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Abstract

In this paper we propose an approach to jointly infer the
room layout as well as the objects present in the scene. To-
wards this goal, we propose a branch and bound algorithm
which is guaranteed to retrieve the global optimum of the
joint problem. The main difficulty resides in taking into
account occlusion in order to not over-count the evidence.
We introduce a new decomposition method, which general-
izes integral geometry to triangular shapes, and allows us
to bound the different terms in constant time. We exploit
both geometric cues and object detectors as image features
and show large improvements in 2D and 3D object detec-
tion over state-of-the-art deformable part-based models.

1. Introduction
Despite the fact that our world is three-dimensional,

many approaches to object recognition employ sliding win-
dow paradigms and rarely include knowledge about the in-
herent physical constraints. However, endowing computers
with spatial reasoning allows prediction of navigable space,
one of the main goals in robotic vision.

In the past few years, a variety of approaches have been
proposed in order to extract the 3D layout of rooms from
single images [12, 13, 31, 19, 22, 25, 26]. Common to all
these approaches is the use of the Manhattan world prop-
erties of indoor scenes, which assume that the room is
aligned with the three dominant and orthogonal directions,
defined by the vanishing points. As a consequence a simple
parameterization exists, since, given the vanishing points,
only 4 degrees of freedom are needed to represent the lay-
out [12, 31]. By exploiting the inherent decomposition of
additive energy functions, real-time inference was shown to
be possible with this parameterization [25, 26].

Objects, however, populate rooms. The first attempts to
incorporate object reasoning into semantic parsing of in-
door scenes treated objects as clutter, and focused on re-
moving them from the layout estimation [12, 31]. But ob-
jects are more than just clutter. If we could estimate them
reliably, we should be able to better predict the room lay-
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Figure 1. Image with overlayed ground truth (blue, cyan) and our
detection result (red, magenta) as well as the ground truth (GT)
floor plan (top right) and our prediction (Ours) (bottom right).

out. Similarly, if we could estimate the layout we should
be able to better parse the objects. For example, we could
employ the physical constraints inherent to the problem, as
objects are typically fully contained within the room. This
strategy is utilized in a variety of approaches [25, 19, 22],
where object candidates are employed to score the layout.
Alternatively, the layout has been employed to better detect
objects. In [14] and [6], a few candidate layouts are utilized
in order to re-rank 3D object detections.

Despite these numerous efforts, most approaches trade
the complexity of one of the tasks by proposing a small set
of candidates. As a consequence, the space of hypotheses
is not well explored resulting in sub-optimal solutions. Fur-
thermore, most approaches employ generic cuboids which
are typically generated from bottom-up reasoning.

In contrast, in this paper we jointly reason about both
the exponentially many layouts as well as the exponentially
many object locations and sizes. Our approach makes use
of both 2D and 3D object detectors as well as geomet-
ric features, and results in very accurate predictions from
monocular imagery, as shown in Fig. 1. The inherent dif-
ficulty of the joint estimation comes from the fact that we
have to handle occlusion in order to not over-count the ev-
idence. Towards this goal, we propose an algorithm based
on branch and bound, which is guaranteed to give a globally
optimal solution of the joint problem. In order to compute
the bounds in constant time and in order to be able to han-
dle occlusion, we generalize the concept of integral geome-
try [25] to triangular shapes. Furthermore, we also develop
a greedy algorithm, which performs inference efficiently.
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(a) Object + Layout (b) Eobject(x, z) (c) Elayout(x,y, z)

Figure 2. Jointly inferring room layout and 3D object with occlusion reasoning: The parameterization is indicated in (a) while the
object and the layout evidence are illustrated in (b) and (c) respectively.

We demonstrate the effectiveness of our algorithms on
the challenging bedroom data set [13] and show that our
approach results in significant performance gains over the
state-of-the-art in both 2D and 3D object detection mea-
sures. Furthermore, we are able to estimate the free-space
very reliably, enabling navigation applications.

2. Related Work
Most 3D scene understanding approaches for outdoor

scenes produce mainly qualitative results [10, 15, 23].
Some notable exceptions are [7, 1], which rely on short
video sequences or uncalibrated image pairs. While outdoor
scenarios remain fairly unexplored, estimating the 3D lay-
out of indoor scenes has experienced increasing popularity.
This is mainly attributed to the fact that indoor scenes be-
have mostly as ‘Manhattan worlds,’ simplifying the estima-
tion problem. Most monocular approaches approximate the
layout of rooms by 3D cuboids [12, 19, 31, 13, 25, 14, 26].
A notable exception is [20], which estimates the 3D layout
of corridors by sweeping lines.

Early approaches to 3D layout estimation [12, 19] reduce
the complexity of the problem by utilizing a set of candi-
dates. Performance is however limited, as only a small num-
ber of hypotheses is considered. Generative models were
explored in [22], and inference is performed using Markov
Chain Monte Carlo sampling. Wang et al. [31] parameter-
ized the problem using a Markov Random Field with only
four degrees of freedom. While effective, the employed
potentials are high-order involving up to four random vari-
ables. As a consequence they used a very crude discretiza-
tion which limits performance. In [25], the potentials typ-
ically employed in the literature were shown to be decom-
posable into pairwise potentials. As a consequence denser
parameterizations were used resulting in significant perfor-
mance gains. More recently, Schwing and Urtasun [26]
showed that the global optimum of typical layout scoring
functions is obtained by employing a branch and bound ap-
proach. This resulted in provably optimal solutions that are
computed in real time on a single core computer.

A wide variety of 3D object detection approaches make
use of 2D appearance models from multiple viewpoints [24,

30] to obtain a weak form of 3D information [17, 29, 16,
28]. Alternatively, object centered methods utilize paramet-
ric models [8, 2, 4, 27]. Deformable part-based models [5]
have also been adapted to predict 3D cuboids [9, 21, 6, 32,
13]. In this paper we make use of 2D and 3D deformable
part-based models in order to estimate jointly the layout as
well as the objects present in the scene.

Objects and layout were combined in [31, 19, 13], and
used in [11] to predict affordances as well as to investigate
the interaction between humans and objects [3]. While [31]
is more concerned about predicting ‘clutter’ rather than ac-
tual objects, [19] proposes to augment the space of layout
candidates by a set of possible objects that are chosen to
be either present or absent. Since the dimensionality of the
state-space (i.e., the product space of object and layout can-
didates) increases tremendously, a heuristic optimization
with beam search is performed. In [13] the layout prediction
is used to guide a 3D object detector.

Unfortunately, most approaches trade the complexity
of one of the tasks (i.e., object and layout prediction) by
proposing a small set of candidates. As a consequence, the
space of hypotheses is not well explored resulting in sub-
optimal solutions. In contrast, in this paper we propose
a provably exact solution to the joint problem, which rea-
sons about the exponentially many layouts as well as the
exponentially many object locations and sizes. Since the
complexity is at least five orders of magnitude larger than
a standard layout task the problem is much more difficult
to solve. The challenges are two-fold: finding an efficient
parametrization that permits reasonable inference time and
dealing with occlusions which arise from object-layout in-
teractions. Towards this goal we make use of object de-
tectors as well as geometric features and show significant
improvements over state-of-the-art detectors.

3. Approach
We are interested in predicting the layout of the room

as well as the objects present in the scene from monocular
imagery. In this paper we mainly focus on predicting a sin-
gle object, and search over all possible 3D object locations
and sizes. Following existing approaches [14, 13, 19, 25],
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Figure 3. (a) Front face of an object is occluding the floor (blue color in (b)). Decomposition of the occluding area into a larger triangle
in (c) and two triangles to be subtracted (d). Decomposition of the triangle in (c) into two positive parts (e) and (f) and a negative part (g)
all depending on only two angles illustrating the generalization of integral geometry to triangular shapes, i.e., (c) = (e) + (f) - (g).

we constrain the object to be aligned with the main domi-
nant orientations. We advocate for a joint approach, as we
would like to exploit the relationships that exist between the
layout and object prediction tasks. The main challenges to
solve are dealing with the complexity of the search space as
well as handling occlusions properly. Towards this goal, we
propose a branch and bound approach, which is guaranteed
to find the global optimum of the energy representing the
joint problem. We also develop a greedy approach, which
produces accurate estimates very fast.

3.1. Joint layout-object problem

More formally, given an image x, we are interested in
predicting the layout y ∈ Y as well as the object z ∈ Z
present in the scene. As image evidence, we exploit both
top-down (class-specific) features in the form of 2D and 3D
object detectors, as well as bottom-up (class independent)
geometric features. As geometric cues, we employ orienta-
tion maps (OM) [20] and geometric context (GC) [12], as
they were shown to produce impressive results on the lay-
out task [19, 25, 26]. Given edges detected in the image,
OMs estimate a normal orientation for each pixel. Using the
vanishing point configuration we can convert these normals
into wall estimates, resulting in a five-dimensional feature
for each pixel. GCs are six-dimensional features that utilize
classifiers to predict the probability of a pixel being part of
each wall as well as clutter. Additionally, we consider the
3D object detector of [6], which provides us with four val-
ues per pixel representing the likelihood of belonging to one
of the four possible object faces. We also extended the de-
formable part-based model [5] to be supervised in terms of
viewpoint, which makes up for one additional feature that
represents the probability of a pixel belonging to an object.

These are computed via soft-masks estimated from training
data for each component.

We define the energy of a joint configuration as the sum
of layout and object energies. These energies encode how
well the layout and object estimates represent the image ev-
idence. An additional term Epen(x,y, z) makes sure that
objects cannot penetrate walls, and an occam razor term
Eoccam(x, z) encodes the fact that we prefer simple expla-
nations. This is necessary in order to handle rooms that do
not contain objects. We thus have

Etotal(x,y, z) = Elay−occ(x,y, z) + Eobject(x, z)

+Epen(x,y, z) + Eoccam(z).

Note that the energy of the layout depends on the 3D lo-
cation and size of the object. This is due to the fact that
the layout should only explain the image evidence that has
not yet been explained by the object, as the object occludes
the layout (see Fig. 2). These occlusions make the problem
computationally challenging, as the energy depends a priori
on a large set of random variables.

We take advantage of the Manhattan world assumption,
and let the object and the room be aligned with the three
main dominant orientations. We thus first compute vanish-
ing points (VP), and perform joint inference over the re-
maining degrees of freedom. Hedau et al. [12] and Wang et
al. [31] showed that given the VPs only 4 degrees of free-
dom are necessary to represent the layout, consisting of four
rays originating from two distinct vanishing points. In the
case of an object, given the VPs, only 5 degrees of free-
dom are necessary, consisting of three rays originating from
one VP and two rays from another. We refer the reader to
Fig. 2(a) for an illustration of the parameterization. We thus
define y ∈ Y and z ∈ Z to be product spaces with four



and five factors respectively. We now describe the different
terms in the energy.

Object Energy: We define an additive energy which de-
composes over the faces of the object, summing the evi-
dence inside each face as illustrated in Fig. 2(b), i.e.,

Eobject(x, z) =

4∑
γ=1

Eobject,γ(x, z)=

4∑
γ=1

w>obj,γφobj,γ(x, z).

Assuming that the object is on the floor, there are only 4
possible faces γ that can be visible (i.e., top, front, left,
right). Furthermore, at a given time only a maximum of
three faces are actually visible. We define the features for
each face to be weighted counts of image cues inside that
face, as this will allow us to compute bounds in constant
time.

Layout Energy: The layout energy is defined as

Elay−occ(x,y, z) = Elayout(x,y)− Eocc(x,y, z),

where the last term discounts the image evidence which is
already explained by the object, i.e., the pixels for each lay-
out face that are occluded by the object (see Fig. 2(c)). We
define features for each face α of the layout and object oc-
clusion as weighted counts

Elayout(x,y) =

5∑
α=1

w>lay,αφlay,α(x,y),

Eocc(x,y, z) =

5∑
α=1

w>lay,α

(
4∑

γ=1

φocc,α,γ(x,y, z)

)
.

Note that we have shared the weights wlay,α between
Elayout(x,y) and Eocc(x,y, z) to properly represent oc-
clusions. Fig. 3 provides the details for the case of α repre-
senting the floor and γ denoting the front face of the object.
The area covered by blue color in Fig. 3(b) represents the
floor pixels occluded by the object’s front face.

Penetration Energy: This energy makes sure that the
object cannot penetrate the walls defined by the layout, i.e.,
it equals 0 whenever the object is inside the layout and is
+∞ in the case of penetration.

Occam razor: Given an image, we do not know a priori
if there is an object in the scene. To prevent the model to
always put an object, we introduce a fixed penalty for solu-
tions that contain an object. In practice we set the penalty
to be 10% of the layout energy for the best configuration.

(a) Bounding the wall (b) Bounding object top

Figure 4. We bound Elayout(x,y) and Eobject(x, z) by comput-
ing counts over minimal and maximal faces.

3.2. Branch and Bound for exact Inference

During inference we are interested in computing the
MAP estimate of the joint problem defined as

min
y,z

Etotal(x,y, z).

Finding a global minimizer of the layout task, i.e.,
Elayout(x,y), is possible using branch and bound [26]. In
this paper we generalize this approach to solve the joint lay-
out and object problem with an explicit occlusion reasoning.

We now briefly describe the particular branch and bound
algorithm we developed, which is inspired by the object de-
tector of [18]. The algorithm operates on hypothesis sets
A ⊆ Y × Z containing a multiplicity of different object-
layout configurations, and starts with a single interval be-
ing the full hypothesis set. Then, it proceeds iteratively,
where the most promising set on a priority queue is taken
at each iteration. If this set contains multiple hypothesis,
then the set is divided into two disjoint subsets A1 and A2

(i.e., A1 ∩ A2 = ∅ and A = A1 ∪ A2). For each one we
compute a lower-bound and insert the pair of score and set
into the priority queue, ordered by the quality of the bound.
The algorithm terminates when the element on top of the
priority queue consists of a single hypothesis. Alg. 1 de-
picts the branch and bound algorithm more formally. In the
worst case this algorithm investigates an exponential num-
ber of hypotheses, but if the bounds are tight, typically only
a small fraction needs to be considered. In order to return a
global optimum, the bounds have to be valid for all the el-
ements in the sets, and the bounds have to be exact when a
single hypothesis is evaluated. The bounds developed here
satisfy these two properties, and thus we retrieve the global
optimum of the joint problem.

In order to utilize branch and bound, we need to
parametrize sets of hypotheses, and derive bounds which
are both efficient to compute and tight. We param-
eterize sets of hypotheses by intervals of the form
[y1,min, y1,max]× · · · × [z5,min, z5,max], as such a param-
eterization simplifies our bounding functions. To keep the
complexity level reasonable, we discretize the possible an-
gles, having on average 18.4 states per layout variable and
28.1 states per object parameter. The variability in the num-
ber of states is due to the VP locations.



Algorithm 1 branch and bound (BB) inference
put (Ē(A0),A0) into queue and set A = A0 = Y × Z
repeat

split A = A1 ×A2 with A1 ∩ A2 = ∅
put pair (Ē(A1),A1) into queue
put pair (Ē(A2),A2) into queue
retrieve A having lowest score

until |A| = 1

We now need to define valid bounds. As the energy is a
sum of terms, we bound each one separately and compute
the final bound by summing the individual ones. It is easy
to see that this is a valid bound. While bounding the objects
is a straightforward extension of [26], bounding the occlu-
sion term is much more cumbersome. We do not require
to bound the penetration energy as we can simply carve the
space to consider only objects which are contained within
the layout. As far as the occam razor potential is concerned,
we equivalently add to the priority queue the best layout
configuration found in the absence of any object with bound
equal to its energy minus the penalty.

Layout bounds: For the layout, we utilize the lower
bounds of [26], which are obtained by dividing the lay-
out scoring function into two parts, one containing positive
weights and one containing negative weights:

Elayout(x,y) = w+>
lay φ

+
lay(x,y) + w−>lay φ

−
lay(x,y),

where φ+lay(x,y) are φ−lay(x,y) are the concatenation of
features with positive and negative weights respectively.
Lower bounds are then easily estimated by summing the
smallest possible face for the positive features and the
biggest possible face for the negative ones. Note that we
have inverted the bounds with respect to [26] as they maxi-
mize a score (defined as the negative energy) while we min-
imize the energy. The bound for the right layout face is
illustrated in Fig. 4(a), where the leftmost ray is depicted in
green and the rightmost one in red, and the maximally pos-
sible right face area is colored in blue while the minimally
possible right wall is highlighted in green. Computing the
content of maximal and minimal faces depends on the four
intervals for the front face and on three intervals for all other
walls, floor and ceiling. Using integral geometry [25] we
decompose those functions into sums of accumulators that
depend on at most two random variables. This allows com-
putation of bounds in constant time while being memory
efficient as well.

Object bounds: Object faces are amenable to a simi-
lar strategy. We split the energy into negative and positive
components, and bound the counts using the minimally and

Top Side Hull BB

loc
[5] - - 56.12 57.14
[6] 30.61 35.71 53.06 66.33
Sup. DPM - - 61.22 63.27
Ours 35.05 39.18 68.04 74.23
Table 1. Comparison to the state-of-the-art.

maximally possible faces. This is illustrated for the object’s
top face in Fig. 4(b) with green and blue rays denoting the
leftmost and rightmost rays. All object faces naı̈vely depend
on four intervals but, as for the layout bounds, we can utilize
integral geometry [25], and, by decomposing the faces into
sums of pairwise accumulators, we compute the bounds in
constant time being memory efficient.

Occlusion bounds: To effectively compute bounds for
Eocc(x,y, z) we decompose the energy into sums over tri-
angular faces. This is illustrated in Fig. 3 for the case of the
front face of an object occluding the floor. The occlusion is
highlight with blue color in Fig. 3(b). We decompose the
occlusion region, into the sum over three triangular shapes,
i.e., from the red triangle in Fig. 3(c) we subtract the black
and purple triangles in Fig. 3(d). More generally, a fourth
positively counted triangle with its cathetus intersecting at
an existing upper left corner is additionally required. While
we have illustrated this decomposition with an example, all
overlaps between object faces and layout walls are decom-
posed and computed in a similar manner. Furthermore, for
each triangle, we compute the counts inside by again de-
composing the computation into the sum of three accumula-
tors. This is demonstrated in Fig. 3(e) – (g), where the pink
and cyan areas are counted positively while the yellow area
is subtracted, i.e., (c) = (e) + (f) - (g). These accumulators
are pairwise potentials, as each of the highlighted areas de-
pends on only two angles. We then split the potentials into
negative and positive and bound each with either its maxi-
mal or minimal face depending on the sign. This procedure
again provides bounds computable in constant time.

3.3. Improving speed

Carving: Dividing an interval imposes new constraints
that can be used to improve efficiency, e.g., the ray describ-
ing the top edge of the front face is required to be above the
ray describing the bottom edge of that face. To avoid those
intervals we carve out spaces that are physically impossible.

Greedy approach: We derive a greedy strategy that
speeds up computation by reducing the search space. To
this end we first optimize Etotal w.r.t. y ∈ Y while fix-
ing the object z to remain outside the image. Intuitively we
explain the scene without considering objects. In a second
step we fix the previously obtained layout prediction ŷ and
optimizeEtotal w.r.t. z ∈ Z . While this is not guaranteed to
yield a global optimum, our experiments show that it results



Intersection over union Labeling measures
joint greedy joint greedy

Top Side Hull BB Top Side Hull BB 9L 5L 9L 5L
lo

c

Geo 25.51 19.39 48.98 64.29 26.53 24.49 50.00 63.27 26.16 22.00 26.62 22.70
Geo+2D 33.67 27.55 60.20 65.31 33.67 27.55 60.20 65.31 24.34 21.44 24.46 21.45
Geo+3D 37.76 38.78 60.20 71.43 35.71 37.76 60.20 69.39 23.20 20.43 23.95 21.03
Geo+2D+3D 35.05 39.18 68.04 74.23 34.69 38.78 65.31 74.49 22.65 20.30 23.81 21.22

de
t

Geo 36.30 32.59 51.11 54.07 36.30 34.07 49.63 51.11 27.84 23.81 26.95 23.05
Geo+2D 42.22 38.52 62.22 66.67 43.70 40.74 62.96 65.93 25.77 22.94 24.50 21.64
Geo+3D 44.44 43.70 58.52 60.74 42.96 43.70 57.78 60.00 24.45 21.64 24.28 21.37
Geo+2D+3D 42.96 47.41 66.67 69.63 45.19 48.89 65.93 70.37 24.66 21.67 24.57 21.73

Table 2. Importance of the features: note that every feature we add generally improves detection. We refer to OM+GC features via Geo,
the 2D detector via 2D, and the 3D detector via 3D.

Intersection over union Labeling measures
joint greedy joint greedy

Top Side Hull BB Top Side Hull BB 9L 5L 9L 5L

Sp
ar

se lo
c Oracle 9L 79.59 80.61 86.73 88.78 79.59 82.65 86.73 89.80 7.82 6.27 8.22 6.82

Oracle 5L 79.59 79.59 85.71 88.78 76.53 78.57 79.59 85.71 7.68 6.10 10.89 7.75

de
t Oracle 9L 81.48 80.74 85.93 85.93 81.48 82.96 85.93 85.19 10.28 7.51 8.65 6.94

Oracle 5L 80.74 80.00 84.44 85.19 79.26 80.00 80.74 82.96 11.77 6.96 11.94 7.48

D
en

se lo
c Oracle 9L 87.76 86.73 90.82 89.80 87.76 86.73 91.84 90.82 5.79 5.54 4.52 4.37

Oracle 5L 82.65 87.76 88.78 89.80 75.51 80.61 81.63 82.65 5.78 4.60 9.80 6.88

de
t Oracle 9L 85.19 84.44 87.41 85.19 85.19 84.44 88.15 85.93 7.06 6.83 5.04 4.87

Oracle 5L 83.70 88.15 87.41 88.15 76.30 80.74 80.74 80.00 8.24 5.43 10.09 6.63
Table 3. Comparison of F1 scores and labeling error for the sparse and dense parameterization using oracle features.

in performance, similar to the joint model when employing
object detectors. This is expected as those make the two
tasks more independent. In the case of only employing GCs
and OMs, our features contain only 5 labels and are hence
ambiguous (both problems are tightly coupled). Thus, the
greedy approach is significantly worst in this setting.

Parameter Learning: The energy of the joint problem
depends linearly on the parameters w. To learn the weights,
we therefore designed a parallel cutting plane structured
SVM algorithm which exploits multiple machines. Note
that the loss decomposes just like the features.

4. Experimental Evaluation
We perform our experiments on the bedroom data

set [13], which contains 309 labeled images. The data is
split into a training and test set of size 181 and 128 respec-
tively. We employ the vanishing point detector of [12]. We
measure the performance via a pixel-wise error metric that
counts the percentage of pixels that disagree with ground
truth and evaluate on 9-label and 5-label metrics. Whereas
the latter captures the performance on estimating orienta-
tion, irrespective of being part of the layout or the object,
the 9-label metric takes into account this distinction, mak-
ing it significantly harder. To evaluate the object detection
performance we use the F1 measure computed for detec-
tions with intersection over union (IOU) higher than 0.5, as
utilized in Pascal VOC challenge. We report this measure
to detect the top face (Top), all the side faces jointly (Side),
the convex hull of the object as well as a 2D bounding box

(BB). Moreover, we follow [14] and also measure the free-
space being a true 3D error metric.

We perform two tasks. First we look into the problem
of localization where we know about the existence of an
object in the scene, and the goal is to find it in 3D. For the
second task, we performed 3D detection, where we have no
knowledge about whether an object is present. We refer to
these tasks via “loc” and “det” respectively.

Comparison to state-of-the-art: We begin our experi-
mentation by comparing our approach to the 3D detector
of [6] and the deformable part-based model [5]. We utilize
the occam-razor energy only in the “det” case, since we do
not know if the image contains an object. We provide the
results in Tab. 1 and observe that our approach significantly
improves over both baselines in all metrics.

Feature Importance: Tab. 2 shows our results when em-
ploying different types of features. We observe that each
source of information, i.e., geometric features (OM and
GC), 2D and 3D detectors increases performance.

Oracle: To illustrate the best achievable performance of
our approach, we investigate its performance when provid-
ing ground truth features. We do so in two scenarios, by
using 5-label and 9-label features referred to as “Oracle 5L”
and “Oracle 9L” respectively. The former mimics the case
where only geometric features are provided, while the latter
represents the case where one has access to perfect detec-
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Figure 5. Illustration of prediction results (red, magenta) and best found ground truth state (blue, cyan) given vanishing points for joint
object and layout inference overlaying the image. Below each image we provide visible annotation floor plan (gray) and object on the left
while corresponding prediction result on the right. A failure case due to wrong vanishing points is illustrated in bottom right figure.

tions and geometry estimates. Tab. 3 shows that while the
performance of the greedy approach is more or less identical
when providing 9-label information, joint inference outper-
forms the greedy approach in the 5-label case. This is the
same phenomena observed with real features.

Density of the Parameterization: The major failures
of our approach are wrong vanishing points as well as
discretization artifacts. To illustrate the performance gain
when increasing the discretization, we almost double the av-
erage number of states per layout variable from 18.4 to 34.6
and similarly increase the state space for object parameters
from 28.1 for the sparse approach to 52.9. As illustrated in
Tab. 3 for oracle features, the performance increases signifi-
cantly for some of the measures. On real features, however,
we observe almost no gain, which is mainly due to the cap-
tured noise in the features.

Computational Complexity: Tab. 4 shows the average
inference time for both the greedy and joint approach when
employing different types of features. As expected, an in-
creasing amount of features results in slower inference. The
greedy approach is about two orders of magnitude faster for
oracle features and three orders of magnitude faster for real
features. High quality features yield faster inference.

Estimating free space: Following [11, 14] we compute
the average F1 score using IOU ≥ 0.5 as well as the stan-
dard average of our estimation for the floor, the ground face
of the object and the free space in Tab. 5. We observe aver-

joint greedy
Oracle 9L 12.88s 0.07s
Oracle 5L 6.95s 0.07s
Geo 331.43s 0.37s
Geo+2D 230.68s 0.30s
Geo+3D 583.18s 0.43s
Geo+2D+3D 3333.09s 1.58s

Table 4. Average inference time in seconds for the joint and greedy
approaches given different features

Pascal Average
Floor Object Free Floor Object Free

Oracle 9L 89.76 62.22 77.95 77.22 62.83 64.64
Oracle 5L 90.55 60.00 77.95 78.37 60.81 64.88
Geo 63.78 29.63 35.43 57.21 35.07 40.47
Geo+2D 71.65 29.63 39.37 59.24 37.76 42.40
Geo+3D 68.50 37.78 40.94 58.36 40.95 43.33
Geo+2D+3D 70.63 37.04 38.89 58.64 41.92 42.05

Table 5. Computation of average F1 score for intersection over
union of floor, object footprint and free-space for joint inference
with indicated features. We provide both the mean across scores
as well as PASCAL score with only counts the scores with IOU
more than 0.5 as true positives.

age free-space estimation accuracies of up to 40%, improv-
ing over [14].

Qualitative results: Qualitative results are illustrated in
Fig. 5. In general, our approach does a great job at estimat-
ing both the layout and object. The main failures illustrated
in the bottom right corner of Fig. 5 are due to VPs not being
detected properly and noisy features.



Figure 6. After jointly inferring layout (magenta) and object (red),
we re-apply the object part to obtain a second object (green).

Estimating multiple objects: We extend our approach to
detect multiple objects in a greedy fashion, by fixing the
layout and the previously detected object and solving for
the next object. Fig. 6 shows examples, with the layout, the
first and second objects depicted in magenta, red and green.

5. Conclusion
We have presented an approach to joint 3D room layout

and object reasoning that predicts the optimal box within a
box. To this end we carefully modeled the occlusions and
phrased the problem as a structured prediction task that per-
mits exact inference via a novel branch and bound algo-
rithm. The main technical difficulty resides in the develop-
ment of occlusion bounds which require the generalization
of integral geometry to triangular shapes. We plan to ex-
tend our algorithms to utilize depth sensors when RGB-D
imagery is available.
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