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Motivation

Laserscanner

Camera
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Why is 3D from Stereo hard?

Ambiguities
Textureless regions

Sensor saturation
Non-Lambertian surfaces

∆z grows quadratically
Computational burden

disparity error

focal length baseline

distance error
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Related Work: Local Methods

Local Methods
Winner-takes-All

Examples
Block matching
(Scharstein 02)
Adaptive windows
(Kanade 94, Yoon 06)
Plane-sweep
(Collins 96, Gallup 07)

Problems
Small matching ratios
Border bleeding
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Related Work: Global Methods

Global Methods
Minimize 1D/2D energy E(d) = Edata(d) + λEsmooth(d)

Examples
Graph cuts, Belief propagation
(Kolmogorov 02, Felzenszwalb 06)
Variational methods
(Pock 07, Zach 09)
Fusion moves
(Woodford 08, Bleyer 10)

Problems
Computational and memory
requirements
Pairwise potentials
can not model planarity
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Related Work: Seed-and-Grow

Seed-and-Grow Methods
Grow disparity components from random seeds

Examples
(Cech 07)
(Sara 03)

Problems
Slanted/textureless surfaces
No dense disparity maps

Efficient Large-Scale Stereo Matching – Code: http://cvlibs.net 8/24



Contents

1 Motivation and Related Work

2 Efficient Large-Scale Stereo Matching

3 Experimental Evaluation

4 Summary and Future Work

Efficient Large-Scale Stereo Matching – Code: http://cvlibs.net 9/24



Idea

Assumption: rectified images
Image pairs contain ’easy’ and ’hard’ correspondences
Robustly match ’easy’ correspondences on regular grid
Build prior on dense search space⇒ dense matching
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Idea

Robust Match

Assumption: rectified images
Image pairs contain ’easy’ and ’hard’ correspondences
Robustly match ’easy’ correspondences on regular grid
Build prior on dense search space⇒ dense matching

Efficient Large-Scale Stereo Matching – Code: http://cvlibs.net 10/24



Idea

Assumption: rectified images
Image pairs contain ’easy’ and ’hard’ correspondences
Robustly match ’easy’ correspondences on regular grid
Build prior on dense search space⇒ dense matching

Efficient Large-Scale Stereo Matching – Code: http://cvlibs.net 10/24



Efficient Large-Scale Stereo

Notation
Robust support points S = {s1, ...,sM}
with sm = (um vm dm)T

Disparity dn ∈ N
Observations on = (un vn fn)T

Local image features fn

Algorithm
Split image domain into support points S and dense pixels
Assume factorization of distribution over disparity,
observations and support points into ...
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Model

Left Image Graphical ModelRight Image

Support Points

Observation in left image Observations

Support Points

p(dn,o
(l)
n ,o(r)

n ,S) ∝ p(dn|S,o(l)
n )︸ ︷︷ ︸

Prior

p(o(r)
n |o

(l)
n ,dn)︸ ︷︷ ︸

Likelihood
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Prior and Likelihood

Prior p(dn|S, o(l)
n )

Support pt. triangulation
Piecew. linear manifold
Local extrapolation

Likelihood p(o(r)
n |o

(l)
n , dn)

Laplace distribution
5× 5 block window
3× 3 Sobel filter
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Sampling from the model

Left image Sample mean

Right image
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Middlebury Benchmark

900 x 750 pixels, ground truth
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Middlebury Benchmark

900 x 750 pixels, 0.4 seconds
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Middlebury Benchmark

1300 x 1100 pixels, ground truth
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Middlebury Benchmark

1300 x 1100 pixels, 1 second
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Accuracy (on cones image pair)
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Running times (on cones image pair)
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[For more details see: Geiger et al., ACCV 2010]
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3D Reconstruction: Brussels

2 seconds
[http://cvlab.epfl.ch/data/strechamvs/]
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3D Face Reconstruction

[http://www.fujifilm.com/products/3d]
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Urban Scene Reconstruction
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Summary

Simple prior based on sparse feature matches
Reduced ambiguities and run-time
Takes into account slanted surfaces
Real-time 3D reconstruction of static scenes on CPU
C++ / MATLAB code available at http://cvlibs.net
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Future Work

Develop better priors
Incorporate segmentation / global reasoning on lines
GPU implementation
(goal: 20 fps at 1-2 megapixels)
Employ as unitary potentials on global methods
⇒ smaller label sets

Thank you!
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