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How to introduce evidence?

We can apply variable elimination algorithm to the task of computing
P(Y, e).

Simply apply the algorithm to the set of factors in the network reduced to
E = e, and eliminate the variables in X − Y − e.

The returned factor φ∗(Y) is P(Y, e).

To obtain the conditional P(Y|e) we have to normalize the resulting product
of factors.

The normalization constant is P(e).
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Sum-product VE for conditional distributions
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Example

We want to compute P(J).

To compute P(J, i1, h0)
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Complexity of Variable Elimination

VE can be computationally much more efficient than a full enumeration.

n random variables and m initial factors. In a BN m = n, in a MN we may
have more factors than variables.

Assume we run the algorithm until all variables are eliminated.

At each step we pick a variable Xi and multiply all factors involving the
variable, resulting in a single factor ψi . The variable gets sum out of ψi ,
resulting in a new factor τi with scope(τ) = scope(φ)− Xi .

Let Ni be the number of entries in the factor ψi , and let Nmax = maxi Ni .

The total number of multiplications is at most (n + m)Ni ≤ (n + m)Nmax ,
thus O(mNmax).

The total number of additions is nNmax .

Therefore the total cost is O(mNmax).

The exponential blowup is the potential exponential size of the factors ψ. if
each variable has at most v values then Ni ≤ vki , for scope ψi which
contains ki variables.
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Factors and complexity I

The only aspect that affects complexity is the graph structure.

Let’s try to analyze the complexity in terms of the graph structure.

The algorithm does not care if the graph is directed or undirected, only
depends on the scope of the factors.

Let’s consider an undirected graph for simplicity.

Let Φ be a set of factors, we define Scope(Φ) = ∪φ∈ΦScope(φ).

We define HΦ the undirected graph where we have an edge iff there exists a
factor φ ∈ Φ such that Xi ,Xj ∈ Scope(φ).
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Factors and complexity II

Let P be a distribution defined as

P(X) =
1

Z

∏
φ∈Φ

φ

with X = Scope(Φ) and Z the partition function. Then HΦ is the minimal
Markov network I-map for P, and the factors Φ are a parameterization of
this network that defines the distribution P.

For a BN, the undirected graph HΦ is the moralized graph.

In this case the distribution is normalized, i.e., Z = 1.

The Markov network induced by the set of factors Φ[e] defined by the
reduction of the factors in a BN to some context E = e, is such that the
variables E are removed from the factors, Scope[Φe ] = X − E.
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Elimination as Graph Transformation

When a variable X is eliminated

We create a single factor ψ that contains X and all of the variables Y with
which it appears in factors.

We eliminate X from ψ, replacing it with a new factor τ that contains all of
the variables Y, but not X . Let’s call this ΦX .

How does this modify the graph from HΦ to HΦX
?

Constructing ψ generates edges between all of the variables Y ∈ Y.

Some of these edges were in HΦ, some are new.

The new edges are called fill edges.

The step of removing X from φ to construct τ removes X and all it’s
incident edges from the graph.
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Example

(Graph) (Elim. C )

(Elim. D) (Elim. I )
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Induced Graph

We can summarize the computation cost using a single graph that is the
union of all the graphs resulting from each step of the elimination.

Def: Let Φ be a set of factors over X = {X1, · · · ,Xn} and ≺ be an
elimination ordering for some subset X ⊆ X . The induced graph IΦ,≺ is an
undirected graph over X , where Xi and Xj are connected by and edge if
both appear in some intermediate factor ψ generated by the VE algorithm
using ≺ as an elimination ordering.

In BN, the factors Φ correspond to the CPDs .

In Markov networks they correspond to the clique potentials in H.

Each factor ψ corresponds to a complete subgraph in IΦ,≺, so it’s a clique.
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Example

(Induced graph) (Maximal Cliques)
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More on Induced Graphs

Theorem: Let IΦ,≺ be the induced graph for a set of factors Φ and ordering ≺,
then

1 Every factor generated during the VE has a scope that is a clique in IΦ,≺.

2 Every maximal clique in IΦ,≺ is the scope of some intermediate factor in the
computation.

Proof of first statement:

Consider a factor ψ(Y1, · · · ,Yk) generated during VE.

By definition of induced graph, there must be an edge between each Yi and
Yj .

Hence Y1, · · · ,Yk is a clique.
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More on Induced Graphs

Th: Let IΦ,≺ be the induced graph for a set of factors Φ and ordering ≺, then

1 Every factor generated during the VE has a scope that is a clique in IΦ,≺.

2 Every maximal clique in IΦ,≺ is the scope of some intermediate factor in the
computation.

Proof of second statement:

Let Y = {Y1, · · · ,Yk} be a maximal clique, where Y1 is the first of the
variables to eliminate.

As Y is a clique, there is an edge from Y1 to all the other Yi .

Once Y1 is eliminated it cannot appear in other factors, so no new edges can
be added. Edges connecting Y1 were added prior to this point in time.

As there is an edge between Y1 and Yi , there is a factor containing both.

When eliminating Y1 all these factors are multiplied, therefore ψ contains
Y1, · · · ,Yk .

This factor cannot contain any other variables, otherwise there would also
be an edge to all Y1, · · · ,Yk , and Y1, · · · ,Yk would not be maximal
connected subgraph.
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Example

(Maximal Cliques) (VE)

The maximal cliques in IG,≺ are

C1 = {C ,D}
C2 = {D, I ,G}
C3 = {G , L,S , J}
C4 = {G , J,H}
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Concept of Width

We define the width of an induced graph to be the number of nodes in the
largest clique in the graph minus 1.

We define the induced width wK,≺ of an ordering ≺ relative to a directed
or undirected graph K to be the width of the graph IK,≺ induced by
applying VE to K using ordering ≺.

We define the minimal induced width of a graph K to be

w∗K = min
≺

w(IK,≺)

The minimal induced width of the graph K provides a bound on the best
performance we can hope by applying VE to a probability that factorizes
over K.
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Finding elimination orderings

How can we compute the minimal induced width of the graph?

and the elimination ordering achieving that width?

Given a graph and a bound K , determine whether there exist an elimination
ordering achieving an induced width ≤ K is NP-complete.

Finding the optimal elimination ordering is also NP-hard.

Note that this is different from the NP-hardness of inference: even if we
knew the best elimination ordering, the width might be too large and
inference might be exponential.

How to find good elimination orderings?
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Chordal Graphs

An undirected graph is chordal if it contains no cycle of length greater than three
that has no ”shortcut”, i.e., every minimal loop is length three.

Theorem: Every induced graph is chordal

Proof by contradiction: Assume we have such a cycle
X1 − X2 − · · · − Xk − X1 for k > 3.

Without lost of generality assume X1 is the first variable to eliminate.

Before we showed that no edge incident on X1 is added after X1 is
eliminated, hence X1 − X2 and X1 − Xk must exist at this point.

Therefore the edge X2 − Xk will be added at the same time, contradicting
our assumption.
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Example

(graph) (induced graph)

The loop H → G → L→ J → H is cut by the chord G → J
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More on chordal graphs

Theorem: Any chordal graph H admits an elimination ordering that does not
introduce any fill edges into the graph.

Proof by induction on the number of nodes in the tree.

Let H a chordal graph with n nodes.

There is a clique tree T for H.

Let Ck be a clique in the tree which is a leaf, i.e., it has only a single other
clique as neighbor.

Let Xi be a variable which is in Ck but not in its neighbor.

Let H′ be the graph by eliminating Xi .

The neighbors of Xi are Ck − {Xi}.

As all the neighbors are in Ck , they are connected to each other.

Therefore eliminating Xi introduces no fill edges.

As H′ is also chordal, we can apply the inductive hypothesis.
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Example

(graph) (clique tree)

Each sepset separates the two sides of the tree, e.g., {G ,S} separates
{C , I ,D} and {L, J,H}.
The elimination ordering C ,D, I ,H,G ,S , L, J is an ordering that might arise
from the construction of the previous theorem.

The other ordering we saw in the previous day does not respect this
construction and introduces edges
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Maximum Cardinality I

An alternative for constructing an ordering that introduces no edges in a
chordal graph is the Max-cardinality algorithm.

It does not use clique trees but operates in the graph.

The elimination ordering is REVERSE.

Example on the board.
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Maximum Cardinality II

As max cardinality gives an ordering with is consistent with previous
theorem, when applied to chordal graphs it introduces no fill edges.

Theorem: Let H be a chordal graph. Let π be the ranking obtained by
running Max-Cardinality on H. Then Sum-product-VE with order π does
not introduce any fill edges.

Max-cardinality algorithm can also be used to construct elimination ordering
for a non-chordal graph.

However, in this case the algorithm is not as good as others that we will see
later in the course.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 20, 2011 22 / 25



Summary

If H is a chordal graphs, then apply max-cardinality.

If H is non-chordal then

1 Triangulate
2 Max-cardinality

Finding the minimal triangulation is NP-Hard.

There are other algorithms that we now going to discuss.
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Minimum Fill/Size/Weight Search

Goal: Find an ordering that induces a small graph.

We cannot solve this exactly.

Greedy algorithm eliminating algorithms one at a time.

Question is which one at each step?
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Evaluation metrics

Set of possible heuristics:

Min-neighbors: The cost of a vertex is the number of neighbors it has in
the current graph.

Min-weight: the cost of a vertex is the product of weights (domain
cardinality) of its neighbors.

Min-fill: the cost of a vertex is the number of edges that need to be added
to the graph due to its elimination.

Weighted-Min-Fill: the cost of a vertex is the sum of weights of the edges
that need to be added to the graph due to its elimination. Weight of an
edge is the product of weights of its constituent vertices.

Which one better?

None of these criteria is better than others.

The search can be done deterministically or stochastic (at each step).

If stochastic, do multiple trials with multiple criteria, as the cost of this is
much less than the elimination itself.
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