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Abstract

3D scene understanding is key for the success of appli-
cations such as autonomous driving and robot navigation.
However, existing approaches either produce a mild level of
understanding, e.g., segmentation, object detection, or are
not accurate enough for these applications, e.g., 3D pop-
ups. In this paper we propose a principled generative model
of 3D urban scenes that takes into account dependencies
between static and dynamic features. We derive a reversible
jump MCMC scheme that is able to infer the geometric (e.g.,
street orientation) and topological (e.g., number of inter-
secting streets) properties of the scene layout, as well as the
semantic activities occurring in the scene, e.g., traffic situ-
ations at an intersection. Furthermore, we show that this
global level of understanding provides the context neces-
sary to disambiguate current state-of-the-art detectors. We
demonstrate the effectiveness of our approach on a dataset
composed of short stereo video sequences of 113 different
scenes captured by a car driving around a mid-size city.

1. Introduction

In recent years much effort has been devoted to the prob-
lem of 3D scene understanding, as solving this task is key
for applications such as autonomous driving, robot naviga-
tion or vision-guided mobile navigation systems. One of the
crucial components for the success of such applications is to
be able to robustly estimate the 3D layout of the scene from
movable platforms. This is extremely challenging, particu-
larly in scenarios such as dynamic urban scenes with a large
degree of clutter arising for example when a car traverses a
congested city. Despite the large body of work, existing ap-
proaches do not offer the level of accuracy required in such
real-world applications.

Most of the existing work has been focused on detect-
ing objects of interest [3, 5, 21, 1] or on creating segmen-
tations of the scene into semantic labels (e.g., road, build-
ing) [22, 15, 2]. However, the level of actual 3D scene un-
derstanding provided by these methods is rather limited. In

(a) 3D scene understanding

(b) Result of [3] (left) vs. using scene context from our model (right)

Figure 1. Inferring topology, geometry and semantics. Top: Re-
projection into the original image. The inferred streets are depicted
in dash orange, buildings in blue, and activity patterns in red. Mid-
dle: Bird’s eye perspective. The flow observations are depicted in
green and the occupancy grid in (white, gray, black) for (occupied,
unobserved, free) spaces. The right side depicts a pop-up of the
scene from a different camera angle. Bottom: By using inferred
context for hypothesis reweighting, our algorithm is able to reduce
false positives of state-of-the-art detectors [3].

order to further push-forward this understanding, more geo-
metric approaches have been developed. These approaches
estimate rough 3D layouts (pop-ups) from monocular im-
ages [16, 9, 8].

Non-parametric models have been proposed to perform
activity recognition from static platforms capturing road in-
tersections from a bird’s eye perspective [13, 20]. However,
these models are not transferable to new scenes and thus
only work for a fixed scene layout. To be able to apply these
models to movable platforms, one would need to learn a dif-
ferent model for every type of scene. This is non-practical
since it will require knowing a priori all scene types as well
as the use of a very large training set.
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In this paper we propose a principled generative model
that is able to estimate the varying road topology as well
as the 3D content of the scene within a single inference step.
Our model employs non-parametric distributions, deals with
varying topologies and can be learned from a few exam-
ples while avoiding overfitting. We derive a reversible jump
MCMC scheme that is able to infer the geometric (e.g.,
street orientation) and topological (e.g., number of intersect-
ing streets) properties of the scene layout, as well as the se-
mantic activities occurring in the scene, e.g., traffic situa-
tions at an intersection.

We demonstrate the effectiveness of our approach in very
challenging urban scenarios of real-world intersections with
various topologies and a high degree of clutter. Our input se-
quences are captured from a mobile observer while travers-
ing a mid-size city. We show that simple dynamic and static
cues are sufficient for reliable estimation. In particular, we
show that our approach can extract geometrical and topolog-
ical scene knowledge, create pop-up representations as well
as infer semantic activities such as the traffic situation at an
intersection (see Fig. 1(a) for an illustration).

This global level of scene understanding is not only im-
portant for mobile navigation, but also for tasks such as ob-
ject recognition since it provides the context necessary to
disambiguate difficult detections. We demonstrate this in the
context of state-of-the-art part-based detectors [3], where
our model can be used to improve reliability (see Fig. 1(b)
for an illustration).

In the following, we first discuss related work. Next, we
introduce our generative scene model and show its perfor-
mance in challenging urban scenarios. Finally, we discuss
extensions of our model and conclude.

2. Related work

3D scene understanding is one of the main goals in com-
puter vision and robotics. As such there exists a wide body
of work in both domains. In robotics, 3D data (e.g., lidar,
stereo) is widely used to create occupancy grids that repre-
sent the navigable space [19]. In combination with detailed
maps and accurate GPS, first autonomous systems for ur-
ban driving have been presented during the DARPA Urban
Challenge [10, 14]. In computer vision, efforts have mainly
focused on generating efficient and accurate 3D maps (e.g.,
stereo algorithms) [17], creating segmentations of the scene
into semantic labels (e.g., road, building) [2, 15, 22], de-
tecting objects of interest [1, 3, 5, 21], estimating rough 3D
from monocular images [8, 9, 16] and performing activity
recognition of dynamic scenes from optical flow [13, 20].

In recent years the accuracy of object detection has in-
creased considerably. One of the main reasons for this
has been the PASCAL challenge, exposing object detection
to increasing levels of difficulty. While there exist many
generic object detectors [3], only a few approaches focus on

urban scenes. Ess et al. [1] and Gavrila et al. [5] show
impressive results on estimating 3D bounding boxes around
pedestrians in cluttered scenes when using stereo. Wojek
et al. [21] proposed a generative model to robustly track
objects from a moving observer using a single camera. Sim-
ilarly to us, their model relies on reversible jump MCMC for
estimation.

Multiple approaches have investigated the creation of
scene segmentations into semantic categories, e.g., road,
sky. Wojek et al. [22] perform joint object detection and im-
age segmentation in urban environments. Sturgess et al [15]
combine appearance and structure-from-motion features for
image segmentation of road scenes. However, the level of
understanding generated by object detection [1, 5, 21] and
image segmentation [2, 15, 22] without higher-level reason-
ing tells relatively little about the underlying scene structure.

More geometric approaches have been developed to push
forward this understanding by learning how to estimate
rough 3D (i.e., pop-ups) from monocular images [9, 16].
These techniques, however, use only weak constraints of
global consistency, work only on relatively clean scenarios
and can result in infeasible solutions. More recently, Gupta
et al. [8] extend this idea to incorporate global consistency
constraints such as those provided by laws of physics based
on mass and volume of the blocks. They were able to au-
tomatically generate qualitative 3D image parses. Unfortu-
nately, these qualitative parses are too simplistic and inac-
curate to help robot navigation or autonomous driving. In
contrast, in this paper we propose a generative model of dy-
namic 3D urban scenes which is able to produce accurate
estimates of complex 3D topologies, even in the presence of
large clutter and image variation.

Activity recognition of dynamical scenes is another focus
of research which is related to our approach. Ess et al. [2]
propose a segmentation-based approach to recognize traf-
fic scenes in front of a moving vehicle. In particular, they
estimate the presence of objects of interests, e.g., car, pedes-
trian, as well as type of road topology using classification of
scene features. Unlike our approach, this only results in la-
bels and does not provide any 3D information which is key
for applications in navigation. The closest approach to ours
is the works of Kuettel et al. [13] and Wang et al. [20],
where non-parametric models were used to perform activ-
ity recognition from static observers capturing intersections
from a bird’s eye perspective. However, their models are not
transferable to new scenes and require a static camera.

Unlike all of the aforementioned approaches, we are able
to robustly estimate the 3D layout of the road, the location
of the buildings, detect objects of interest as well as dynamic
traffic activities in the scene.
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Figure 2. Topologies. Typical real world topologies.

priors parameters observations

Figure 3. Graphical model. See section 3 for details.

3. Urban Scene Understanding

In this section we introduce our probabilistic generative
model of 3D urban scenes. We consider a moving observer
(e.g., robot, mobile platform, vehicle) navigating non-open
spaces, such as road networks in cities or corridors/floors
within buildings. Our goal is to infer from a small set of
frames (≈ 10 seconds) the observer’s environment, which
consists of the scene topology (see Fig. 2), geometry (e.g.,
orientation of the roads) as well as semantic information
(e.g., traffic situation). Urban scenes are typically composed
of a static environment as well as dynamic objects, e.g., cars
driving on roads which are located between buildings. In
this paper we propose a probabilistic generative model that
captures the dependencies between both static and dynamic
components of the scene.

We use 2D occupancy grids [19] computed from ELAS1

disparity maps [6] as static features and 3D scene flow [12]
as dynamical features. Using accurate non-linear visual
odometry [12], we represent all dynamic and static features
in the bird’s eye perspective of the last frame’s camera co-
ordinate system. Our 2D occupancy grid is a voxelized 2D
mapping of the environment where for each voxel a variable
indicates if the voxel is occupied (+1), unobserved (0) or
free (−1). For each scene, n, we represent the m-th voxel
of the occupancy grid with a variable xsnm ∈ R, the occu-
pancy label for that voxel. Similarly, let xfnm ∈ R4 be the
m-th flow observation that is composed of its 2D location

1www.cvlibs.net
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Figure 4. Observation model for static and dynamic features.

and velocity.
For a given scene, the observations depend on the topol-

ogy of the scene as well as its geometry. We parameter-
ize these dependencies with an orientation variable o ∈ Rk
that contains the angles between neighboring streets present
in the scene, as well as a variable θ ∈ R3+k which con-
tains the location c ∈ R2, global rotation r ∈ R and street
widths w ∈ Rk of a road junction. To ensure positivity,
we parameterize the street widths in the log domain, i.e.,
θ = {c, r, log w}. Note that here we have dropped the de-
pendency on the scene to simplify notation.

The joint distribution is defined by (compare Fig. 3)

p(Xs,Xf ,O,Θ,k) =

N∏
n=1

p(kn)p(on|kn)p(θn|kn)

×
N∏
n=1

Ms
n∏

m=1

p(xsnm|on,θn, ρs)
N∏
n=1

Mf
n∏

m=1

p(xfnm|on,θn, ρf )

whereN is the number of scenes,Ms
n is the number of static

features in the n-th scene, Mf
n is the number of dynamical

features in that scene and Xs = {xsnm}, Xf = {xfnm} are
the sets of all static and dynamic features. O, Θ and k con-
tain the orientations {on}, the model parameters {θn} and
the number of streets for all scenes. Note that the model has
different dimensionality for different topologies as the di-
mensionality of θn and on depends on the number of streets.

We model the static observations as a Gibbs distribution

p(xsnm|on,θn, ρs) ∝ exp{βf(xsnm,on,θn, ρ
s)}

where f denotes the correlation between the occupancy grid
and a model-dependent geometric prior that expresses our
prior belief on the location of the free space, e.g., road,
buildings alongside the road. The prior depends on the road
width and orientation specified by the model parameters. An
example of such prior is illustrated in Fig. 4(a). Here, ρs

specifies the expected distance of buildings from the curb-
side and β is a design parameter to control the overall relia-
bility of static observations.

The scene flow observations are modeled using a B-
spline representation of the lanes, where for each pair of
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roads two splines are computed, one for each traffic direc-
tion, as illustrated in Fig. 4(b). The probability of a flow
vector hereby depends on its distance to the B-spline as well
as on how well its velocity vector aligns with the tangent
vector of the respective B-spline. In particular, we model
these dependencies as a hard mixture, where each observa-
tion is member of one lane (i.e., B-spline)

p(xf
nm|on,θn,ρ

f ) ∝ max
i

exp

(
− d2i
2ρ2f1

− ‖v − ti‖22
2ρ2f2

)

Here, di is the distance between an observed flow vector
and the i-th spline, ti denotes the tangent unit vector of the
spline at the corresponding foot point, and v is the unit ve-
locity vector of the flow observation. The observation model
parameters ρf = (ρf1, ρf2, ρf3)T are the standard devia-
tions of di, the velocity, as well as the distance from the
spline to the street centerline, measured relative to the road
width as illustrated in Fig. 4(b).

As we do not wish to prefer any topology a-priori, we as-
sume a uniform prior on p(kn). We further model the prior
probability on θ with a multivariate Gaussian to capture the
correlations between its components, hence imposing a log-
normal distribution on the street widths. The relative ori-
entation of the streets is modeled as a separate variable on.
In order to enforce a unique ordering of the streets, we de-
fine on on the kn − 1 simplex ∆kn−1 as an element-wise
representation of the relative angular distance between two
consecutive streets in counter-clockwise orientation. Hence∑kn
i=1 oni = 1 and oni ≥ 0. The absolute orientation of the

i-th street, αni, can be obtained from the global rotation rn
and the orientations of the streets up to the i-th one as

αni = rn + 2π

i−1∑
j=1

onj

Since we expect a multimodal distribution with unknown
number of modes, we model p(on|kn) with a non-
parametric distribution. Unfortunately, employing an infi-
nite mixture of Dirichlet distributions involves a conjugate
prior of non-standard form. We use a standard trick in the
statistics community to represent infinite mixtures of Dirich-
let distributions with infinite mixtures of Gaussians by us-
ing a variable transformation based on the softmax function
of a substitute variable õn, on which a Dirichlet process
mixture with normally distributed observations and a con-
jugate Normal-Inverse-Wishart base measure can be easily
employed. This restricts on to the kn − 1 simplex. To re-
move the remaining degree of freedom, we fix exp(õk) to 1,
hence implying the unique bijection between o and õ. The
full prior is given by

k ∼ U(0, 1) θ ∼ N (µθ,Σθ)
π ∼ GEM(α) z ∼ π
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Figure 5. Samples from the model. For clarity of illustration, we
do not show the dynamic and static observations that can also be
sampled from our model.

{µ(l)
õ ,Σ

(l)
õ } ∼ N -Inv-Wishart(λ)

õ ∼ N (µ
(z)
õ ,Σ

(z)
õ )

oi = exp(õi)∑k
j=1 exp(õj)

with base measure hyperparameters λ = (κ, ν,φ,∆). Note
that the parameters of o and θ are duplicated three times,
corresponding to the three types of topology we model. We
now describe learning and inference in this model.

4. Learning and Inference

Our training set is composed of short sequences, where
for each sequence n, kn, on and θn are labeled with the
help of GoogleMaps images. During learning, kn, on, θn,
xsnm, xfnm are observed, and π, µõ, Σõ, µθ, Σθ, ρs, ρf ,
xsnm, xfnm are observed during inference. The rest of the
parameters have to be inferred accordingly. In the following
we show how learning and inference is performed.

Learning: Since kn, on and θn are observed, ρs, ρf ,
the prior over o and the prior over θ can be learned in-
dependently from the rest of the model. Assuming a non-
informative prior over (µθ,Σθ), we obtain (µθ,Σθ) from
{θn} using maximum likelihood estimation. The prior over
o is computed by applying the inverse softmax function
to all on (yielding {õn}) and learning a distribution over
a multimodal Gaussian mixture using a Rao-Blackwellized
Gibbs sampler with broad prior distributions on the hyper-
parameters {µõ,Σõ}. For more details, we refer the reader
to [18]. During inference, we keep π and {µõ,Σõ} fixed to
their MAP values. We further employ non-informative pri-
ors for ρs and ρf . Since their posterior can not be computed
analytically, we use a MH sampler with symmetric proposal
distributions in order to obtain a representative set of sam-
ples. During inference, we fix both variables at their sample
mean after the burn-in period.
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Inference: We perform inference for each scene indepen-
dently. Note that xf

m and xsm are observed while the num-
ber of adjacent roads k, their orientation o, width w, the
center of the crossroads c and the global orientation of
the scene with respect to the ego position r are unknown.
Since the priors over o and θ are learned, we perform
inference by sampling from the full posterior distribution
p(k,θ,o|{xsm}, {xf

m})2. Once samples are computed from
the posterior distribution, we are able to compute expecta-
tions over k, θ and o.

Since, depending on k, the model has different num-
ber of parameters, we employ reversible jump MCMC (RJ-
MCMC) [7] sampling for inference. We now briefly de-
scribe RJ-MCMC. We refer the reader to the supplemen-
tary material for a more detailed introduction. Green [7]
proposed an extension of Metropolis-Hastings, named RJ-
MCMC, that allows transdimensional jumps between mod-
els of different size. For simplicity, lets consider an exam-
ple where we are interested in two different model topolo-
gies with states X1 and X2 respectively. Let p1 and p2
be the posterior distribution of interest, and let π1, π2 =
1 − π1 be priors to control the amount of samples from
each topology. Unfortunately a direct comparison of the
densities is misleading since the probability measures on
X1 and X2 might be different. To overcome this prob-
lem, reversible jumps introduce additional states U1 and U2

to define a bijection between the augmented state spaces
τ : X1 × U1 → X2 × U2. Using a proposal dis-
tribution of the form q1(u1|x1), we can create a vector
(x1, u1), transform it into (x2, u2) by applying the map-
ping τ and neglect u2 to obtain a candidate for x2. The
acceptance probability of a jump from x1 to x2 becomes
A(x1, x2) = min{1, π2·p2(x2)·q2(u2|x2)·|det(Jτ (x1,u1))|

π1·p1(x1)·q1(u1|x1)
}

where det(Jτ (x1, u1)) denotes the determinant of the Ja-
cobian of τ . Analogously, we can switch from X2 to X1

using a proposal distribution q2(u2|x2) and compute the cor-
responding acceptance probability. Note that it is important
to implement forward and backward steps together to meet
the detailed balance condition, which ensures that the re-
sulting sampler converges to the true underlying posterior
distribution.

To switch between different sizes of the model we im-
plemented moves that add and remove adjacent roads. Due
to the complex structure of our model Gibbs-sampling is in-
feasible, hence we rely on Metropolis-Hastings moves. We
combine local moves which vary a subset of the model given
the last sample parameters and global moves which sample
from the prior. Local moves are designed to sample from ar-
eas of high posterior probability to explore likely areas of the
parameter space, while global moves are designed to jump
between different areas of high probability to overcome the
problem of poor initialization. All moves are selected ran-

2For notational simplicity we omit the dependence on the priors here

local Metropolis-Hastings moves
1. vary center of crossroads c slightly
2. vary overall orientation r slightly
3. vary width of all roads w slightly
4. select one road randomly and vary its width wi
5. vary center of crossroads c slightly and adapt width

of roads w to keep some curbsides unchanged
6. vary orientation of all roads o slightly
7. vary overall orientation r slightly and adapt o to keep

the direction of the adjacent roads
8. select one adjacent road randomly and vary its

direction slightly keeping the direction of the other
adjacent roads

global Metropolis-Hastings moves
9. sample all parameters θ and o from prior

10. sample center of crossroads c from prior
11. sample width of all roads w from prior
12. sample orientation of all roads o from prior

reversible jumps
13. add an adjacent road
14. remove an adjacent road

Table 1. Survey of MCMC kernels for inference.

domly with the same probability. Our 14 transition kernels
are shown in table 1.

The local moves 1-4 and 6 are design by sampling from
a Gaussian with small variance centered around the current
parameter value. The acceptance ratio of such a move is
just the ratio between the posterior probability of the new
parameter set compared to the current one. Since there ex-
ist interdependencies between the parameters, e.g., a change
in the overall orientation of the scene r does not only vary
the direction of the ego road but also of adjacent roads, we
also sample several parameters together in moves 5-8. To
increase the acceptance ratio when changing r (move 7), we
correct o in order to keep the directions of the adjacent roads
unchanged. We proceed analogously for moves 5 and 8.

The reversible jumps are designed as follows: To add
an adjacent road to a k-armed crossroad we randomly se-
lect one of the angles defined in o to be split, say ok. We
then sample a split ratio u from a Beta distribution and the
width of the new road v from p(v|c, r,w). The parame-
ters of the Beta distribution are set so that its probability
mass is concentrated in the (0.3, 0.7) interval. The bijec-
tion τ maps (θ,o, u, v) onto (θ′,o′) by extending the ori-
entation and the width vectors to include o′k+1 and w′k+1

respectively, and setting o′k = u · ok, o′k+1 = (1 − u) · ok
and w′k+1 = v. Hence, the Jacobian of τ becomes −ok.
The inverse move randomly selects a road i to be removed,
collapses the two orientation parameters oi and oi+1, and
removes the width wi from the width vector. Assuming that
the add-move is selected with probability sadd,k from the
set of possible moves and the inverse move is selected with
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(a) Flow histogram (b) Static obstacle grid (c) Overlap measure

Figure 6. Baseline features and overlap measure. For the base-
line we build fixed-size feature vectors from both, dynamic flow
observations (D = 392) and static occupancy grids (D = 400).
The overlap is measured by the intersection over the union score,
as it is also employed in the PASCAL challenge.

probability sremove,k+1 we obtain the acceptance probabil-
ity for the add move as

min{1, sremove,k+1 · p(θ′,o′|{xsm}, {xfm}, k) · ok
sadd,k · p(θ,o|{xsm}, {x

f
m}, k + 1) · q(u, v|θ)

}

where q(u, v|θ) denotes the proposal probability for u and
v described above, and we have used a uniform prior on k.

In practice it might happen that the RJ-MCMC sampler
gets stuck in low probability areas of the posterior distri-
bution if initialized poorly. To overcome this problem we
adopt the idea of simulated annealing [11] and replace the
posterior distribution p by an annealed probability p

1
α with

α ≥ 1. In doing so, the acceptance ratio increases and the
sampler is able to escape more easily. After burn-in we set
α = 1 to guarantee samples from the posterior of interest.

5. Experimental Evaluation

In this section we evaluate our approach with respect to
extracting geometric and topological scene knowledge, im-
proving object recognition by hypothesis re-weighting as
well as inferring semantic activities, e.g., turn-out maneu-
vers. We built a database composed of 113 greyscale stereo
sequences of length 10 seconds captured by randomly driv-
ing through a mid-size city. The database comprises 22 se-
quences of topology A, 20 sequences of topology B and 71
sequences of topology C (see Fig. 2). To obtain ground
truth, we labeled the geometries and topologies by using
GoogleMaps images, aligning them to the camera coordi-
nate system of the last frame in each sequence using a high-
accuracy (< 20 cm) GPS+IMU system.

For all experiments we set the concentration parameter α
to 2 in order to encourage a small number of components,
and the hyperparameters κ = 3, ν = 5, φ = 0 and ∆ =
(0.01 · I) in order to form a broad prior distribution. For the
observation model we set β = 300, which accounts for the
maximal number of 300 flow observations to which we limit
our dynamic features.
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(d) Our method

GP (flow) GP (static) GP (all) Ours
Accuracy k 44.2 % 65.5 % 61.1 % 92.9 %
Location 6.1 m 5.6 m 5.4 m 4.4 m
Orientation 18.8 deg 11.5 deg 14.1 deg 6.6 deg
Overlap 42.2 % 51.7 % 49.3 % 62.7 %

(e) Parameter accuracy

Figure 7. Inference of topology and geometry. (a–d) Confusion
matrices of the inferred number of streets k for the baselines and
our method. (e) Location and orientation errors as well as the PAS-
CAL score over the road segmentations.

Sampling: Since our model is generative, we can sample
from it. As shown in Fig. 5, typical samples exhibit dif-
ferent topologies as well as geometries. Static and dynamic
observations can also be sampled from our model.

Estimating geometry and topology: We compare our
approach to Gaussian process (GP) regression. Since regres-
sion requires inputs of fixed dimensionality, we transform
our dynamic and static features into vectors of fixed size (see
Fig. 6). We first project both types of features into the cam-
era coordinate system of the last frame. For the flow features
we compute orientation histograms with 8 canoncial direc-
tions placed at 10 m distance in a 60 × 60 m grid in front
of the observer, yielding a 392-dimensional feature vector.
To overcome the problem of sparsity and quantization, we
implemented a voting scheme, where each flow vector votes
for its orientation in a small neighborhood. Similarly, we
discretize the static features from the occupancy grid into 5
m × 5 m bins in a 100 m × 100 m grid, resulting in 400-
dimensional features. In total, this gives a 792-dimensional
feature vector which we normalize to range [0, 1]. We use
an RBF with constant noise as kernel and learn the hyper-
parameters via maximum likelihood.

Fig. 7 (a)-(d) depicts the confusion matrix for estimating
the topology. Here, k = 2 denotes scenes of type A, k = 3
for type B, and k = 4 for type C. We compare our approach
to GP regression on single feature types and on a combi-
nation of static and dynamic features. Note that our method
has an accuracy of 93 % while the best baseline, which relies
only on static features, achieves only 65.5 % accuracy.

We further evaluated the error in predicting the location
(intersection center) and orientation of individual streets.
For the baselines, given the estimated k, we regress to the
full set of parameters. Since an error in estimating k would
badly affect the error in orientation, we assign each street
to its closest ground truth neighbor and evaluated only as-
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signed streets. Note that this measure clearly favors the
baselines. We also evaluate the precision of the road esti-
mation using the intersection over the union, i.e., PASCAL
score. To this end, we compute this score on all roads taking
into account a street length of three times the mean street
width, as illustrated in Fig. 6 (c). Note that this is a segmen-
tation task. As shown in Fig. 7 (e), our approach clearly out-
performs the baselines, and excels particularly in estimating
the street orientation.

Improving Object Recognition: The knowledge that our
model extracts about the scene layout provides important
contextual information that can be used to improve object
detectors. For example, it can express which objects are
more likely to be at a certain location, e.g., cars on the road.
We evaluate this improvement on the state-of-the-art object
detector [4] trained on car instances of the PASCAL VOC
2008 challenge. For evaluation, we hand-labeled for each
sequence all car instances in the last frame. This results in
355 labeled car instances.

Our approach re-weights the scores returned by [4] by
employing geometric knowledge about typical car locations.
Towards this end, we first compute the training set mean
and standard deviations of the object widths, heights and
positions. In particular, we re-score the detections by adding
the following term to the scores of [4]

λ ·
[

max
i

exp

(
− d2i

2ρ2f1

)
+

3∑
i=1

exp

(
− (xi − µi)2

2σ2
i

)]
Here di is the distance of a car detection to the i-th spline,
ρf1 is the lane parameter from our observation model, and
{µi, σi} are mean and standard deviation of the object
width, height and position, respectively. In our experiments,
we set λ = 0.5, hence a value between 0 and 2 will be added
to the detector score, which itself ranges [−1,+1], depend-
ing on the size and location of the detected object.

Fig. 8 depicts precision-recall curves for the baseline [4]
and our approach. As evidenced by the figure, our geomet-
rical and topological constraints increase detection perfor-
mance. For example, at a recall rate of 0.7, precision is in-
creased from 0.7 to 0.9. The average precision is increased
from 71.3 % to 74.9 %. This is also illustrated in Fig. 1(b),
where in order to include the rightmost car into the detec-
tion result, the threshold of the baseline has to be lowered to
a value which produces two false positives. In contrast, our
re-scored ranking is able to handle this case.

Extracting Semantic Activities: We now show our
method’s ability to infer higher-order knowledge, in partic-
ular traffic situations. We define an activity as a crossing ac-
tion over an intersection. Given an intersection with k arms,
there exist k(k − 1) types of crossing activities. Hence, we

0 0.2 0.4 0.6 0.8 1
0

0.5

1

recall

pr
ec

is
io

n

 

 

our method
baseline

Figure 8. Improving object recognition. Re-scoring object de-
tection hypotheses using geometric constraints established by our
method yields better detection rates.

GP (flow) GP (static) GP (all) Ours
Hamming 0.18 0.23 0.16 0.08

Figure 9. Activity recognition. Normalized hamming distance be-
tween the estimated binary activity vector and the ground truth.

represent an activity as a binary k(k − 1) dimensional vec-
tor a, where ai = 1 denotes that the i-th type of crossing
occurs in the sequence. Note that more than one coordinate
can be active for a particular a. A natural distance measure
for binary vectors is the normalized Hamming distance. It
can be interpreted as the ratio of correctly determined cross-
ing maneuvers. Again, we use GP regression as the base-
line. For our method, we count the number of flow vectors
which uniquely contribute to the respective spline and set
ai = 1 if this number exceeds 10 observations. The results
are depicted by Fig. 9. Note that our method dramatically
improves performance over the baselines. Inferred activities
are highlighted in red in Fig. 10. Note that all flow observa-
tions (green) are nicely explained by the active lanes (red).

6. Conclusion and Future Work
We have proposed a generative model of 3D urban scenes

that reasons about static and dynamic objects in the environ-
ment by capturing their dependencies. We have further de-
rived a reversible jump MCMC scheme that is able to infer
the geometric (e.g., street orientation) and topological (e.g.,
number of intersecting streets) properties of the scene lay-
out as well as the semantic activities occurring in the scene
e.g., traffic situations at an intersection. Furthermore, we
have shown how our 3D reasoning can be used to improve
the accuracy of current state-of-the-art object detectors. In
the future, we plan to extend our generative model to jointly
perform object detection, tracking (e.g., pedestrians and ve-
hicles) and segmentation of the scene. We believe that such
an extension will be able to greatly improve each of these
tasks, particularly in the presence of small objects which re-
quire context-based interpretation.
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