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ABSTRACT

We propose in this paper a morphological approach to segment
several structures of 3D head magnetic resonance images dedi-
cated to the construction of individual models of the head for ap-
plications where topology is one of the main constraints. The orig-
inality of the approach lies in the satisfaction of such constraints
and in a effort towards robustness.

1. INTRODUCTION

A large body of literature has been devoted to brain image seg-
mentation (see e.g. the synthesis in [1]). We will deal here with
magnetic resonance images (MRI). A lot of classification methods
have been developed to separate the main tissues. For instance,
both fuzzy clustering and neural networks have been widely used,
as well as probabilistic approaches. Other methods make use of
models. These models can be implicit like Physics-based de-
formable models or explicit as in atlas deformation techniques.
Implicit models are often used when one specific structure of inter-
est has to be detected, while atlas-based approaches can segment
all structures but have to deal with difficult problems due to the
anatomical variability. Here we are interested in methods without
model that exploit not only the content of the image but also con-
straints on the desired result, as topological constraints. Classifica-
tion methods can hardly incorporate such constraints, while mor-
phological methods are more adapted to this aim. Most work using
mathematical morphology in this domain concentrate on segmen-
tation of the brain and on separation between grey and white matter
e.g. [2, 3, 4). Little attention was paid to the other structures until
now. For instance very few methods exist for skull and skin, and
they usually rely on different constraints from the ones we have
here (see e.g. [5]).

Here, based on a preliminary segmentation of the brain, we
propose a morphological method to segment the brain stem and
the cerebellum, cerebrospinal fluid (CSF), grey and white matter,
skull and scalp. The aim of this segmentation is to build from any
standard MRI an individual 3D model of head structures, that can
serve for numerical solving of electromagnetic wave propagation
equations, as needed in electrophysiology as well as when study-
ing the influence of mobile phones on head tissues. In contrary to
other applications where a millimetric precision may be needed,
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for such applications the precision of the segmentation is not the
key point. What is the most important for the foreseen applica-
tions is to have a good and robust representation of the shapes and
a very strong constraint is the preservation of topology. Robust-
ness is achieved in the proposed morphological approach by an
intensive use of reconstruction and conditional operations as well
as by reducing the number of parameters, while the topology is
preserved using homotopic transformations. An important aspect
of the proposed method is the automatic selection of markers that
avoids user interaction and also increases robustness. The method
has been successfully applied to 13 3D MR images from different
acquisition devices.

The paper is organized as follows. In Section 2 we recall some
basic notions related to homotopic morphological operations. We
propose a way to select automatically a given number of markers,
and homotopic deformations that combine topological and other
criteria (on distance or on grey levels for instance). In Section 3,
we present successively methods for segmenting the structures of
interest. Then experimental results are given in Section 4, along
with some comments on parameter estimation and robustness.

2. MORPHOLOGICAL OPERATORS UNDER
ROBUSTNESS AND TOPOLOGICAL CONSTRAINTS

We use the following notations. Let f : Z* — N denote a discrete
image. Let ér(f) denote a dilation of f by a structuring element
L, T c z% §r(f)z) = Ve, er(e) f(zi), where T'(z) denotes
the translation of I" at z. We denote by er(f) the erosion of f
by T, by vr(f) the opening and by ¢r(f) the closing. For any
subset X of Z>, X denotes the complement of X. The function
dist : Z*® x Z* — N, denotes an approximation of the Euclidean
distance in Z°. We use the same notation for the distance of a
point to a set. The function dist_;f denotes the geodesic distance,
calculated within the set X.

2.1. Morphological reconstruction

Reconstruction is one classical way in mathematical morphology
to achieve robustness by conditioning transformations to a refer-
ence set or image, and therefore controlling the spatial extensions
of the transformations [6, 7]. Geodesic transformations are de-
fined by using balls of the geodesic distance as structuring ele-
ments. In the discrete case, a geodesic dilation of a set Y condi-
tionally to a set X by a ball of radius 1 is simply computed as {7]:



SX (V) = 8(Y) N X, where 8 uses the geodesic ball of radius 1
as structuring element and ¢ the Euclidean ball of radius 1. The re-
construction of Y in X is then defined by iterating this conditional
dilation until convergence: (6(Y)NX )% (note that convergence is
achieved in a finite number of steps for X finite). These definitions
extend to functions and the reconstruction of f under f is defined
as (8(f') A f)°°. The other geodesic morphological operations are
defined in a similar way.

2.2. h-minima, graph representation and automatic selection
of markers

The h-minima operator (see e.g. [7]) can be used to find in a func-
tion the set of all markers identifying attraction basins, the depth of
which exceeds h. In some applications, however, one may need to
find a given number of markers without knowing the correspond-
ing value of h. We propose here a way to determine automatically
a given number of markers, that may possibly correspond to dif-
ferent unknown depths h, by considering a graph representation of
a function and its local minima.

Let f denote a function f : Z> — Nandh € N. Let M C Z°
such that M = {z|f(z) < h}. Let M; denote a connected com-
ponent of M. These components for all possible values of h are
organized in a weighted tree (see Fig. 1). Every vertex represents
one component (given by dashed line); the weights of the vertices
correspond to the value of h giving birth to the component. The
edges represent the inclusion relation. This tree can be simplified

20,

Fig. 1. 1-D example of function f and the component tree (not all
weights are given).

20|

Fig. 2. Simplified component tree.

by deleting every vertex that is a unique child of its parent, i.e.
not modifying the topology. The weights are recalculated as fol-
lows: every vertex gets the difference of its previous value and
their most distant descendant plus one (see Fig. 2). The surviving
vertices represent the largest components M; before the topology
of the cuts changes as h increases. The new values correspond to
the depths of the associated basin.

The search of the n deepest basins reduces to the search of
the n vertices having the highest weights that are not bound (even
transitively) by the inclusion relation.
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2.3. Homotopic transformations under constraints

Homotopic transformations can be performed in discrete spaces
thanks to the use of simple points (e.g. [8, 9]), i.e. that can be
deleted from a set X (or added to X) without modifying its topol-
ogy. Any transformation which acts exclusively on simple points
is therefore homotopic. Selection of simple points belongs to the
class of hit-or-miss transformations, while deleting simple points
from X (respectively adding to X) belongs to the class of morpho-
logical thinnings (respectively thickenings). In order to guaran-
tee a topologically consistent result, we extensively use homotopic
deformations throughout the segmentation process. These defor-
mations are implemented by two dual operators A-thinning and
A-thickening [10]. These operators perform a homotopic thin-
ning (resp. thickening) of some binary object according to some
criterion A. This criterion can be of any nature, not necessarily
a topological one. Therefore A-thinning and A-thickening allow
to perform transformations combining topological constraints with
any other constraint. Moreover, it is known that the result of thin-
ning or thickening depends on the order points are tested. Here the
order is given by the satisfaction of the constraint A. For instance,
X can be a criterion on grey levels, as f(x) < C, and points are
ordered by their grey level. Then if X denotes some initial binary
object, the A-thinning iteratively deletes from X all simple points
such that f(z) < C. The darkest simple points are deleted first.
The A-thickening operator is defined from A-thinning by duality
with respect to complementation, and iteratively adds points to X
according to criterion A,

3. SEGMENTATION METHOD

We start from the mask of the encephalon Xgycepy which has
been obtained by 3D morphological operators (see [11] for details
on the method). Xgncepy is a smooth envelop of the brain includ-
ing CSF.

3.1. Brain stem and cerebellum

The segmentation of the cerebellum and the brainstem is generally
not addressed in the literature. We base it on bottleneck constric-
tion. These objects are separated from each other and from the en-
cephalon at the narrowest junction situated in the mesencephalon
and in the cerebral peduncles.

Firstly, we obtain the starting object: X = {z|z €
Xencepr and f(z) > s1}, where s1 = pcor7ex is the mean
value of the grey matter. From now on, we only consider the lower
part of X limited on top by the higher extremity of the tegmen-
tum. This can be easily found manually. Let X denote the result-
ing object.

The separation proceeds in two steps. Firstly, we identify the
lateral lobes which have to be deleted. The narrow junctions of
some object X are identified as topographic saddles of the dis-
tance function to X;: g1 = dist(z, X1). We search three markers
M = {M1, M2, M3} corresponding to the three most significant
basins of —g1 using the method described in Section 2. The ob-
jects are obtained by homotopic reconstruction of the 3 markers in
g1: X2 = M-thickening(M), A : g1(z) > 0 (see Section 2). The
largest connected component of X3 is the union of the cerebellum
and the brainstem: Xpg.cp. Due to the structure of the cerebel-
lum, we perform a binary morphological closing in order to obtain
a smooth-surfaced object yr(Xps+cs). The structuring element I"
is a ball of radius £ = 1 mm.



The second step separates the brainstem and the cerebel-
lum. The separation is based on the localization of the nar-
row junctions identified as saddles in the distance function g =
dist(z, or(Xgs+cg)). We search three markers M = {M;, M,
M3} marking the most significant basins of —g,. By reconstruc-
tion of M we obtain X3 = A-thickening(M), X: g2(z) >
0. The brainstem Xpg is the smallest connected component of
X3 N Xgs+cp. The cerebellum Xcp is obtained as the union of
the two largest connected components of X3 N Xpg..cp. We obtain
the hemispheres by Xyeaispry = Xenceprr \ Xas \ Xcs-

The proposed method relies on the fact that we have a prior
knowledge of the number of objects in interest, and from the auto-
matic selection of a corresponding number of markers, chosen as
the most significant ones.

3.2. Cerebrospinal fiuid

This method extracts the object X¢sr contained both in the ventri-
cles and in the sulci. We impose to X¢sr the topology of a hollow
sphere. It corresponds to the reality but not necessarily to the input
image because of limited resolution. This is a specificity of the
proposed approach, to include constraints related to reality or to
further applications, even if the data do not satisfy them.

We start with an initial thresholding: X4 = {z | z €
Xgncepr and f(z) < sz} where s2 = pcsr + 2o¢sr, and pcsr
and ocsr are the mean and the standard deviation of CSF. Then
we filter out noisy points by opening: X5 = X4 \ yr(X4) where
T is a ball of radius R = | mm. We define a new image g as:

f(.'l!) ifre Xgandz € X
g(z) = < s2 ifre Xqandzx ¢ X5
0 else

We extract X csr by reconstruction of Xcgr. Let Xg = z\-thickening(Mg:

where A : g(z) > sz, where the marker M is an arbitrary
point of the encephalon Xgycgpy such that f(z) > s2 (ie. in
Xcsr). CSF is then obtained by complementation: Xcsr =
6r(Xgncepr) \ Xe, where T is a ball of radius R = 1 mm. The
dilation guarantees that Xgr contains all CSF.

From now on we consider Xpncepr as Xencepr \ Xcsr-

3.3. Grey and white matter

The segmentation of grey and white matter are initialized from
a classical k-means classification algorithm. Then, starting from
the largest component of white matter, the interface between white
and grey matter is obtained by A-thickening in the complement
of grey matter and with a constraint A giving priority to the simple
points which are at the smallest geodesic distance from the initial-
ization. The interface between grey matter and CSF is obtained in
a similar way, by A-thickening in the complement of CSF, with
the same priority depending on geodesic distances.

3.4. Skull

The extraction of skull is subject to two constraints: 1) the object
Xskurr is homotopic to a hollow sphere (note that this is a con-
straint imposed by the applications and not corresponding exactly
to the reality; it is completely different from the one of [5] where
no precise topology is required), 2) regions situated far from the
cortical surface are eliminated. The segmentation proceeds in two
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steps according to these requirements: presegmentation and hole
(tunnet) closing.

1) Masking of the encephalon and the air. We first de-
fine X; = f N (Xyeap \ Xenceey). Then by thresholding
we get Xg = {z|z € X7and f(z) < s3}, where s3 =
HCORTEX — OCORTEX- A mask close to the cortex is defined as
Xupusk = 0r(Xuyemisey U Xca), where T is a ball of R = 25
mm; X, = Xs N Xpask. The mask includes the skullcap,
the front and the cranium base. The sinus and jaw are suppressed.

2) Hole closing. We use a modified version of the hole closing
algorithm of [12] based on homotopic deformations controlled by
a distance function from the object. The starting object Xy has
the correct topology and is homotopically deformed towards the
desired result. The deformation keeps the holes closed. Since the
deformation is controlled by the distance, the holes are closed with
a minimal surface. Then Xo = Xjsx \ (Xpemiser U Xcg)
contains the skull and has one cavity, which is the desired topology.
From the distance function d(z) = dist(z, Xgx;, ), the skull is
obtained by homotopic thinning: Xsxyz, = A-thinning(Xo),
A:d(z) > 0.

3.5. Skin

The first step consists in extracting the head mask Xyg4p. This
object is simply connected with no holes nor cavities. After an
initial thresholding and selection of the greatest connected com-
ponent leading to X10 = MaxCC({z|f(z) > sa}) where s3 =
pesrF — ocsr, we perform a smoothing by a morphological clos-
ing: X11 = ¢r(Xio), TI': ball of R = 5mm. Filling of cavities
leads to X12 = Fill(X11). The object X2 is too smooth and does
not follow correctly the head contours. Therefore we propose to
add a peeling step eliminating dark regions introduced by the clos-
ing. The closing, however, cannot be omitted since its purpose is to
ose the orifices (ears...) which would have otherwise connected
e exterior of the head with the bone, the air and the bone having
the same luminosity. The peeling is only limited to dark points
(the air) and up to some maximum distance from the surface of
Xueap. A geodesic transform can be used g(z) = distgx“] (X12),
and peeling is achieved by A-thinning(Xy2) = Xpygsp where
A : g(z) < R, where R is the radius used in the closing (5 mm).
Xyeap has therefore the correct topology and its surface follows
the contour of the head.

The skin Xggzy is obtained in the next step by thickening
of the border of the head mask bd(Xyg4p). The thickening is
bounded by a maximum distance from the contour and is limited
to bright points only, likely to belong to the skin. This restriction
is achieved by a geodesic transform g(z) = dist;"° (Xeap).

Homotopic thickening of the contour of the head: Xgxv =
A-thickening(bd(Xgg4p)), where A : g(z) < C, where C =
6mm (maximum allowed thickness of the skin and epidermis).
The thickening extends homotopically the head contour inwards.
Xskin has the topology of a hollow sphere and entirely covers the
head. The orifices are covered by an one-point-thick surface.

4. EXPERIMENT RESULTS

4.1. Parameter estimation and robustness

The segmentation algorithm uses several parameters. Grey level
parameters are estimated automatically with the k-means algo-
rithm, with k& = 5 (for air and bone, cerebrospinal fluid, grey



matter, white matter, fat). The mean values u; and standard de-
viations o; are calculated for each of the five classes found by the
k-means. Sometimes (about 30 percent of all cases) the k-means
fail to identify the cerebrospinal fluid (due to the partial volume
effect and negligible volume occupied by this structure compared
to other objects). A manual intervention is therefore needed to ver-
ify the result of the k-means. No other user-interaction is needed,
except for designing the horizontal slice used to segment the cere-
bellum and the brain stem. We have shown experimentally that
the results are robust to variations of the position of this slice (any
of 5 successive slices can be chosen without changing the results).
The sizes of the structuring elements are derived from anatomi-
cal knowledge and the same values could be successfully used on
all examples. Markers are selected automatically, and geodesic
transformations and reconstruction contribute to robustness of the
method.

4.2. Results

We have tested the segmentation of thirteen MR images of the head
(Fig. 3 gives an example of the input MRI). Despite the diversity
of the input images, the method exhibits a good robustness. The
result is a partition of the space and its 3D topology is guaranteed.
These results have been positively evaluated by medical doctors
and electrophysiologists and are now used as individual models
for solving equations of electromagnetic wave propagation in head
tissues.

Fig. 3. 2D orthogonal slices from an example input image.

Fig. 4. Result of segmentation of the image given in Fig. 3.
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5. CONCLUSION

Although different works addressed brain segmentation, the fore-
seen applications called for other methods focusing on the topol-
ogy of the result. The originality of the proposed approach is to
provide an automatic and robust method devoted to specific appli-
cations. The constraints are derived from the application and are
guaranteed even if they are not completely true in reality or in the
data. The reduced number of parameters, the automatic selection
of markers and the use of morphological reconstruction contribute
to the increase in robustness.
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