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Abstract

We propose an approach to gait analysis that relies on
fitting 3—-D temporal motion models to synchronized video
sequences. These models allow us not only to track but also
to recover motion parameters that can be used to recognize
people and characterize their style.

Because our method is robust to occlusions and insen-
sitive to changes in direction of motion, our proposed ap-
proach has the potential to overcome some of the main lim-
itations of current gait analysis methods. This is an impor-
tant step towards taking biometrics out of the laboratory
and into the real world.

1. Introduction

Most current gait analysis algorithms rely on
appearance-based methods that do not explicitly take
into account the 3-D nature of the motion. In this work,
we propose an approach that relies on robust 3-D track-
ing and has the potential to overcome the limitations
of appearance-based approaches, such as their sensitiv-
ity to occlusions and changes in the direction of mo-
tion.

In previous work [18], we have shown that using mo-
tion models based on Principal Component Analysis (PCA)
and inspired by those proposed in [15, 16] lets us formu-
late the tracking problem as one of minimizing differen-
tiable objective functions whose state variables are the PCA
weights. Furthermore, the differential structure of these ob-
jective functions is rich enough to take advantage of stan-
dard deterministic optimization methods, whose computa-
tional requirements are much smaller than those of prob-
abilistic ones and can nevertheless yield very good results
even in difficult situations.

In this paper, we will argue that, in addition to allow-
ing us to track the motion, these methods can also be used
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to recognize people and characterize their motion. More
specifically, we first used an optical motion capture sys-
tem and a treadmill to build a database of walking mo-
tions for a few subjects. We then captured both the motion
of these subjects and of other people by running our PCA-
based tracker [18] on low-resolution stereo data. The result-
ing weights can then be used to recognize the people in the
database and to characterize the motion of those who are
not.

Because our tracking algorithm is robust to occlusions
and insensitive to changes in direction of motion, our pro-
posed approach has the potential to overcome some of the
main limitations of current gait analysis methods. This is
important if biometrics, defined as measures taken from
living people and used for identity verification or recogni-
tion [3], are to move out of the laboratory and into the real
world.

In the remainder of this paper, we first discuss related
work and introduce our PCA-based motion tracking algo-
rithm. We then show how its output can be used to recog-
nize and characterize different walking motions and con-
clude with some perspectives for future work.

2. Reated Work

Current approaches to gait identification can be classi-
fied into two broad categories: Appearance-based ones that
deal directly with image statistics and Model-based ones
that first fit a model to the image data and then analyze the
variation of its parameters.

Because model-fitting tends to be difficult where im-
ages are concerned, the majority of published approaches
fall into the first category. Some rely on first processing
each frame independently and then using PCA [12, 8] or
HMM [7, 11] to model the transitions from one frame to the
next. Other methods exploit the spatio-temporal statistics of
the image stream. An early example of this approach can
be found in the work by Niyogi [13]. More recently, meth-
ods that rely on dense optical flow [10] or self similarity
plots computed via correlation of pairs of images [1, 4] have
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Figure 1. Models. (a) Volumetric primitives at-
tached to an articulated skeleton. (b) Percent-
age of the database that can be generated
with a given number of eigenvectors.

been proposed. The main drawback of these appearance-
based approaches is that they are usually designed only for
a specific viewpoint, usually fronto-parallel. Furthermore
guaranteeing robustness against clothing and illumination
changes remains difficult even though much effort has been
expanded to this end, for example by processing silhouettes
or binary masks instead of the image itself [1].

Among model-based methods, is the one by Yam et
al. [19] in which leg motion is extracted by temporal tem-
plate matching with a model defined by forced coupled os-
cillators. Individual signatures are them derived by Fourier
analysis. Another good recent example of model-based gait
recognition can be found in [3]. The gait signature is ex-
tracted by using Fourier series to describe the motion of
the upper leg and by applying temporal evidence gathering
techniques to extract the moving model from a sequence
of images. However these techniques are still 2-D, which
means that a near fronto-parallel view is assumed. The ap-
proach we propose can be viewed as an extension of this
philosophy to full 3-D modeling by replacing the Fourier
analysis by the fitting of our PCA-based motion models.

3. Tracking

In this section we introduce our body and motion models
and show how we can use them for tracking.

3.1. Models

In previous work [14] we have developed the body-
model depicted by Figure 1(a) that is composed of implicit
surfaces attached to an articulated skeleton. Each primitive
defines a field function and the skin is taken to be a level
set of the sum of these fields. Defining surfaces in this man-
ner lets us define a distance function of data points to the
model that is easy to evaluate and differentiable.

To build motion models, we have used a Vicont™ opti-
cal motion capture system to capture 4 people, 2 men and
2 women walking at 9 different speeds ranging from 3 to 7
km/h by increments of 0.5km/h on a treadmill. The data was
segmented into cycles and sampled at regular time intervals
using quaternion spherical interpolation so that each exam-
ple can be treated as N = 33 samples of a motion starting at
normalized time 0 and ending at normalized time 1. An ex-
ample is then represented by an angular motion vector © of
dimension N « NDofs, where NDofs = 84 is the num-
ber of angular degrees of freedom in the body model. © is
of the form

®:[0H17“'70HN] 70S,U'i<]- ’ (1)

where the 8,,; represent the joint angles at normalized time
wi. The posture at a given time 0 < pug < 1 is estimated
by interpolating the values of the §,,; corresponding to pos-
tures immediately before and after p;.

This process produces M = 144 angular motion vectors.
We form their covariance matrix and compute its eigenvec-
tors ©1<;<ur by Singular Value Decomposition. Assuming
our set of examples to be representative, a @ motion vector
can be approximated as a weighted sum of the mean mo-
tion ©¢ and the O;:
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where the «; are scalar coefficients that characterize the mo-
tion and m < M controls the percentage of the database
that can be represented in this manner. This percentage is
defined as
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where the A; are the eigenvalues corresponding to the ©;
eigenvectors. It is depicted by Figure 1 (b) as a function of
m. The posture at time y; is computed by interpolating the
components of the © vector of Eq. 2 as discussed above.
Figure 2 depicts the first three a; coefficients of the origi-
nal motion vectors when expressed in terms of the ©; eigen-
vectors. Note that the vectors corresponding to specific sub-
jects tend to cluster. Figure 3 depicts the behavior of the
fourth component which varies almost monotonically with
walking speed. We will take advantage of these facts for
recognition and characterization purposes in Section 4.

3.2. Deterministic tracking

Most recent tracking techniques rely on probabilistic
methods to increase robustness [9, 6, 5, 2, 17]. While ef-
fective, such approaches require large amount of compu-
tations. In previous work [18], we developed an approach
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Figure 2. Clustering behavior of the first «; coefficients of Eq. 2 for the motion vectors measured for
4 subjects walking at speeds ranging from 3 to 7km/h. (a) First two coefficients that form one cluster
per subject. (b) First three coefficients that also form compact clusters used for recognition.

that relies on the motion models of Section 3.1 to formu-
late the tracking problem as the one of minimizing differen-
tiable objective functions. The structure of these objective
functions is rich enough to take advantage of standard de-
terministic optimization methods and, thus, reduce the com-
putational costs.

Given a T'-frame video sequence in which the motion
of a subject remains relatively steady such as those of Fig-
ures 4 and 5, the entire motion can be completely described
by the angular motion vector of Eq. 2 and, for each frame, a
six-dimensional vector G that defines the position and ori-
entation of the root body model node with respect to an ab-
solute referential. We therefore take the state vector ¢ to be

¢=[G17...,GT,M1,...,/J,T,O[h...,am] y (4)

where the p; are the normalized times assigned to each
frame and which must also be treated as optimization vari-
ables.

In the sequences of Figures 4 and 5, the images we show
were acquired using one of three synchronized cameras and
used to compute clouds of 3—D points via correlation-based
stereo. The ¢ state vector, and thus the motion, were recov-
ered by minimizing in the least-squares sense the distance
of the body model to those clouds in all frames simultane-
ously. The «; recovered by the system define the style of
the motion, and this information will be used in the follow-
ing section for characterization and recognition purposes.

4. Characterization and Recognition

The motion style is encoded by the «; coefficients of
Eq. 2, since they measure the deviation from the average
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Figure 3. The fourth «; coefficient evolve
allmost monotonically with the speed. The
dashed lines represent the values obtained
with the tracking. The upper two lines corre-
sponds to the two women of Fig. 4, while the
lower corresponds to the male of Fig. 5.

motion along orthogonal directions. The tracker can thus be
used for motion characterization and recognition since these
coefficients are its output.

Our experiments show that, for characterization pur-
poses, using the first six coefficients that represent 90% of
the database, as shown in Figure 1(b), appears to be opti-
mal. Using more coefficients results in overfitting while us-
ing fewer yields a system that is not flexible enough to pro-
duce good tracking results and tends to change the value of
the first components to compensate for missing ones, which
results in a poor classification.



Figure 4. Using low resolution stereo data to track the two women whose motion was recorded in
the database. The recovered skeleton poses are overlaid in white.

Figure 5. Tracking the walking motion of a man whose motion was not recorded in the database.

We use the three examples of Figures 4 and 5 to high-
light our system’s behavior. The sequences were captured
using a 640x480 Digiclopst™ triplet of cameras operating
at 14Hz. Because we had to ensure that the subjects would
be visible in the whole sequence without moving the cam-
eras, they only occupy relatively small parts of the images,
which results in very low resolution stereo data. Figure 4
depicts the tracking results for the two women whose mo-
tion has been recorded in the database. The motion of their
legs is accurately captured. The arms, however, have not

been tracked as precisely for two main reasons: Arm mo-
tion on a treadmill is quite different from what can be ob-
served when walking naturally and the errors in the noisy
cloud of 3D points we use for fitting are sometimes big-
ger than the distance from the arms to the torso. In [18]
we have shown that these results can be improved by drop-
ping the steady motion assumption and allowing the «; to
vary. These errors, however, do not appear to affect recog-
nition as will be shown below.

Figure 5 depicts our tracking results for a man whose



motion was not recorded in the database. This example
shows the ability of our system to handle motions that are
not originally part of the database.

4.1. Recognition

Recall that, as shown in Figure 2(b), the first three «;; co-
efficients of the motion vectors in the database tend to form
separate clusters for each subject. Our approach handles the
motion sequences as a whole as opposed to a set of individ-
ual poses, thus making the clusters compact enough for di-
rect classification. A given pose can be common to more
than one subject, but not the whole movement.

As the clusters are sufficiently far apart, a simple k-
means algorithm can be used to compute them and yield
the result depicted by the outlines of Figure 2(b). We take
the distance measure between two sets of coefficients a!
and a? to be
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where the A; are the eigenvalues corresponding to the eigen-
vectors of Eg. 1. This distance logically gives more weight
to the first coefficients, which are the most descriptive ones
as shown in Figure 1(b). In fact, it can be easily shown to be
equivalent to a Mahalanobis distance

d(al,a2) — [(041 _ a2)TEfl(a1 _ O[2)]1/2 (6)

where Y. is the covariance matrix of the database motion
vectors.

Figure 6 depicts the first two «a; coefficients computed
for each one of the three examples of Figures 4 and 5 as cir-
cles drawn on the plot of Figure 2(b). For both women, the
first two recovered coefficients fall in the center of the clus-
ter formed by their recorded motion vectors. Higher order
coefficients exhibit small variations that can be ascribed to
the fact that walking on a treadmill changes the style. For
the man whose motion was not recorded in the database,
the recovered coefficients fall within the cluster that corre-
sponds to the men whose motion was recorded and whose
weight and height are closest. The third coefficient, how-
ever, can be used to differentiate the two men.

These experimental observations lead us to formulate the
following hypothesis that will have to be validated using a
much larger database: The first few coefficients encode both
general sociological and physiological characteristics such
as weight, height, gender, or age and the remaining ones can
be used to distinguish among people who share these char-
acteristics.

4.2. Characterization

For the man of Figure 5, the recorded motion that is clos-
est in terms of the distance of Eq. 5 to the one our system re-
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Figure 6. Recognition from stereo data. Black
circles represent tracking result for database
and non-database subjects.

Figure 7. Tracking a running motion.

covers corresponds to a slow 3km/h walk, which is correct
in this case. This makes sense since, as shown in Figure 3,
the fourth «; coefficient encodes speed. On this figure, we
also represent the respective speeds of the two women of
Figure 4 as horizontal dashed lines. The system yields a
higher speed for the woman shown in the lower half of the
figure than for the other one, which can be simply confirmed
by counting the number of frames it takes each one of them
to cross the room.

In previous work [18] depicted by Figure 7, we showed
that our tracking approach can also handle running motions
and transitions from walking to running. This was done by
replacing the walking database of Figure 4 by one that en-
compasses both activities and is depicted by Figure 8. In
this more complete database, the first coefficients of vectors
corresponding to walking motions are more compressed
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Figure 8. First two «; components for a
database composed of walking and running.
They tend to cluster by subject and activity.

but still form separate clusters. Similarly, the vectors cor-
responding to running still cluster by identity even though
these clusters are much more elongated, reflecting the fact
that there is more variation in running style and that the
database should be expanded. However, this gives us confi-
dence that the methodology we propose should extend nat-
urally to identity and activity recognition.

5. Conclusion

We have presented an approach to motion characteriza-
tion and recognition that is robust to view-point, clothing
and illumination changes as well as to occlusions because it
relies on extracting style parameters of the 3—-D motion over
a whole sequence and using them to perform the classifica-
tion. Using low-quality stereo data, we have demonstrated
that these parameters can indeed be recovered and used. Of
course, using higher quality data could only improve the re-
sults.

Currently, the major limitation comes from the small size
of the database we use, which we will endeavor to grow.
This may result in clusters corresponding to different people
or styles in PCA space becoming more difficult to separate.
If such is the case, we plan to investigate the use of more so-
phisticated classification techniques to segment those clus-
ters and allow us to handle potentially many classes that can
exhibit huge variability.
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