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Abstract

To provide efficient tools for the capture and modeling of acceptable virtual human
poses, we propose a method for constraining the underlying joint structures based on real
life data. Current tools for delimiting valid postures often employ techniques that do not
represent joint limits in an intuitively satisfying manner, and furthermore are seldom di-
rectly derived from experimental data.

Here, we propose a semi-automatic scheme for determining ball-and-socket joint lim-
its by actual measurement and apply it to modeling the shoulder complex, which—along
with the hip complex—can be approximated by a 3 degree-of-freedom ball-and-socket
joint. Our first step is to measure the joint motion range using optical motion capture. We
next convert the recorded values to joint poses encoded using a coherent quaternion field
representation of the joint orientation space. Finally, we obtain a closed, continuous im-
plicit surface approximation for the quaternion orientation-space boundary whose interior
represents the complete space of valid orientations, enabling us to project invalid postures
to the closest valid ones.

*The work reported here was supported in part by the Swiss National Science Foundation.



1 Introduction

In the world of animated virtual humans, with flawless skin textures and fluid motion, we must
give credit to the animators who have driven the illusion to the state of near perfection that it
has now reached. Every ripple on the skin is painstakingly refined until it no longer shocks
our eye or disappoints our expectations. Yet, for all the available animation tools, it is still
up to the animator to manually constrain postures to valid ranges. Similarly, in the computer
vision world, many approaches to tracking and modeling people from video sequences have
been proposed [Gavrila, 1999, Moeslund and Granum, 2001]. They are not always robust, in
part because image data are inherently noisy and in part because it is inherently ambiguous
[Rehg et al., 2003]. Introducing valid joint limits is therefore one important practical step to-
wards restricting motion synthesis and analysis algorithms to humanly feasible configurations,
thereby increasing their reliability and potential for automation.

Current tools for delimiting valid postures often employ techniques that do not represent
joint limits in an intuitively satisfying manner. They tend to be expressed in terms of hard
limits on individual rotation angles that do not account for dependencies between those angles
[Tolani et al., 2000, Wang et al., 1998], such as those between the allowable amount of arm
twisting and the arm’s position.

By contrast, in this work, we propose a quaternion-based model that allows us to explicitly
represent and measure those dependencies: We first measure the joint motion range using op-
tical motion capture. We next convert the recorded values to joint poses encoded by a coherent
quaternion field representation of the joint orientation space. Finally, we derive a closed, con-
tinuous implicit surface approximation for the quaternion orientation-space boundary whose
interior represents the complete space of valid orientations, ultimately enabling us to project
any invalid posture to the closest valid one.

Quaternions represented as points in a three-sphere [Shoemake, 1985], the axis-angle rep-
resentation, and the corresponding exponential maps may all be used to specify an orientation
frame in such a way that the Gimbal Lock singularities of traditional Euler angles are avoided.
However, only quaternions are endowed with an intrinsic natural distance between orientation
frames. We choose the quaternion representation in this work because of this fact: Quater-
nions provide the most robust computational framework for enforcing joint-angle constraints
by projection onto the nearest point in the subspace of valid orientations.

The dependency between arm twist and arm directional orientation, or swing, is a function
of the complicated make-up of the shoulder complex, which we were given the opportunity to
study extensively in the context of research projects carried out in our laboratory. We therefore
chose this example to validate our approach to expressing ball-and-socket joint limits. Because
similar constraints exist for hip and leg motion, the hip joint would have been another natural
candidate. Modeling the shoulder complex as a ball-and-socket joint, one with exactly three
independent degrees of rotational freedom and no more, is of course an oversimplification. In
reality, it is composed of three joints, the gleno-humeral, scapula, and clavicle. However, for
applications such as video-based motion tracking, these three joints are almost unobservable
and the only thing that can be measured is the position of the arm with respect to the body. The
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joint limit representation we propose can then be understood as a way of encoding the space of
reachable arm positions without having to precisely describe the shoulder’s anatomy.

In the remainder of the paper, we first briefly review the state of the art. We then introduce
our approach to experimentally sampling the space of valid postures that the joint allows and
to representing this space in terms of an implicit surface in quaternion space. Finally, we
demonstrate our method’s effectiveness for animation purposes and discuss its applicability in
a tracking context.

2 Related approaches

In the field of biomechanics, joint limits have often been measured, using various mechanical
and electromagnetic devices. Examples of such statistical data can be found in [Johnston and
Smidt, 1969] for the hip, in [Engin and Tumer, 1993] for the knee, and in [Meskers et al.,
1998] for the shoulder. Previous studies, such as [Wang et al., 1998], have shown inter-subject
variance to be extremely small. Thus, it is acceptable to generalize results obtained on the basis
of measurements carried out on a standard individual without motion impairment, or on a very
small number of subjects.

Many of these empirical results are subsequently re-used for modeling human skeletons,
when the conversion from the measured data to the representation is readily feasible. The sim-
plest approach is to introduce joint hierarchies formed by independent 1-Degree-Of-Freedom
(DOF). These DOFs are often described in terms of Euler angles and the joint limits given
as minimal and maximal values. For tracking purposes, these angles or their evolution from
frame to frame can then be linearized [Bregler and Malik, 1998], which simplifies the com-
putation and results in increased speed. This formalism, however, does not account for the
coupling of the different limits and, as a result, does not properly account for the 3-D accessi-
bility space of real joints. Euler angles suffer from an additional weakness known as “Gimbal
lock.” This refers to the loss of one rotational degree of freedom that occurs when a series
of rotations at 90 degrees is performed, resulting in the alignment of the axes [Bobick, 1998,
Watt and Watt, 1992]. Sinus cones [Engin and Tumer, 1989] improve upon this situation
and are one of the most widely-used representations. This scheme was later adopted for 3-D
bio-mechanical modeling of the human upper-limb joints [Maurel, 1998]. In this work, joint
boundaries are represented by conic shapes with elliptic bases such as those shown in Fig. 1(a).

The spherical polygons [Korein, 1985] depicted by Fig. 1(b) form the basis for another
popular formalism to express joint limits, which has been extensively used in the areas of
animation and inverse kinematics [Baerlocher and Boulic, 2000]. Recently, a new model in
which the workspace of angular motion is modeled as a triangular Bezier spline surface has
been proposed [Tolani et al., 2000]. Measurements were performed and the method was vali-
dated by comparison with statistical data available in the literature. The 3 DOFs of a ball-and-
socket joint are decomposed into an angular and an axial component. The angular direction
component, or swing, corresponds to the two flexion and abduction DOFs, whereas the ax-



Figure 1: Joint limits representation. (a) Joint sinus cones. (b) Spherical polygon.

ial component, or twist, is the rotation around the axis of the upper arm limb [Korein, 1985,
Grassia, 1998].

In all the cases discussed above, limits for swing and twist are handled independently, even
though, in reality, they are correlated. This correlation was measured by recording arm motions
and expressed in terms of the amount of allowable twist as a function of swing in [Wang et al.,
1998]. This work, however, did not propose a model that simultaneously provides joint limits
for all the DOFs.

In short, the method we propose here advances the state-of-the-art because it provides a
way to enforce limits on swing and twist while at the same time accounting for their depen-
dencies. Furthermore, the quaternion representation we use is not subject to singularities such
as the “Gimbal lock” of Euler angles or mapping rotations of 27 to zero rotation. Finally, the
well-defined distance measure between orientation defined by quaternions supports uniquely
appropriate methods for finding the nearest physically correct orientation corresponding to an
erroneous initial joint position. Although other representations could have been used to achieve
these goals, the unit quaternion, which denotes each orientation as one of a pair of mirror-image
points on the three-sphere [Shoemake, 1985], has several unique properties: The existence of
a valid distance measuring the proximity of two orientations, the ability to use that measure
to uniquely determine the nearest physically correct orientation corresponding to an erroneous
initial one, and the ability to interpolate with meaningful angular velocity constraints on an
optimal path splining among orientation key frames. Therefore, even though the quaternion
formalism introduces an additional parameter and constraint [Grassia, 1998], we have chosen
it as the most logical basis for this work.

3 Measuring and Representing Shoulder Motion

We used the Vicon®™ motion capture system to collect 3-D marker data corresponding to ex-
tensive shoulder movements along the boundaries. The set of possible joint orientations and
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positions in space can be considered as a path of referential frames in 3-D space [Bloomenthal,
1990], which can then be mapped to a sub-space of the space of possible quaternion referential
frames of the object, that we call the quaternion Gauss map [Hanson, 1998b]. In other words,
paths in the space of possible referential frames correspond to quaternion referential frames on
this map.

In practice, we represent rotations by the sub-space of unit quaternions S* forming a unit
sphere in 4-dimensional space. Any rotation can be associated to a unit quaternion but we need
to keep in mind that the unitary condition needs to be ensured at all times. A rotation of ¢
radians around the unit axis v is described by the quaternion:

T = [Sin(%ﬁ)v, cos(20)]T (1)

q = 4z, Qs G2+ Qu
Since we are dealing with unit quaternions, the fourth quaternion component ¢,, is a dependent
variable and can be deduced, up to a sign, from the first three. Given data collected using optical
markers, we obtain a cloud of 3-D points by keeping the spatial or (¢, g, g.) coordinates of
the quaternion. In other words, these three numbers serve as the coordinates of quaternions
expressed as projections on three conventional Cartesian axes.

Because we simultaneously measure swing and twist components, and because the quater-
nion formalism lets us express both within one rotation, this representation captures the depen-
dencies between swing and twist, one of the major goals of this work. In this manner, we will
have generated joint limits on the basis of motion capture. We will then be able to make use
of these joint limits as constraints for tracking and pose estimation, by eliminating all invalid
configurations.

3.1 Motion measurement

We captured shoulder motions using the Vicon Motion Capture System, with 19 strategically-
placed markers to recover the whole body motion of an actor. Figure 2 shows the actor wearing
the complete set of markers, enabling the system, if needed, to identify the entire set of markers,
not only those around the shoulder. We used a complete standard marker configuration, given
that hierarchical connections and segment lengths are used for marker tracking and identifying.
Capturing the markers only on the upper arm would lead to a higher level of ambiguity, thereby
causing potential marker labeling confusion.

For our purposes, we normally take into consideration only the four markers depicted by
Fig. 2(c) and track their motion over the whole captured sequences. These markers are those
placed on the shoulder joint, on the upper arm segment, at the elbow and on the wrist. An
additional marker is placed at neck level to serve as a fixed reference. As the subject moves
in 3-D space, the Vicon system reconstructs the markers in 3-D global space for every image
frame of the sequence, and then labels those that it is able to identify. This enables us to
retrieve the global 3-D positions of our five markers over the entire sequence. This is sufficient
to retrieve the upper arm orientation, or in other words the motion range of the shoulder joint.
To generate a dense data set that covers the entire range of possible shoulder motions, we
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Figure 2: Vicon Motion Capture session, (a) Actor with markers. (b) Reconstructed 3-D mark-
ers. (c) Relative position of the markers with respect to the skeleton.

captured motion data for several minutes during which the subject attempted to perform as
complete as possible a set of motions such as those depicted by Fig. 3.

Figure 3: Shoulder motion sequence.

3.2 Motion representation
Quaternion field technology

Our goal is to create an analyzable topographic space of joint orientations using the exper-
imental 3-D marker coordinates as the basis. To accomplish this, we adopt the method of
quaternion fields described in[Hanson, 1998a, Hanson and Ma, 1995]. In the quaternion field
method, each joint orientation is first converted to a 3 x 3 matrix M, which, using Euler’s
theorem?, can be expressed in terms of its lone real eigenvector n and the angle of rotation ¢

INot to be confused with Euler angles!



about that axis. This in turn may be expressed as a point in quaternion space, or, equivalently,
a point on a three-sphere S embedded in a Euclidean 4D space. To find # and axisn, given
any rotation matrix or frame M, we need two steps:

1. Solve for 6 using

TrM =1+ 2cosf ; (2)
2. Find n from
0 —2n3sinf  +2nysinf
M — M'=| +2n3siné 0 —2n;y sin @ (3)
—2n9sinf  +2nq sinf 0

which is defined as long as € # 0. In the degenerate case, the matrix and the quaternion
are taken to be the identity transformation. For more details, see Biedenharn and Louck
[Biedenharn and Louck, 1981].

The identification of the corresponding quaternion follows immediately from

q(8,n) = (cos g, n sin g) (4)

up to the sign ambiguity between the two equivalent quaternions ¢ or —q, which correspond to
the exact same rotation matrix M. A single compact volume containing a dense set of quater-
nion frames will have two distinct but equivalent realizations due to the ¢ < —q ambiguity.
We have implemented various procedures to cast out duplicates, or, equivalently, to iteratively
check the 4D dot-product between neighboring quaternions and force all neighbors to have
signs that are consistent with positive dot products.

Construction of shoulder coordinate frames

To build our frames from the marker coordinates, we begin by subtracting the neck marker
coordinates from the other four coordinates, so that all coordinates are expressed with respect
to a fixed point.

The frames are then constructed as follows: The first axis of the frame corresponds to the
upper arm segment, i.e. the line defined by the shoulder and upper arm markers. The second
axis is the normal to the plane passing through the shoulder, elbow and wrist markers. This
plane represents the axial rotation, or “twist” motion, of the shoulder joint. The third axis
simply is the axis orthogonal to the other two, that is their cross-product. The construction of
the referential is illustrated by Fig. 4(a).

An orthonormal coordinate frame is created in this manner for each image frame of the
sequence, along with the rotation relating one image frame to the next. The calculated 3 x 3
rotation matrices M (¢) for each data point are then converted into unit quaternions as described
above, producing a dense cloud of points occupying a volumetric portion of the quaternion 3-
manifold or three-sphere.
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Figure 4: (a) Deriving a referential from the markers. (b) General form of a moving frame for
a 3-D curve x(t), with the tangent direction T determined directly from the curve derivative,
and the exact orientation of the basis (Nl, NQ) for the normal plane determined only up to an
axial rotation about T

The concept of a generic moving frame on a curve is illustrated by Figure 4(b). When
transformed to quaternion form, each successive frame from the moving sequence becomes
a point on a quaternion curve lying within the three-sphere S embedded in R*. Families
of frames on a surface become surfaces in quaternion space, and collections or disjoint sets
of orientations such as those collected here for the shoulder joint become a cloud of points
occupying a volumetric quaternion space with a distinct closed boundary surface.

By retaining only the spatial or (¢, g,, ¢.) coordinates of the quaternion, we can represent
the four motions of Fig. 5 as trajectories in 3—D space. By processing in this fashion the long
motion capture sequence discussed in Section 3.1, we obtain the cloud of 3-D points depicted
by Fig. 6(a).

4 Volumetric Approximation of Scattered 3-D Data

To make effective use of the collected data, we now need to derive a working representation for
it. In the 3-D quaternion sub-space (0, ¢y, d,), we chose to approximate the cloud of points
representing all the valid measured shoulder rotations by an implicit surface. It will enable us
to decide whether a movement is possible or not, using a simple inside/outside test.

Many other methods have been studied to solve the shape reconstruction problem [Bittar et
al., 1995]. We preferred the implicit surface representation because it allows us to express the
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Figure 5: Decomposing the motion. (a) Flexion. (b) Abduction. (c) Twist at four different
positions. (d) Random upper arm motions.

shape using relatively few parameters, while at the same time providing a convenient metric

for estimating proximity. This is due to the fact that the surface is represented by an equation

and not modeled explicitly [Opalach and Maddock, 1995]. Not only will an implicit surface

provide us with a smooth representation of the volume of valid quaternion rotations, but thanks

to its well-defined distance function between data points and the obtained surface, the fitting
process becomes relatively simple, as does the final inside/outside decision. Furthermore, when
dealing with a value representing an invalid rotation, the use of implicit surfaces gives us the

ability to easily project this value to the closest valid one. This will be further discussed in

Section 5.

To the best of our knowledge, in our field, the idea of using implicit surfaces for the purpose
of approximating scattered data was first reported in[Muraki, 1991]. This work introduced the
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Figure 6: From the 3-D data points to the fitted implicit surface. (a) Original volume of 3-D
quaternion data points. (b) Visible gap within the data. (c) Extracted surface points. (d) Final
fitted implicit surface representing the shoulder joint limits.

notion of implicit iso-surfaces generated by shape primitives. These primitives are defined
by their skeletons that can either be points—the center of a sphere or ellipsoid—or extend
features—a line or a polygon. The algorithm positions a skeleton at the center of mass of the
points and subdivides it until the process reaches a correct approximation level. This, however,
has several drawbacks, such as the lack of a local criterion and a high computational cost.
Furthermore, the algorithm does not perform well on data with “holes” and requires knowledge
of surface normals.

This early work was later extended [Bittar et al., 1995, Tsingos et al., 1995] by introducing
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a more efficient way to split the implicit surfaces without requiring normals and expressing
them in terms of locally defined field functions. This allows the use of an iterative method
based on minimizing the distance between the real points and the generated surface. This
method forms the basis of our approach, but has required substantial modifications because:

e As can be seen in Fig. 6, our motion capture data form a volume in quaternion space, as
opposed to a surface and, therefore, the surface points must first be recovered;

e Despite our best efforts, the complete range of shoulder motions was not equally covered,
resulting in variations in data density and even “holes,” such as the one highlighted in
6(b), where no data are available;

e The original method required the user to position some initial surface skeletons inside
the volume to reconstruct and automation was achieved using the medial axis transform,
which is impractical in our case because our data are far too noisy.

These issues are discussed in detail below.

4.1 From Volumeto Surface

Before performing any implicit surface approximation, we need to address the fact that our
point cloud forms a 3-D volume instead of a 3-D surface. To transform the points into a surface,
we apply a method based on dividing the 3-D space into overlapping solid angles placed at the
center of mass of the cloud. To this end, the 3-D Cartesian points X ;(z, y, z) are converted into
spherical coordinates X(p, 0, ¢). The 3-D space is then divided into solid angles by taking
into account the points that fall within the intervals [0, 6 + df], [¢, ¢ + d¢).

Let SP(i, k) be the points inside the (4, j) solid angle and let p,,q (7, ) be their maximum
radius:

Pmaz (Z’ k) - Tj EIglla’i(iak) b

The surface points are taken to be those whose radius is close to p. For each solid angle we
write

Surface(SP(i, k)) = {mj(pﬁ (93-, (b]) € SP(Z’ k)’ (1 - T)pmaz(ia k) < pj < pmaz(ia k)} )

where T is an appropriate threshold value. The complete surface becomes the union of all the

surface points
L L

Sur face(SP) = | |J Surface(SP(i, k)) ,
i=1 k=1
with L being the number of quantized intervals for the 6 and ¢ angular coordinates. Some
histograms, representing the point density as a function of the radius p are shown in Fig. 7. In
Fig. 8 we can see the projected data volume for one particular solid angle of the actual shoulder
data and the resulting surface points.
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Figure 7: (a) Histogram of the point density as function of the distance for a solid angle con-
taining dense data. The surface points are taken to be those in the box. (b) Histogram of a solid
angle containing one hole. The contours of the hole, that is the points inside the two boxes at
the left, are ignored and only the outer surface is detected.

(@) (b)

Figure 8: Surface extraction using real data. (a) Data points in one of 49 solid angles used to
cover the space of orientations. (b) Corresponding surface points, extracted using a distance
threshold 7" = 0.1.

The strength of the process is that it does not require the entire space to be densely populated
by data points. As discussed above, this is important because the complete range of shoulder
motion could not be equally covered, resulting in variations in data density. Its weakness is that
it depends on two arbitrary values, L that controls the number of solid angles and 7" that defines
the “thickness” of the surface boundary. The higher the curvature and greater the density of
data points, the finer the quantization and the smaller the thickness ought to be. However, in the
presence of noise or of relatively sparse data, both the size of the solid angles and the boundary
thickness should be large enough to yield a relatively smooth surface without holes. In practice,
the choice of the L and 7" parameters are therefore heuristic and problem dependent.

For our specific shoulder modeling problem, we have found that using L = 7and T' = 0.1
yields acceptable results. This yields the surface points depicted by Fig. 6(c). A more generic
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solution would be to develop a marching-cube based method that divides the space into voxels
and finds the boundary between those that contain high and low data point densities.

4.2 Implicit Surface Parameterization

In our implementation, we take the implicit surface S to be an iso-surface, or contour surface,
of a field defined by one or more spherical primitives:

S = {PeR*|F(P)=iso}

F(P) = ﬁ;fi(m (5)

—kir+ ke, +1 if0 <r <eg
fz(P) i [kZ(T' — ei) — 2]2 |'|:€Z <r< Rz s

0 elsewhere

where r = d(P, S;), R; = e;+ kl and d is the Euclidean distance to the primitive’s center [Tsin-
gos et al., 1995]. The f; spherical field functions are thus parameterized by:

e The radius €; of the sphere S; created by a single primitive such that f;(e;) = 1s0;

e The stickiness k; that defines the blending properties of the surface.

To speed-up the subsequent computations and to prevent the surface fitting method described
below from diverging, we fix the stickiness k to 5, which means one less parameter to optimize
for each implicit surface, and take iso to be 1. This offers sufficient precision, without letting
the primitives become too small, in which case we would need a large number of them to obtain
the final fitting solution. Thus, there are four parameters left to optimize for each primitive: g
X, Vi »Z;, where (X;, V;, Z) are the 3-D coordinates of the primitive’s center.

4.3 Fitting the Implicit Surface

To compute S so that it approximates the data as well as possible, we look for a set of primitives
that minimizes the energy E:

1 (X o
£ = N(Z(f(Pj)—ZSO))

n % (al §e+ﬂ161> (6)
1 M
+ M (oﬂ ; [(331 —2)” 4+ (Y — Ye)® + (2 ZC)QD ’



where M is the number of implicit surfaces and N the number of 3-D points. The first term
of E forces the surface to approximate the points. The other two terms prevent the surface
primitives from wildly increasing in size and from moving too far away from the center of
mass. Without these terms, we would obtain large tangent surfaces. In this work, we use
a; = 0and ay = 0.01.

,,,,,,,,,,,,,

~ /
Recovered surface N - === Recovered surface
——  Rea surface

Real surface

Figure 9: Splitting procedure. The implicit surface with the worst fit to the surface points, that
is the largest C; as defined by Eq. 7, is divided into two new ones that are then reoptimized.

To find the optimal set of primitives we are looking for, we implemented the follow-
ing automated subdivision scheme, which is inspired by earlier methods [Bittar et al., 1995,
Tsingos et al., 1995] and based on the local properties of the field function. We first place one
spherical primitive at the center of mass, defined by:

1 X 1 X 1 X
xc:Ni:ZImia yc=szzlyz, Zc:Ni:zlzia

where N is the total number of data points, and x; ,y;, z are the coordinates of the i** 3-D point.
The e parameter is the variance of the cloud defined as:

e = % Z:ZI \/(wz - xc)2 + (yz - yc)2 + (ZZ - ZC)2

We then recursively split the primitives based on a criterion C; computed by summing the
contributions of the m; points that are inside the sphere of influence of the primitive S;:

Ci=— (%(f@)—z’so)?) . ™)

m; \;5

As shown in Fig. 9, the surface primitive with the largest C; is subdivided first. This makes
sense because this primitive is the one with the largest first term in Eqg. 6 and, therefore, is the
one whose area of influence corresponds to the zone of the surface where the reconstruction is
worst. Each split involves subdividing the primitive into six new ones that are positioned on
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one axis in a symmetrical manner, so as to yield a shape as close as possible to the original.
We then reoptimize the parameters of all the primitives to minimize the full criterion of Eq. 6.

Due to the variation in density of the data and the possible surface gaps this entails, the
algorithm described above has a tendency to “cover” these gaps by introducing spurious prim-
itives, thus allowing invalid rotations to be treated as valid. To alleviate this problem, after the
final subdivision, we clean up the final result as follows. We remove all spherical primitives
whose radius is larger than 1.0, as this would obviously include the entire cloud of data of unit
quaternions, whose center is further away than 1.0 from the center of mass of the cloud, and
whose density of point included in the primitive is small with respect to total density. Finally,
we minimize again the criterion of Eq. 6, without subdivision of the primitives this time. This
removes the primitives that grow through the holes but may still leave some that simply cover
the holes, as will be seen in Section 5. This could be addressed by introducing negative implicit
surfaces, which can be used to model real holes in the data. The difficulty, however, is to decide
whether they correspond to truly forbidden areas or, simply, to missing data. In other words,
in the presence of a suspected hole in the data, one should conduct additional motion capture
sessions to confirm that the apparently forbidden area truly is unreachable.

@) (b) (©

Figure 10: Reconstruction of a synthetic object. (a) Synthetic 3D point cloud. (b) Initializa-
tion of the algorithm with an implicit surface in the center of mass. (c) Final result of the
reconstruction with 5 implicit surfaces

We have tested the validity of the subdivision algorithm by converting synthetic objects to
a cloud of 3-D points, and, then, reconstructing them. The results are depicted by Figs. 10 and
11. In Fig. 11(c), we histogram the value of the energy E of Eq. 6 for the NV points used to
derive the shape shown in Fig. 11(b). Note that the histogram is correctly centered around the
value of iso = 1.
4.4 Approximating the Shoulder Data

In short, we have developed a method goes through the following steps:
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Figure 11: Two complete reconstructions. (a) Reconstructed shape of Fig. 10 with superposed
3-D points. (b) Reconstruction of another synthetic object. (c) Histogram of the value of the
energy E of Eq. 6 evaluated at the points belonging to object (b).

1. Extract the surface points from the volumetric cloud of data;
2. Position an initial spherical primitive at the center of mass of the surface points;

3. Recursively subdivide this primitive and measure the error based on the distance from
the surface points to the current spherical primitives.

4. Repeat step 3 until the error stabilizes.

We have applied this approach to approximating the collected shoulder data depicted by Fig. 6(a,b).
The extracted surface points are shown in Fig. 6(c), and the resulting fitted implicit surface in
Fig. 6(d).

(a) (b)
Figure 12: Comparing two subjects. (a) In black, the data of the subject we have been using
for this study. In grey, the data corresponding to a second subject. (b) Histogram of values of
the field function of Eq. 6 for the grey points.

To illustrate the relative insensitivity of these measurements across subjects, we have gath-
ered shoulder motion data for a second subject. In Fig. 12(a), we overlay the two sets of 3-D
points. Visual inspection in 3-D shows that they superpose well. This is confirmed by his-
togramming the value of the energy E of Eq. 6, that was derived using the data acquired with
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the first subject, for the data corresponding to the second one. As shown in Fig. 6(b), for the
the majority of the points the value of E is greater than 1, which means that they are inside the
“reachable” volume. Predictably, there are more points outside the surface, that is points for
which E is smaller than 1, than in the synthetic case depicted by Fig. 11(c). However, outside
of the implicit surface, the value of E decreases as the square of the distance to it. Thus, most
of the points for which the value of E is smaller than 1 are in fact still very close to the surface.

5 From Implicit Surfacesto Joint Limits

In this section, we show how our results can be used both for animation and tracking purposes.
Since each possible orientation is represented as a 3—D point with a clear and unambiguous
metric inherited from the three-sphere, the mutual distance between individual orientations
can be defined in a mathematically rigorous way. Consequently, given the implicit surface of
the previous section that bounds the volume of acceptable rotations, we can not only perform
consistency checks on the acceptability of a proposed or measured joint orientation but also
orthogonally project invalid orientations onto the surface. The quaternion field method thus
provides a new and unique method for establishing requirements and constraints for automated
or semi-automated joint animations that can be used to reject or readjust proposed orientations
to lie within a particular, experimentally verified, joint parameter space.

5.1 Animation constraints

In our laboratory’s existing animation libraries, the ball-and-socket joints are implemented in
terms of quaternions [Baerlocher and Boulic, 2000]. The orientation of such joints is decom-
posed into swing and twist components. The swing component, or angular motion, is limited
by a spherical polygon. In other words, the sphere itself is centered at the joint—the shoulder,
in our specific case—and the boundaries of this spherical polygon limit the possible orienta-
tions of the upper arm. The allowable twist component can then be expressed as a function of
the swing one.

To take advantage of this existing implementation, we converted our implicit surface repre-
sentation to the spherical polygon one. This implies sampling the surface of a sphere, validating
each point with respect to the implicit surface, and constructing the spherical polygon from all
valid points. This approach works but is somewhat cumbersome because converting to the
spherical polygon representation entails a loss of precision that is almost inevitable when go-
ing from a continuous representation to a discrete one. It also forces us to decompose each
motion into swing and twist.

We therefore implemented a much more promising approach to enforcing joint limits that
directly uses the implicit surface of Section 4.3 to enforce the limits. In this manner, we need
neither to discretize, nor to decompose each motion into swing and twist components.

In the examples shown in Figs. 13 and 14, an animator manually specified the motions
depicted by the top two rows without worrying about joint limits. The resulting motions, shown
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both from the front and the side, are not humanly possible. We then used our implicit surfaces to
project each invalid position to the closest valid one, resulting in the realistic motions depicted
by the two bottom rows of Figs. 13 and Figs. 14. The corresponding animation sequences are
available as mpeg movies on the web at the addresses shown in the Figures.

The projection of an invalid posture to a valid one is illustrated by Fig. 15. It is implemented
by first determining which sphere S of the implicit surface has the most influence on the point
p representing the invalid orientation. We then calculate the distance d from the surface of §;
to p, that is the distance from center of S; to p, minus the radius of S;. We trace a ray emanating
from p, along the gradient of the total field function of Section 4.2. We determine the point
p’ on that ray that is at distance d from p; this point should be inside the implicit surface.
From here on, we proceed by dichotomy, taking the middle point of the segment [p, p’], testing
whether it is inside the implicit surface, and if not, we continue performing dichotomy—in the
direction of the implicit surface if the point is outside, and in the reverse direction if the point
is inside—until we find the intersection point.

Fig. 16 depicts a case where the implicit surface we use fails to appropriately constrain the
motion. As shown in Fig. 6(b), there is a gap in our motion capture data that corresponds to
positions of the arm behind the back that are clearly impossible. As discussed in Section 4.3,
the problem comes from the fact that, in our existing implementation, the implicit surface
fitting has a tendency to “cover” the gaps, thus allowing invalid rotations to be treated as valid.
In future work, we will investigate the use of negative implicit surface to carve out regions that
are void of data and solve this problem.

5.2 Video-based tracking

The technique described in Section 5.1 for animation purposes is equally applicable to video-
based tracking. In earlier work, we have developed an approach to modeling and tracking
human bodies using video from two or more cameras as input [Plankers and Fua, 2001]. We
extract stereo-data from the images and, at each time step, adjust the position of the body
model to fit the data as closely as possible by minimizing an objective function. Here too, we
use an implicit surface formalism to represent the model’s skin because it allows us to define
this objective function so that it is both differentiable and computable without search.
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Figure 13: Animation without and with constraints. (a) Manually specified motion without
constraints seen from the front (top) and from the side (bottom). Note that the arm penetrates
the thorax, which would hurt a lot. (b) The same motion after joint limits have been enforced.
The green sphere represents the joint limits and replaces the spherical polygon of Fig. 1(b).

19



(@)

(b)

g | 4 | 4
| ‘ |

Figure 14: Another example of an unconstrained and constrained motion. (a) The arm reaches
too far backwards when no joint-limits constrain the motion. (b) The joint limits have been
enforced, the motion is limited to its natural boundary posture.
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Figure 15: Closest valid orientation determination along the gradient of the field function of
Equation 6.

Because the model we use has many degrees of freedom, it can in some cases match the data
accurately while assuming a position that no real human could. However, by imposing the joint
limit constraints, the model switches to a much more plausible pose. An example is shown in
Figure 17: Tracking the arm without enforcing joint-limit constraints results in an impossible
twist at the shoulder level. In this case, the constraints were imposed after the fact but the
formalism proposed in this paper will make it natural to incorporate them directly into the
tracking process: Constraint satisfaction or violation is expressed in terms of the differentiable
function of Eq. 6 and can therefore be naturally incorporated into our optimization framework
using standard robotics-style constraint satisfaction techniques [Baerlocher and Boulic, 2000].

6 Conclusion

We have developed a promising technique for automatically determining ball-and-socket joint
limits that does not require extensive data collection and nevertheless produces a useful output
both within a short time and in an immediately re-usable format. In this way, we are in position
to greatly improve our ability to correctly animate and track human bodies.

In this work, our aim was to develop a method for retrieving joint limits for ball-and-socket
joints, such as our simplified shoulder or the hip joint, rather than to propose a fully realistic
shoulder model. In future work, however, we intend to consider a more sophisticated model
that explicitly incorporates the shoulder, scapula, and clavicle joint. By measuring the motion
of each independently, for example by constraining the motion of the scapula, we expect our
approach to extend naturally to this more complex case. This should result in an even more
effective set of constraints for robust tracking and realistic animation.

We will also improve our surface fitting procedure, so as to increase the method’s robustness
with respect to gaps in the data. These are simply the areas where there are no data because
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Figure 16: Insufficient flexion constraint in the back region: Because our implicit surface
covers data gaps, we allow orientations that should have been invalidated.

they are invalid positions and show up as holes within the extracted data points. They create
problems such as those shown in the previous section and will be handled by introducing
negative implicit surface to carve out regions that are void of data.

We will ultimately develop a tool that provides joint limits in an intuitive manner and that
takes into account all rotation components, without any need for motion decomposing. Because
it is generic, this method is generalizable to all the joints in the body and should therefore prove
valuable for both animation and tracking applications.
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