions.

The cost of the total chain is O(nk2).

By comparison, generating the full joint and summing it up has complexity
O(kn).

We have done inference over the joint without generating it explicitly.
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Let’s be a bit more explicit...

The joint probability by the chain rule in BN is

p(A,B,C ,D) = p(A)p(B|A)p(C |B)p(D|C )

In order to compute P(D) we have to sum up all the values

P(D) =
∑
a,b,c

p(A,B,C ,D)
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Let’s be a bit more explicit...

There is structure on the summation, e.g., repeated P(c1|b1)P(d1|c1).

Let’s modify the computation to first compute

P(a1)P(b1|a1) + P(a2)P(b1|a2)
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Let’s be a bit more explicit...

Let’s modify the computation to first compute

P(a1)P(b1|a1) + P(a2)P(b1|a2)

Then we get

Certain terms are repeated multiple times

P(a1)P(b1|a1) + P(a2)P(b1|a2)

P(a1)P(b2|a1) + P(a2)P(b2|a2)

We define τ1 : Val(B)→ <, τ1(bi ) = P(a1)P(bi |a1) + P(a2)P(bi |a2)
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Let’s be a bit more explicit...

We now have

We can once more reverse the order of the product and the sum and get

We have other repetitive patterns.
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Let’s be a bit more explicit...

We define τ2 : Val(C )→ <, with

τ2(c1) = τ1(b1)P(c1|b1) + τ1(b2)P(c1|b2)

τ2(c2) = τ1(b1)P(c2|b1) + τ1(b2)P(c2|b2)

Thus we can compute the joint P(A,B,C ,D) as
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Even more explicit...

The joint is

P(D) =
∑
A,B,C

p(A,B,C ,D) =
∑
A,B,C

P(A)P(B|A)P(C |B)P(D|C )

We can push the summation

P(D) =
∑
C

P(D|C )
∑
B

P(C |B)
∑
A

P(B|A)P(A)

Let’s call ψ1(A,B) = P(A)P(B|A) and τ1(B) =
∑

A ψ1(A,B).

We can define ψ2(B,C ) = τ1(B)P(C |B) and τ2(C ) =
∑

B ψ1(B,C ).

This is τ2(C ) that we can use in the final computation.

This procedure is dynamic programming: computation is inside out instead
of outside in.
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Summary

Worst case analysis says that computing the joint is NP-hard.

Even approximating it is NP-hard.

In practice due to the structure of the Bayesian network some subexpressions
in the joint depend only on a subset of variables.

We can catch up computations that are otherwise computed exponentially
many times.
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Variable elimination

We want to go beyond chains!

We are going to look into Bayesian networks.

Recall that a factor φ : Val(X)→ < with scope X.

Variable elimination is going to manipulate factors.

Let X be a set of variables, and Y /∈ X a variable and φ(X,Y ) be a factor.

We define factor marginalization to be a factor ψ over X such that

ψ(X) =
∑
Y

φ(X,Y )

This is called summing out Y in φ
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Variable elimination

We only sum up the entries that X matches up

Marginalizing a joint distribution P(X,Y) onto X in a BN corresponds to
summing out the variables Y in the factor corresponding to P.
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Some properties

If we sum out all the variables in a normalized distribution, what do we get?

If we sum out all the variables in an unnormalized distribution, what do we
get?

Important property is that sum and product are commutative, and the
product is associative (φ1φ2)φ3 = φ1(φ2φ3).

Therefore, if X /∈ Scope(φ1) then∑
X

(φ1φ2) = φ1

∑
X

φ2
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Chain example again

Let’s look at the chain again

P(A,B,C ,D) = φAφBφCφD

The marginal distribution over D

P(D) =
∑
A,B,C

φAφBφCφD

=
∑
C

(
φD
∑
B

(
φC
∑
A

(φBφA)

))
where we have used the limited scope of the factors.

Marginalizing involves taking the product of all CPDs and sum over all but
the variables in the query.

We can do this in any order we want; some more efficient than others.

The sum product inference task is∑
Z

∏
φ∈Φ

φ
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Sum-product variable elimination

Effective as the scope is limited, we push in some of the summations.

A simple instance of this is the sum-product variable elimination
algorithm.

Idea: We sum out variables one at a time.

When we do this, we multiply all the factors that have this variable as
scope, generating a product factor.
We sum out the variable from this product factor, generating a new
factor, which enters the set of factors to deal with.
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Sum-product variable elimination

Theorem: Let X be a set of variables, and let Φ be a set of factors, such
that for each φ ∈ Φ, Scope(φ) ⊆ X. Let Y ⊂ X be a set of query variables,
and let Z = X− Y. Then for every ordering ≺ over Z, the
Sum-Product-Variable-Elimination(Φ,Z,≺) returns a factor φ(Y) such that

φ(Y) =
∑
Z

∏
φ∈Φ

φ

We can apply this to a BN with variables Y = {Y1, · · · ,Yk}, where Φ is all
the CPDs

Φ = {φXi}ni=1 = {P(Xi |PaXi )
n
i=1}

We apply the elimination algorithm to the set {Z1, · · · ,Zm} = X − Y.

We can apply the same algorithm to a Markov network, where the factors
are the clique potentials.

For Markov networks, the procedure returns an unnormalized distribution.
We need to renormalize.
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Example of BN

The joint distribution

p(C ,D, I ,G , S , L,H, J) = p(C)p(D|C)p(I )p(G |D, I )p(L|G)P(S |I )P(J|S , L)p(H|J,G)

with factors

p(C ,D, I ,G , S , L,H, J) = φc(C)φD(C ,D)φI (I )φG (G ,D, I )φL(L,G)

φS(S , I )φJ(J, S , L)φH(H, J,G)

Let’s do variable elimination with ordering {C ,D, I ,H,G ,S , L} on the board!

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 18, 2011 21 / 23



Elimination Ordering

We can pick any order we want, but some orderings introduce factors with
much larger scope.

Alternative ordering...
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Semantics of Factors

In the previous example the factors were marginal or conditional
probabilities, but this is not true in general.

The result of eliminating X is not a marginal or conditional probability of
the network

τ(A,B,C ) =
∑
X

P(X )P(A|X )P(C |B,X )

B not on the left side as P(B|A) has not been multiplied. It is also not
P(A,C |B), why?
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