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Abstract

This paper investigates convex belief propa-
gation algorithms for Markov random fields
(MRFs) with continuous variables. Our first
contribution is a theorem generalizing prop-
erties of the discrete case to the continuous
case. Our second contribution is an algo-
rithm for computing the value of the La-
grangian relaxation of the MRF in the contin-
uous case based on associating the continuous
variables with an ever-finer interval grid. A
third contribution is a particle method which
uses convex max-product in re-sampling par-
ticles. This last algorithm is shown to be par-
ticularly effective for protein folding where it
outperforms particle methods based on stan-
dard max-product resampling.

1. Introduction

Many applications such as protein folding (Sontag &
Jaakkola, 2009) and stereo vision (Trinh & McAllester,
2009) can be formulated as an inference problem in a
graphical model. A graphical model assigns an energy
or (equivalently) a probability to each assignment of
values to a given set of variables. Inference algorithms
can be divided into those that attempt to compute
marginal distributions on single variables or small sub-
sets of variables and those that attempt to find global
assignments minimizing energy, or equivalently, max-
imizing probability. Here we focus on inference al-
gorithms of the latter form — we seek the minimum
energy configuration of a set of variables under locally
defined potential functions.

Recently there has been considerable success in find-
ing minimum-energy configurations using a method
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known as convex belief propagation (BP) (Glober-
son & Jaakkola, 2007; Sontag et al., 2008; Sontag &
Jaakkola, 2009). This approach can be formulated in
terms of a linear programming (LP) relaxation of the
(typically NP hard) minimum-energy problem. One
works with the dual of the LP relaxation where the
dual variables can be interpreted as messages between
cliques (local energy terms). A message passing algo-
rithm can be formulated in which the dual variables
are updated using a form of block coordinate ascent.
This dual algorithm is surprisingly similar to classi-
cal max-product message passing algorithms. How-
ever, the dual of the LP relaxation provides a sim-
ple concave objective function being optimized by the
message-passing process where the value of this objec-
tive is a lower bound on the original problem. Hence
the term “convex BP”.

Convex BP has been formulated for graphical models
with discrete variables each with a finite number of
values. Here we are interested in finding ways of ap-
plying convex BP to models with continuous variables.
For graphical models with continuous variables the LP
relaxation is awkward to define. In the discrete case
the LP relaxation involves a variable for each value of
each discrete variable. If the variables take on real val-
ues then we get continuum-many variables in the LP
relaxation. In the continuous case convex BP involves
messages which are functions of continuous variables.

The first contribution of this paper is a proof that cer-
tain basic properties of convex relaxations of MRFs
apply to the continuous case as well as the discrete
case, provided that the continuous variables are a-
priori bounded and the local potential functions are
continuous. We show that under these conditions the
optimum of the Lagrangian relaxation can be realized
at a setting of the dual variables to continuous (as op-
posed to arbitrary) functions. Furthermore, a setting
of the dual variables to continuous functions achieves
an optimal value when the corresponding primal val-
ues are unique (the clique potentials have no ties).
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Our second contribution is an algorithm for computing
the value of the Lagrangian relaxation of the MRF in
the continuous case based on associating the contin-
uous variables with an ever-finer interval grid. While
this algorithm provably converges to the correct value,
it is not practical for relative large problems such as
those that arise in protein folding.

The last contribution is a convex max-product particle
method which, while it is susceptible to local optima,
performs very well in practice. We demonstrate the
effectiveness of our approach in the task of protein
folding and show that our particle method significantly
outperforms particle max-product as well as discrete
convex max-product. We also show that while using
a very simple energy function we perform comparably
to the state-of-the-art (Sali & Blundell, 1993) which
takes into account a larger set of physical constrains
derived from prior knowledge.

2. Related Work

In recent years there has been a large body of work
in message-passing frameworks for cotinuous and dis-
crete variables. The max-product algorithm is known
to solve exactly arbitrary programs on trees (Weiss &
Freeman, 2001). However, as demonstrated in our ex-
periments, when the graph contains cycles it is not
guaranteed to converge and may produce subopti-
mal solutions. Max-product was also successfully ap-
plied to quadratic programs in the context of Gaussian
graphical models (Bickson, 2008). In contrast, we con-
sider arbitrary continuos functions over compact sets.

Non parametric sum-product (Sudderth et al., 2010)
parametrized the messages for arbitrary functions with
mixture of Gaussians. Unfortunately, there are no
guarantees that it can produce optimal solutions as
mixtures of Gaussians cannot accurately represent the
space of possible messages. Particle sum-product (Ih-
ler & McAllester, 2009) replaced the message repre-
sentation with samples, i.e., particles. Particle sum-
TRBP replaced the Bethe entropy with the TRW en-
tropy (Ihler et al., 2009). These approaches differ from
ours in several important aspects: First, our algorithm
is a max-product algorithm instead of sum-product,
as we are motivated by the MAP problem in protein
folding. We believe max-product solvers are a better
choice as they inherently focus on point-mass distri-
butions, thus less information is needed to represent
their states in continuous spaces. Moreover, as our ap-
proach is defined on compact sets, the space we need
to represent the messages is reduced.

Particle max-product was introduced by (Trinh &

McAllester, 2009). Our particle algorithm uses the
convex form of max-product and as demonstrated in
our experiments this difference is very important in
practice as particle max-product is very sensitive in
problems with many degrees of freedom.

This paper is a continuation of a line of work on con-
vex max-product for the MAP assignment problem
(Schlesinger, 1976; Werner, 2007; Sontag & Jaakkola,
2009; Meltzer et al., 2009; Hazan & Shashua, 2010). In
contrast, we constrain our derivation to compact sets
and exploit strong duality to improve the conditions
in the recovery of the optimal solution (see Claim 1).

3. A Review on Convex Max-Product

A graphical model assigns an energy, or equivalently
a probability, for every assignment to the system vari-
ables. These graphical models typically consider two
types of functions: the first are functions over a sin-
gle variable which correspond to the vertices in the
graph, i.e., θi(xi). The second are functions of the
form θα(xα) which are defined over subsets of variables
α ⊂ {1, .., n} and correspond to the graph hyperedges.
In this paper we focus on the MAP estimation prob-
lem, which attempts to find an assignment that max-
imizes the probability, or minimizes the energy, and
consider the setting where the random variables are
either discrete or bounded continuous. Estimating the
MAP can be written as a program of the form:

argmin
x1,...,xn

∑
i∈V

θi(xi) +
∑
α∈E

θα(xα). (1)

Note that these programs are extensively used in learn-
ing and inference. Solving these programs is in gen-
eral computationally challenging: when restricted to
Euclidean spaces only local minimum can be found,
and when restricted to discrete spaces, the program is
NP-hard (Shimony, 1994).

Recent developments introduced message-passing
solvers for graphical models based on maximiz-
ing a lower bound of (1), constructed via a re-
parameterization (Sontag & Jaakkola, 2009; Meltzer
et al., 2009). This lower bound can be derived by
adding and subtracting

∑
α,i∈N(α) λi→α(xi) to the

program in (1), followed by commuting minimization
with summation, namely

inf
x
{

∑
α∈E

θα(xα) +
∑
i∈V

θi(xi) +
∑

α,i∈N(α)

λi→α(xi)−
∑

i,α∈N(i)

λi→α(xi)} ≥

∑
α∈E

inf
xα
{θα(xα) +

∑
i∈N(α)

λi→α(xi)} +
∑
i∈V

inf
xi
{θi(xi)−

∑
α∈N(i)

λi→α(xi)} (2)

This function is concave as it is the pointwise infimum
of linear functions in λi→α. Moreover, iteratively in-
creasing the value of this lower bound is guaranteed to
converge. A family of max-product algorithms, shown
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Algorithm 1 Convex Max-Product:

Set ĉi = ci +
∑
α∈N(i) cα. For every i = 1, ..., n repeat

until convergence: ∀α ∈ N(i), xi:

µα→i(xi) = inf
xα\xi

θα(xα) +
∑

j∈N(α)\i

λj→α(xj)


λi→α(xi) =

cα
ĉi

θi(xi) +
∑

β∈N(i)

µβ→i(xi)

− µα→i(xi)

in Algorithm 1, can be applied to iteratively maximize
the concave program in (2) when the variables are ei-
ther discrete or continuous. These algorithms increase
the lower bound whenever ci, cα > 0, however finding
the best cα, ci is an open problem. This algorithm re-
duces to the max-product algorithm when using the
Bethe entropy, i.e., cα = 1, ci = 1 − |N(i)|, ĉi = 1. In
this case ci < 0, and the algorithm is not guaranteed
to improve the lower bound nor to converge when deal-
ing with graph with cycles. This algorithm is typically
used in the discrete case. In the continuous case, com-
puting the supremum is computationally intractable,
as the θ functions are arbitrary.

4. Convex Max-Product for Discrete
and Bounded Continuous Variables

In this section we first show that the dual optimal so-
lution, for discrete and continuous bounded variables,
can be obtained using continuous functions and derive
the sufficient conditions for optimality, as well as for
recovering the MAP assignment. We then derive an al-
gorithm which we called interval convex max-product,
which maximizes a lower bound of the energy in (2),
which is created by associating each real-value variable
with a finite set of intervals, and then formulating a
discrete problem where for each interval we bound the
best case energy. Finally, we derive an effective parti-
cle convex max-product method, where each variable
is associated with a discrete set of possible values.

4.1. Theoretical Properties

The main problem when using the max-product pro-
gram in (2) is recovering the MAP assignment from
the optimal dual solution. (Weiss et al., 2007) showed
that an optimal solution for a max-product type pro-
gram corresponds to the MAP assignment if the min-
imum arguments x∗i , x

∗
α are consistent. In this work,

we extend (Weiss et al., 2007) and describe for gen-
eral programs with discrete and bounded continuous
variables the conditions under which the max-product

program achieves optimal dual messages, as well as
sufficient conditions for which it can recover the MAP
assignment. In order to derive these conditions we rely
on duality between continuous functions and regular
Borel measures over compact spaces.

We begin by transforming the program in (1) into
a linear program over the continuous functions θi, θα
subject to non-convex constraints, and then derive its
dual. We use the bracket notation 〈θ, δ〉 to denote the
linear function δ over the Banach space of continu-
ous functions θ(x), keeping in mind that both θ and
δ may not be vectors, or come from the same Banach
space. Let Ki be the compact set of xi and let Kα

be the Cartesian product of the compact sets Ki over
i ∈ N(α). The objective in (1) can be described by
the linear function

∑
α〈θα, ·〉+

∑
i〈θi, ·〉. The continu-

ous linear functions over θα, θi are identified with the
set of regular Borel measures over the compact sets
Kα and Ki (Rockafellar, 1974). We use point mass
measures, i.e., probability measures that concentrate
all their weight on a single point, to formulate the pro-
gram in (1) as

min
δi,δα

∑
α

〈θα, δα〉+
∑
i

〈θi, δi〉 (3)

subject to:

δi, δα are point mass probability measures

∀i, xi, α ∈ N(i),

∫
xα\xi

δα(xα) = δi(xi)

Note that we have traded the computational complex-
ity of the objective in (1) with the one of the feasible
set in (3), thus the computational complexity remains
high. As the set of all point mass measures is not con-
vex, this linear program cannot be efficiently solved
in general, e.g., when all compact sets are discrete,
the feasible set consists of zero-one variables and the
program in (3) reduces to an integer linear program.

In the following, we make the program in (3) concave
by constructing its dual. We expect to recover the
MAP solution when the dual optimal solution does
not have a duality gap. Geometrically, the dual vari-
ables are hyperplanes that support the set whose ele-
ments have the form (δ, 〈δ, θ〉), where δ is a measure
of the form (

∫
δα − δi)i,α∈N(i) and 〈δ, θ〉 is the linear

objective in (3). The duality between regular Borel
measures and continuous functions on compact sets
implies that the hyperplanes λi→α are continuous func-
tions. The dual function q(λ) describes the offset of a
(λ, 1)-slope hyperplane that support the set (δ, 〈δ, θ〉),
therefore the dual value is obtained by minimizing the
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Figure 1. Primal and dual objective for sampling sets of different sizes. Picks in the objectives are due to resampling.
Note that in most of the cases for a fix sample set the algorithm converges with no ties as there is no primal dual gap.
More importantly, the different steps in the resampling act as tightening and the primal objective decrease over time.

Lagrangian with respect to point mass distributions:

q(λ) = inf
δi,δα

〈θ, δ〉+
∑

i,α∈N(i)

〈λi→α,
∫
δα − δi〉

 .

Since the point mass measures are concentrated
around a single point in the compact space and the
functions are continuous, this infimum is always at-
tained and the dual function takes the form:

q(λi→α) =
∑
α

min
xα∈Kα

θα(xα) +
∑

i∈N(α)

λi→α(xi)


+
∑
i

min
xi∈Ki

θi(xi)− ∑
α∈N(i)

λi→α(xi)

 (4)

This dual program is an instance of the lower bound
in (2) restricted to compact sets and continuous func-
tions. The main difference is that the strong duality
theorem guarantees that the optimum of the bound
can be achieved when restricted to continuous func-
tions λi→α(xi).

Our goal is to find a dual optimal solution and to use it
in order to recover the MAP assignment for (1). This
cannot be done in all cases: Convex max-product algo-
rithms minimize non-smooth functions, thus it might
converge to a corner which is not dual optimal. More-
over, since the dual program is a concave relaxation of
the MAP program, convex max-product can reach a
dual optimal point which has a duality gap from the
MAP optimum. We now derive optimality conditions,
as well as describe the conditions for which the dual
optimal solution can produce the MAP assignment.

Claim 1 Let X∗i and X∗α be the sets of all optimal

solutions defined as

X∗i = argminxi{θi(xi)−
∑

α∈N(i)

λi→α(xi)}

X∗α = argminxα{θα(xα) +
∑

i∈N(α)

λi→α(xi)}.

If there exist probability measures bα, bi whose sup-
ports are contained in X∗α, X

∗
i and they agree on their

marginals, then the continuous functions λi→α(xi) are
dual optimal. If bα, bi are point mass distribution then
they point towards an optimal MAP assignment. In
particular, if the functions θi(xi)−

∑
α∈N(i) λi→α(xi)

have no ties (i.e., X∗i is a singleton) then x∗1, ..., x
∗
n is

the MAP assignment.

Proof: The first claim follows from the strong dual-
ity theorem for regular Borel measures and continuous
functions on compact sets, cf. Theorem 6 (Rockafel-
lar, 1974). If bα, bi are point mass measures, we set x∗i
to be the point indicated by bi. Assigning x∗1, ..., x

∗
n as

the minimal arguments in the dual objective in (4), we
recover the MAP objective in (1) as the messages can-
cel out. Since the dual lower bounds the primal in (3)
the second claim follows. If θi(xi)−

∑
α∈N(i) λi→α(xi)

has no ties after convergence, then bi is a point mass
distribution. Since bα agree with bi on its marginal
distributions it follows that bα is a point mass distri-
bution, and the third claim follows.

4.2. Interval Convex Max-Product

The second contribution of this paper is an algorithm
that we call interval convex max-product for solving
the dual program in (2). The algorithm associates
each bounded real-valued variable xi with a finite set
Ii of disjoint (possibly open or half open) intervals
whose union covers the (bounded) range of xi. Ini-
titially Ii consists of the single closed interval which
is the entire range of xi. We let x denote an assign-
ment of an interval xi ∈ Ii to each variable xi. We
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let xα be the restriction of x to the variables in hy-
peredge α and write xα ∈ xα to mean that xi ∈ xi
for each i in α. We construct the potential functions
Φi(xi) and Φα(xα) with Φi(xi) ≤ Φ(xi) for xi ∈ xi
and Φα(xα) ≤ Φ(xα) for xα ∈ xα. The potential func-
tions must also have the property that in the limit of
small ε we have that Φi([xi, xi + ε]) approaches Φ(xi).
This can be achieved with interval evaluation of the
potential functions. This defines the discrete MRF
minx

∑
i Φi(xi) +

∑
α Φα(xα). Because the potential

functions have been defined optimistically, the value of
this discrete MRF is a lower bound on the value of the
original continuous MRF. We can use a convex max-
product algorithm to compute the value of the La-
grangian relaxation of this discrete MRF. We can also
recover primal values which, in general, give for each
variable xi a probability distribution over the intervals
in Ii for xi. We then refine the intervals by splitting
each interval which is assigned a nonzero probability,
focusing the interval refinement on promising intervals.
This process of interval refinement results in a series of
discrete MRFs. One can show that for bounded con-
tinuous variables and continuous potential functions
the values of the Lagrangian relaxations of this series
of discrete problems approaches the value of the con-
tinuous Lagrangian relaxation (2). The interval algo-
rithm can also be interpreted as an instance of convex
max-product for the original continuous problem but
where the messages are restricted to be piecewise con-
stant functions on the given set of intervals. While this
algorithm provably converges to the correct value, it
is not practical for real-world applications.

4.3. Particle Convex Max-Product

The third contribution of this paper is an algorithm
that we call particle convex max-product. In particle
methods each variable is associated with a discrete set
of possible values (point values rather than intervals)
(Koller et al., 1999; Ihler & McAllester, 2009). Given
a set of particles, one considers a discrete model where
the particles define the set of possible values for each
variable. Particle convex max-product alternates be-
tween computing the MAP assignment for each vari-
able using convex max-product on the discrete prob-
lem defined by the particles, and re-sampling to get
new particles. This is similar in spirit to particle fil-
ters but with the re-sampling done many times across
the whole network. In particular, we proposed to re-
sample around the sets X∗i defined in Claim 1. This is
summarized in Algorithm 2

Unfortunately, the particle convex max-product is a lo-
cal search method and does not yield a lower bound on
the minimal energy. However, as demonstrated below

Algorithm 2 Particle convex max-product:

Sample finite number of points for the sets X1, ..., Xn.
Repeat until convergence:

1. Run convex max-product on the discrete sets
X1, ..., Xn until convergence.

2. Set X∗i = argminxi{θi(xi) −
∑
α∈N(i) λi→α(xi)}.

Resample Xi around the points in X∗i .

Table 1. Influence of the sample size: When using
larger sample sizes the primal value obtained is better but
the computational complexity increases and the algorithm
is slower to converge (in time). Note however, that it re-
quires much smaller number of iterations.

# sampling points 100 200 1000

sampling iters 315 238 30
total iters 10000 8800 1400
total time 9.16 13.2 16.1
primal 217.72 204.18 180.28

particle convex max-product works very well in prac-
tice, significantly outperforming particle max-product
for the problem of protein folding.

5. Protein structure prediction

Predicting the 3D structure of a protein from a se-
quence of amino acids is one of the grand challenges
in computational biology. Template-based approaches
build the 3D structure of a protein by aligning the
query to a set of templates with known 3D structure.
These approaches have been shown to be very effec-
tive if at least one of the templates is close to the
query structure (Cozzetto et al., 2009). Additionally,
physical constraints such as local spatial constraints
on consecutive residues (e.g. bond lengths and angles
should be valid) as well as predicted contacts between
two amino acids are typically imposed. However, the
problem is hard to solve due to miss-alignments be-
tween the templates and the target proteins as well
as the fact that each template might provide differ-
ent distance constraints for a given amino acid pair.
Most existing template-based approaches use Monte
Carlo simulated annealing to find possible structures
that satisfy most of these constraints (Simons et al.,
1997; Sali & Blundell, 1993).

In this paper we focus on predicting the 3D coordi-
nates of the Cα atoms in the protein backbone and
show that, while only considering a subset of these
constraints, accurate prediction can be performed.
We employ distance constraints extracted from tem-
plate structures and formulate the prediction as a dis-
crete/continuous hybrid optimization problem. More
formally, let x1, ..., xn be variables representing the 3D



Convex Max-Product BP Algorithms and Protein Folding

0 500 1000 1500 2000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

 

 

Our approach

Discrete convex BP

Particle Max product

0 500 1000 1500 2000
0

2000

4000

6000

8000

10000

12000

 

 

Our approach
Discrete convex BP

(GDT-TS score) (Primal Value)

Figure 2. Comparison to other inference approaches
in terms of (left) GDT-TS and (right) primal value. Our
approach outperforms discrete convex max-product. Par-
ticle max product performs very poorly; Its primal value
is omitted since it’s out of range.

coordinates of the Cα atoms of each amino acid in the
query protein, and let D be the number of templates
available for this protein. Template k provides a dis-
tance constraint, dki,j , for the edge connecting nodes i
and j if it covers both nodes, i.e., contains the corre-
sponding amino acids. Let Ti,j ⊆ {1, ..., D} be the set
of all possible choices of template for each pair of vari-
ables, with Ti,j the empty set if there is no template
covering the i-th and j-th node, and let xij ∈ Ti,j be
discrete variables representing these choices.

We can write the protein folding problem as

min
xi∈R3,xij∈Ti,j

∑
i,j

θi,j(xi, xj , xij) +
∑
i

θi,i+1(xi, xi+1) (5)

where θ(xi, xi+1) is defined to avoid the chain-break
of the backbone structure by imposing a virtual bond
length on consecutive atoms, and θi,j(xi, xj , xij) ex-
ploits the templates in the form of distance constraints

θi,j(xi, xj , xij) =
(
‖xi − xj‖ − d

xij
i,j

)2
θi,j(xi, xi+1) = (‖xi − xi+1‖ − β)2

where d
xij
i,j is the pairwise distance extracted from the

xij-th template if the corresponding amino acids are
present in that template. We determined β by the
nature conformation of peptide bonds to be β = 3.8.
Protein folding can be interpreted as an optimization
problem composed of continuous 3D variables xi and
discrete variables xij . The cliques have size three
for the hybrid functions θi,j(xi, xj , xij), and size two
for the functions θi,i+1(xi, xi+1) over the Euclidean
space. Other scoring terms can also be incorporated
but we only consider the distance constraints between
Cα atoms in this work. In the next section we show
that by employing our particle convex max-product
scheme in these hybrid models, the 3D structures of a
wide range of proteins can be accurately predicted.
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Figure 3. Primal objective as a function of time for
different number of points in the resampling. Sampling
with small sample sets is beneficial initially, but it is soon
outperformed by sampling with larger sample sets.

Table 2. Importance of the hybrid representation:
GDT-TS for protein 4icb when using a single template (i.e.,
1j7qa) or multiple templates.

# templates 1 2

MODELLER 48.9 49.2
Our approach 52.8 54.4

6. Experimental Evaluation

We use the dataset of (Simons et al., 1997) as
well as a subset of the recent CASP experiments
(http://predictioncenter.org/) to evaluate the perfor-
mance of our method. The dataset contains 20 pro-
teins with size ranging from 43 to 186 amino acids. For
each protein, one or two templates are identified. The
alignments between query proteins and their templates
are generated by BoostThreader (Peng & Xu, 2010),
a protein threading algorithm. The number of cliques
in the graphical model ranges from 788 to 16833. To
avoid the inherent structure ambiguity, we fix the coor-
dinates of the first four atoms to be the ones of the first
template. To evaluate the distance between the pre-
dicted structure and the native structure (i.e., ground
truth), we first superimpose the prediction and the
native structure using the Kabsch algorithm (Kabsch,
1976). We then measure the quality of the prediction
using the GDT-TS score (Zemla et al., 1999), which
can be computed as the averaged percentage of correct
aligned amino acids under distance cut-offs of 1A, 2A,
4A and 8A. We utilize this score as it is widely used
to evaluate protein folding and it is used CASP.

We compare our approach to MODELLER (Sali &
Blundell, 1993); which achieves state-of-art results in
a wide range of proteins (Eswar et al., 2007). It is
based on Monte Carlo simulated annealing with molec-
ular dynamics applied to optimize the scoring func-
tion from spatial constraints. We also compare our
approach to other MRF inference algorithms, includ-
ing discrete convex max-product (Meltzer et al., 2009;
Hazan & Shashua, 2009) and particle max-product
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(Trinh & McAllester, 2009).

We first demonstrate the behavior of our approach us-
ing 4icb (Calbindin D9k), a protein of size 76 with
2278 distance constraints (i.e., edges in the graph).
This protein has two templates 1j7qa and 2roba found
with fold-level similarity. Fig. 1 shows primal and
dual values as a function of the number of iterations
when resampling with different sample sizes. As ex-
pected when using a large number of samples only a
few resampling iterations are required when compared
with sampling with small sets. However, as shown in
Fig. 3 each iteration is computationally more expen-
sive when the sample size is large. The picks in the
primal and dual objectives in Fig. 1 correspond to the
iteration when the algorithm resamples. Note that in
most cases, our approach converges without ties for
each resampling step as there is no primal-dual gap.
The different steps in the resampling act as tightening
and the primal-dual objectives decrease over time.

Fig. 3 depicts the primal values achieved by our ap-
proach as a function of time for different sample sizes.
Note that the curves are smooth as we only plot the
primal values after convergence of each resampling
iteration. Initially, sampling with small number of
points gets faster to a good solution. However, very
quickly in the optimization, sampling with more points
outperforms sampling with fewer points. This suggest
that a good strategy would be to use a small sam-
ple set to locate the region of interest and then use a
larger set to get the best possible solution. Table 4.3
summarizes the influence of the sample size.

Fig. 2 depicts GDP-TS score as well as primal value
on the 4icb protein as a function of the number of par-
ticles for discrete convex max-product, particle max-
product and our approach. As expected a fixed dis-
cretization is suboptimal when compared to our ap-
proach which uses the dynamics of the algorithm to
decide where to sample. Particle max-product pro-
duces very bad estimates in terms of both the GDT-
TS score and the primal value. Note that its primal
value is not shown in the figure, as its value is much
worse than both discrete convex max-product and our
approach. We believe this is because max-product is
an aggressive solver that converges very fast to a local
solution. Since we do not have a good initialization,
particle max-product produces suboptimal solutions.
In contrast, our approach is more conservative and it
is guaranteed to iteratively improve.

We investigate this behavior in the next experiments.
We first set as labels for each xi the set of 76 op-
timal points obtained by our approach, and apply
max-product on this discrete graphical model. Max-

Table 3. Interval Convex Max-product: Dual value as
a function of the resolution.

# voxels 23 103 153 resampling

dual 0 0 0.28 0.57
running time 48s 22m 58m 60s

product converged to a suboptimal solution of the dis-
crete problem, with primal objective of 442303 and
GDT-TS score of 23.1. This is in contrast to our ap-
proach which finds the optimal and produces a primal
objective of 217.7 and a GDT-TS score of 54.4. In
the second experiment for each xi we make a local
set consisting of x∗i as well as 4 points sampled with a
Gaussian center on x∗i . We only allow each xi from the
corresponding local point set. On this discrete graphi-
cal model, max-product indeed found the original solu-
tion with primal objective of 217.7 and GDT-TS score
of 54.4. This demonstrates that particle max-product
can find the solution when close to the optimal but
suffers when a good initial estimate is not available.

As shown in Table 6 our approach results in more ac-
curate predictions when using a hybrid representation
with multiple templates. Table 3 shows the primal
and dual values for the interval representation as a
function of the number of voxels on a 10-node seg-
ment of the 1ctf protein. As expected, the primal
values of the interval convex max-product approach
lower bound the MAP. When 153 voxels are used, the
interval max-product converges with dual 0.28. Our
particle method achieve a dual of 0.57. The interval
max-product approach is very inefficient and a large
set of voxels is needed to get a non-trivial lower bound.
We believe using voxels of different sizes will improve
efficiency, and we plan to investigate this in the future.

We finally compare our approach to particle max-
product and MODELLER in the full dataset. As
shown in Table 6 our approach outperforms signif-
icantly particle max-product (PBP), and performs
comparably (better in 12 out of 20 proteins) to MOD-
ELLER. We believe this is a very promising result
as MODELLER uses a much larger set of constraints
than our approach, which employs a very simple en-
ergy function based only on distance constraints. We
believe that exploiting the additional prior knowledge
(i.e., physical constraints) that MODELLER utilizes,
our approach will perform even better. Another in-
teresting observation is that our method outperforms
MODELLER in the harder proteins. The reason of
this might be that the parameters of MODELLER are
tuned to solve homology modeling for easy proteins



Convex Max-Product BP Algorithms and Protein Folding

Table 4. Comparison to the baselines on 20 proteins
ranging from 43 to 186 nodes and 788 to 16833 cliques. Our
approach significantly outperforms Particle max product
and performs comparably to MODELLER (Sali & Blun-
dell, 1993), while only using a subset of the constraints.

Protein length #tem MODELLER PBP Ours

T0437 99 1 61.6 32.7 60.9
T0451 133 2 64.3 27.8 67.1
T0464 89 1 42.3 28.7 44.1
T0471 133 2 57.1 31.2 57.9
T0473 68 1 90.4 42.1 88.9
T0522 134 2 94.4 32.4 93.2
T0562 123 1 33.5 25.5 35.7
T0574 126 2 55.1 31.2 57.8
T0579 124 1 42.9 26.8 44.1
T0592 144 2 73.5 25.8 72.3
T0606 123 1 69.5 32.6 69.1
T0610 186 1 69.8 28.7 66.2
T0622 138 2 60.5 30.5 62.5
T0630 132 1 54.4 22.8 56.2
1ctf 68 1 73.1 29.3 74.7
4icb 76 2 49.2 24.6 54.4
2cro 65 1 84.2 36.2 83.6
1fc2 43 1 64.2 27.9 67.8
2gb1 56 1 86.7 40.1 87.0
1enh 54 1 88.2 43.0 87.9

(Sali & Blundell, 1993).

7. Conclusion and Future Work

We have investigated convex belief propagation algo-
rithms for Markov random fields (MRFs) with contin-
uous variables. We have presented a theorem general-
izing properties of the discrete case to the continuous
case. We have derived an algorithm for computing
the value of the Lagrangian relaxation of the MRF in
the continuous case based on associating the continu-
ous variables with an ever-finer interval grid. Finally,
we have derived a particle method which uses convex
max-product in re-sampling particles, and shown its
effectiveness on the problem of protein folding.
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