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I Motivation
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I Why is 3D from Stereo hard? AT
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® Ambiguities
a Textureless regions
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® Ambiguities
a Textureless regions

m Sensor saturation
a Non-Lambertian surfaces

2
m Az grows quadratically |Az| ~ Z |Ad|
= Computational burden / f0

focal length  baseline
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I Related Work: Local Methods

Local Methods
a Winner-takes-All
Examples

a Block matching
(Scharstein 02)

a Adaptive windows
(Kanade 94, Yoon 06)

a Plane-sweep
(Collins 96, Gallup 07)

Problems
a Small matching ratios
a Border bleeding
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I Related Work: Global Methods AT
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Global Methods

a Minimize 1D/2D energy E(d) = Egata(d) + AEsmootn(d)
Examples

m Graph cuts, Belief propagation
(Kolmogorov 02, Felzenszwalb 06)

m Variational methods
(Pock 07, Zach 09)

a Fusion moves
(Woodford 08, Bleyer 10)

Problems
a Computational and memory
requirements

m Pairwise potentials
can not model planarity
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I Related Work: Seed-and-Grow AT
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Seed-and-Grow Methods
a Grow disparity components from random seeds

Examples
a (Cech 07)
m (Sara 03)

Problems
m Slanted/textureless surfaces
a No dense disparity maps
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AT

Karlsruhe Institute of Technology

m Assumption: rectified images
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I Idea KIT

Karlsruhe Institute of Technology

m Assumption: rectified images
m Image pairs contain 'easy’ and ’hard’ correspondences
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m Assumption: rectified images

m Image pairs contain 'easy’ and ’hard’ correspondences
m Robustly match 'easy’ correspondences on regular grid
m Build prior on dense search space = dense matching
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I Efficient Large-Scale Stereo IT

Notation

a Robust support points S = {s1, ..., Sy}

a Disparity d, € N

Efficient Large-Scale Stereo Matching — Code: http://cvlibs.net 11/24



I Efficient Large-Scale Stereo IT

Notation

a Robust support points S = {s1, ..., Sy}

a Disparity d, € N
m Observations o, = (up vy f,)"
m Local image features f,

Efficient Large-Scale Stereo Matching — Code: http://cvlibs.net 11/24



I Efficient Large-Scale Stereo IT

Notation

a Robust support points S = {s1, ..., Sy}

a Disparity d, € N
m Observations o, = (up vy f,)"
m Local image features f,

Algorithm
m Split image domain into support points S and dense pixels

a Assume factorization of distribution over disparity,
observations and support points into ...
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Left Image Right Image Graphical Model
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Support Points i m
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I Prior and Likelihood

Prior p(d,|S,0")

a Support pt. triangulation
m Piecew. linear manifold
m Local extrapolation
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| Prior and Likelihood AT
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Prior p(d,|S,0")

a Support pt. triangulation
m Piecew. linear manifold
m Local extrapolation

Likelihood p(0%(0", d,)

m Laplace distribution —;H:— + :;H:: -
m 5 x 5 block window Ll L
m 3 x 3 Sobel filter exp(—48 [I[H-Hll1)
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I Sampling from the model

Left image Sample mean

RS
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900 x 750 pixels, ground truth
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I Middlebury Benchmark AIT
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900 x 750 pixels, 0.4 seconds
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I Middlebury Benchmark AIT

Karlsruhe Institute of Technology

1300 x 1100 pixels, ground truth
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I Middlebury Benchmark AIT

Karlsruhe Institute of Technology

1300 x 1100 pixels, 1 second
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I Accuracy (on cones image pair) A[{]]
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I Running times (on cones image pair)

T

Karlsruhe Institute of Technology
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Image resolunon [Megapixel]

[For more details see: Geiger et al., ACCV 2010]
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2 seconds

[http://cvlab.epfl.ch/data/strechamvs/]
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I 3D Face Reconstruction

[http://www.fujifilm.com/products/3d]
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| summary AT

a Simple prior based on sparse feature matches
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I Summary

a Simple prior based on sparse feature matches

m Reduced ambiguities and run-time

m Takes into account slanted surfaces

m Real-time 3D reconstruction of static scenes on CPU
a C++/ MATLAB code available at http://cvlibs.net
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I Future Work A\‘("

a Develop better priors
m Incorporate segmentation / global reasoning on lines
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a GPU implementation
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Efficient Large-Scale Stereo Matching — Code: http://cvlibs.net 24/24



Future Work

a Develop better priors
m Incorporate segmentation / global reasoning on lines

a GPU implementation
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I Future Work A\‘("

a Develop better priors
m Incorporate segmentation / global reasoning on lines

a GPU implementation
(goal: 20 fps at 1-2 megapixels)

a Employ as unitary potentials on global methods
= smaller label sets

= Thank you!
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