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Abstract

We explore an approach to 3D people tracking with learned motion models and deter-
ministic optimization. The tracking problem is formulated as the minimization of a differ-
entiable criterion whose differential structure is rich enough for optimization to be accom-
plished via hill-climbing. This avoids the computational expense of Monte Carlo methods,
while yielding good results under challenging conditions. To demonstrate the generality
of the approach we show that we can learn and track cyclic motions such as walking and
running, as well as acyclic motions such as a golf swing. We also show results from both
monocular and multi-camera tracking. Finally, we provide results with a motion model
learned from multiple activities, and show how this models might be used for recognition.

Key words: Tracking, Motion Models, Optimization
PACS:

1 Introduction

Prior models of pose and motion play a central role in 3D monocular people track-
ing, mitigating problems caused by ambiguities, occlusions, and image measure-
ment noise. While powerful models of 3D human pose are emerging, there has
been comparatively little work on motion models [1–4]. Most state-of-the-art ap-
proaches rely on simple Markov models that do not capture the complexities of
? This work was supported in part by the Swiss National Science Foundation, NSERC
Canada and the Canadian Institute of Advanced Research
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human dynamics. This often produces a more challenging inference problem for
which Monte Carlo techniques (e.g., particle filters) are often used to cope with
ambiguities and local minima [5–9]. Most such methods suffer computationally as
the number of degrees of freedom in the model increases.

In this paper, we use activity-specific motion models to help overcome this prob-
lem. We show that, while complex non-linear methods are required to learn pose
models, one can use simple algorithms such as PCA to learn effective motion mod-
els, both for cyclic motions such as walking and running, and acyclic motions such
as a golf swing. With such motion models we formulate and solve the tracking
problem in terms of continuous objective functions whose differential structure is
rich enough to take advantage of standard optimization methods. This is significant
because the computational requirements of these methods are typically less than
those of Monte Carlo methods. This is demonstrated here with two tracking formu-
lations, one for monocular people tracking, and one for multiview people tracking.
Finally, with these subspace motion models we also show that one can perform
motion-based recognition of individuals and activities.

2 Related Work

Modeling and tracking the 3D human body from video is of great interest, as at-
tested by recent surveys [10,11], yet existing approaches remain brittle. The causes
of the main problems include joint reflection ambiguities, occlusion, cluttered back-
grounds, non-rigidity of tissue and clothing, complex and rapid motions, and poor
image resolution. People tracking is comparatively simpler if multiple calibrated
cameras can be used simultaneously. Techniques such as space carving [12,13], 3D
voxel extraction from silhouettes [14], fitting to silhouette and stereo data [15–17],
and skeleton-based techniques [18,19] have been used with some success. If cam-
era motion and background scenes are controlled, so that body silhousttes are easy
to extract, these techniques can be very effective. Nevertheless, in natural scenes,
with monocular video and cluttered backgrounds with significant depth variation,
the problem remains very challenging.

Recent approaches to people tracking can be viewed in terms of those that de-
tect and those that track. Detection, involving pose recognition from individual
frames, has become increasingly popular in recent research [20–24] but requires
large numbers of training poses to be effective. Tracking involves pose inference
at one time instant given state information (e.g., pose) from previous time instants.
Tracking often fails as errors accumulate through time, producing poor predictions
and hence divergence. Often this can be mitigated with the use of sophisticated sta-
tistical techniques for a more effective search [7,5,25,6,9], or by using strong prior
motion models [26,27,8].

2



Detection and tracking are complementary in many respects. Tracking takes advan-
tage of temporal continuity and the smoothness of human motions to accumulate
information through time, while detection techniques are likely to be useful for
initialization of tracking and search. With suitable dynamical models, tracking has
the added advantage of providing parameter estimates that may be directly relevant
for subsequent recognition tasks with applications to sport training, physiotherapy
or clinical diagnostics. In this paper we present a tracking approach in which sim-
ple detection techniques are used to find key postures and thereby provide rough
initialization for tracking.

Dynamical models may be generic or activity specific. Many researchers adopt
generic models that encourage smoothness while obeying kinematic joint limits
[5,28,29,9] . Such models are often expressed in terms of first- or second-order
Markov models. Activity-specific models more strongly constrain 3D tracking and
help resolve potential ambiguities, but at the cost of having to infer the class of
motion, and to learn the models.

The most common approach to learning activity-specific models of motion or pose
has been to use optical motion capture data from one or more people performing
one or more activities. Given the high-dimensionality of the data it is natural to
look for low-dimensional embeddings of the data (e.g., [30]). To learn pose models
a key problem concerns the highly nonlinear space of human poses. Accordingly,
methods for nonlinear dimensionality reduction have been popular [21,31–34].

Instead of modeling the pose space, one might directly model the space of hu-
man motions. Linear subspace models have been used to model human motion,
from which realistic computer animations have been produced [35–38]. Subspace
models learned from multiple people performing the same activity have been used
successfully for 3D people tracking [27,8,39]. For the restricted class of cyclic mo-
tions, Ormoneit et al. [27] developed an automated procedure for aligning training
data as a precursor to PCA. Troje [40] considers a related class of subspace mod-
els for walking motions in which the temporal variations in pose is expressed in
terms of sinusoidal basis functions. He finds that three harmonics are sufficient for
reliable gender classification from optical motion capture data.

3 Motion Models

This paper extends the use of linear subspace methods for 3D people tracking. In
this section we describe the protocol we use to learn cyclic and acyclic motions,
and then discuss the important properties of the models. We show how they tend
to cluster similar motions, and that the linear embedding tends to produce convex
models. These properties are important for the generalization to motions outside of
the training set, to facilitate tracking with continuous optimization, and for motion-
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based recognition.

We represent the human body as the set of volumetric primitives attached to an
articulated 3–D skeleton, like those depicted in Figs. 12 and 14. A pose is given
by the position and orientation of its root node, defined at the sacroiliac, and a
set of joint angles. More formally, let D denote the number of joint angles in the
skeletal model. A pose at time t is then given by a vector of joint angles, denoted
ψt = [θ1, · · · , θD]T , along with the global position and orientation of the root,
denoted gt ∈ R6.

A motion can be viewed as a time-varying pose. While pose varies continuously
with time, we assume a discrete representation in which pose is sampled at N
distinct time instants. In this way, a motion is just a sequence of N discrete poses:

Ψ = [ψT
1 , · · · , ψ

T
N ]T ∈ RD N , (1)

G = [gT
1 , · · · ,g

T
N ]T ∈ R6 N , (2)

Naturally, we assume that the temporal sampling rate is sufficicently high that we
can interpolate the continuous pose signal.

A given motion can occur at different speeds. In order to acheive some speed in-
dependence we encode the motion for a canonical speed, from which time warping
can be used to create other speeds. For the canonical motion representation we let
the pose vary as a function of a phase parameter µ that is defined to be 0 at the
begining of the motion and 1 at the end of the motion. For periodic motions defined
on a circle, like walking, the phase is periodic. The canonical motion is then repre-
sented with a sequence of N poses, indexed by the phase of the motion. For frame
n ∈ [1, N ], the discrete phase µn ∈ [0, 1] is simply

µn =
n− 1

N − 1
. (3)

3.1 PCA Motion Model

We learn motion models from optical motion capture data comprising one or more
people performing the same activity several times. Because different people per-
form the same activity with some variability in speed, we first dynamically time-
warp and re-sample each training sample. This produces training motions with the
same number of samples, and with similar poses aligned (to obtain the canonical
reference frame). To this end, we first manually identify a small number of key pos-
tures specific to each motion type. We then linearly time warp the motions so that
the key postures are temporally aligned. The resulting motions are then re-sampled
at regular time intervals using quaternion spherical interpolation [41] to produce
the training poses {ψj}

N
j=1.
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Given a training set of M such motions, denoted, {Ψj}
M
j=1, we use Principal Com-

ponent Analysis to find a low-dimensional basis with which we can effectively
model the motion. In particular, the model approximates motions in the training
set with a linear combination of the mean motion Θ0 and a set of eigen-motions
{Θi}

m
i=1 :

Ψ ≈ Θ0 +
m
∑

i=1

αiΘi . (4)

The scalar coefficients, {αi}, characterize the motion, and m ≤ M controls the
fraction of the total variance of the training data that is captured by the subspace,
denoted by Q(m):

Q(m) =

∑m
i=1 λi

∑M
i=1 λi

, (5)

where λi are the eigenvalues of the data covariance matrix, ordered such that λi ≥
λi+1. In what follows we typically choose m so that Q(m) > 0.9.

A pose is then defined as a function of the scalar coefficients, {αi}, and a phase
value, µ, i.e.

ψ(µ, α1, · · · , αm) ≈ Θ0(µ) +
m
∑

i=1

αiΘi(µ) . (6)

Note than now Θi(µ) are eigen-poses, and Θ0(µ) is the mean pose for that particular
phase.

3.2 Cyclic motions

We first consider models for walking and running. We used a Vicontm optical mo-
tion capture system to measure the motions of two men and two women on a tread-
mill:

• walking at 9 speeds ranging from 3 to 7 km/h, by increments of 0.5 km/h, for a
total of 144 motions;

• running at 7 speeds ranging from 6 to 12 km/h, by increments of 1.0 km/h, for a
total of 112 motions.

The body model had D = 84 degrees of freedom. While one might also wish to
include global translational or orientational velocities in the training data, these
were not available with the treadmill data, so we restricted ourselves to temporal
models of the joint angles. The start and end of each gait cycle were manually
identified. The data were thereby broken into individual cycles, and normalized so
that each gait cycle was represented with N = 33 pose samples. Four cycles of
walking and running at each speed were used to capture the natural variability of
motion from one gait cycle to the next for each person.
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Fig. 1. Motion models. First two PCA components for (a) 4 different captures of 4 subjects
walking at speeds varying from 3 to 7km/h, (b) the same subjects at speeds ranging from
6 to 12km/h, (c) the multi-activity database composed of the walking and running motions
together. The data corresponding to different subjects is shown in different styles. The
solid lines separating clusters have been drawn manually for visualization purposes. (d)
Percentage of the database that can be generated with a given number of eigenvectors for the
walking (dashed red), running(solid green) and the multi-activity databases(dotted blue).

In what follows we learn a motion model for walking and one for running, as well
as multi-activity model for the combined walking and running data. In Fig. 1(d) we
display Q(m) in (5) as a function of the number of eigen-motions for the walking,
running and the combined datasets. We find that in all three cases m = 5 eigen-
motions out of a possible 144 for walking, 112 for running and 256 for the multi-
activity data, capture more than 90% of the total variance. In the experiments below
we show that these motion models are sufficient to generalize to styles that were
not captured in the training data, while eliminating the noise present in the less
significant principal directions.

The first five walking eigen-motions, Θi, for the upper and lower leg rotations in
the sagittal plane are depicted by Fig. 2 as a function of the gait phase µt. One
can see that they are smooth and therefore easily interpolated and differentiated
numerically by finite differences. Fig. 3 illustrates the individual contributions of
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Fig. 2. Walking motion eigenvectors (left) and their derivatives (right). The first one ap-
pears in red, green the second, blue the third, cian the fourth and magenta for the last one.
Eigenvectors and their derivatives, ∂Θij

∂µt
, of the flexion-extension in the sagittal plane of the

upper leg on the top and flexion-extension in the sagittal plane of the lower leg on the right.

the first five eigen-motions. The first row shows the mean motion alone. In each
subsequent row we show a linear combination of the mean motion and the ith eigen-
motion, for i = 1...5. Each row therefore illustrates the influence of a different
eigen-motion. While one cannot expect the individual eigen-motions to have any
particular semantic meaning, their behaviour provides some intuitions about the
nature of the underlying model.

3.3 Golf Swing

We use the same approach to learn the swing of a golf club. Toward this end, we
used the M = 9 golf swings of the CMU database [42]. The corresponding body
model hasD = 72 degrees of freedom. We identified the 4 key postures depicted in
Fig. 4, and piecewise linearly time-warped the swings so that the same key postures
are temporally aligned. We then sampled the warped motions to obtain motions
vectors with N = 200 poses. The sampling rate here is higher than the one used
for walking and running since a golf swing contains fast speeds and large acceler-
ations. Given the small number of available training motions we only used m = 4
coefficients, capturing more than 90% of the total variance.

3.4 Motion Clustering

Troje [40] showed that with effective motion models one can perform interesting
motion-based recognition. In particular one can classify gender and other individual
attributes including emotional states. In this context it is of interest to note that the
subspace motion models learned here exhibit good inter-subject and inter-activity
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Fig. 3. The top row shows equispaced poses of the mean walk. The next 5 rows illustrate
the influence of the first 5 egien-motions. The second row shows a linear combination of
the mean walk and the first eigen-motion, Θ0 + 0.7Θ1. Similarly, the third row depicts
Θ0 + 0.7Θ2 to show the influence of the second eigen-motion, and so on for the remaining
3 rows.

Fig. 4. Key postures for the golf swing motion capture database that are used to align the
training data: Beginning of upswing, end of upswing, ball hit, and end of downswing. The
body model is represented as volumetric primitives attached to an articulated skeleton.
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Fig. 5. Poor clustering in a pose subspace. The solid lines that delimited clusters have
been manually done for visualization purposes. (a) Projection of training poses onto the
first two eigen-directions of the pose subspace. (b) Projection of training poses onto the
third and fourth eigen-directions of the pose subspace. While in the motion motion there is
strong inter-subject separation, with the pose model in this figure, there is no inter-subject
separation.

separation, suggesting that these models may be useful for recognition. For exam-
ple, Fig. 1a shows the walking training motions, at all speeds, projected onto the
first two eigen-motions of the walking model. Similarly, Fig. 1b shows the running
motions, at all speeds, projected onto the first two eigen-motions of the running
model. The closed curves in these figures were drawn manually to help illustrate
the large inter-subject separation. One can see that the intra-subject variation in
both models is much smaller than the inter-subject variation.

The motion model learned from the combination of walking and running training
data shows large inter-activity separation. Fig. 1c shows the projection of the train-
ing data onto the first two eigen-motions of the combined walking and running
model. One can see that the two activities are easily separated in this subspace. The
walking components appear on the left of the plot and form a relatively dense set.
By contrast, the running components are sparser because inter-subject variation is
larger, indicating that more training examples are required for a satisfactory model.

While the motion models exhibit this inter-subject and inter-activity variation, we
would not expect pure pose models to exhibit similar structure. For example to
demonstrate this we also learned a pose model by applying PCA on individual
poses in the same dataset. Fig. 5 shows poses from the walking data projected
onto the first four eigen-directions of the subspace model learned from poses in
the walking motions. It is clear that there is no inter-subject separation in the pose
model.
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Fig. 6. Sampling the single activity databases. In each plot we show the most probable
sample that is at the origin, and a sample with very low probability (far from the origin) for
the (a) walking, (b) running, and (c) golfing databases. Their respective motions are shown
in Fig. 7. The dashed curves are one standard deviation ellipses for the underlying Gaussian
density model for the data.

3.5 Model Convexity

PCA provides a subspace model within which motions are expressed as linear com-
binations of the eigen-motions (4). With probabilistic PCA [43] one further con-
strains the model with a multivariate Gaussian density. A key property of such lin-
ear models is the convexity of the motions, i.e., that linear combinations of motions
(or eigen-motions) are legitimate motions.

While convexity is clearly violated with pose data (cf., Fig. 5a), we find that with
the subspace motion models convexity is satisfied to a much greater extent. In other
words, we find that random samples from the subspaces, according to a subspace
Gaussian model for walking, running and the golf swing, all produce plausible
motions. Fig. 7 depicts two motions from each of (a) the walking model, (b) the
running model, and (c) the combined model. The first row in each case depicts the
mean motion for each model, corresponding to the origin of the respective sub-
spaces. As shown in Fig. 6 the origin is relatively far from any particular training
motion, yet these motions look quite plausible. The second motion in each case
corresponds to a point drawn at random that is far from the origin and any training
motion (as shown in Fig. 6). These points, typical of other random samples from
the underlying Gaussian density, also depict plausible motions. Accordingly, the
models appear to generalize naturally to points relatively far from the training data.

The multi-activity model learned from the combined running and walking data does
not exhibit the same property. Fig. 8 shows the subspace spanned by the first two
eigen-motions of the combined model. In addition to the training data, the figure
shows the locations of four points that lie roughly between the projections of the
walking and running data. The four rows of Fig. 9 depict the corresponding motions
(for which the remaining subspace coefficients, αj = 0, for 3 ≤ j ≤ m). While
three of the motions are plausible mixtures of running and walking, the top row of
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Fig. 9 clearly shows an implausible motion. Here we find that points close to the
training data generate plausible motions, but far from the training data the motions
become less plausible.

Nevertheless there are regions of the subspace between walking and running data
points that do correspond to plausible models. These regions facilitate transitions
between walking and running that are essential if we wish to be able to track sub-
jects through such transitions, as will be shown in section 6.

4 Tracking Framework

In this section we show how the motion models of Section 3 can be used for 3D peo-
ple tracking. Our goal is to show that with activity-specific motion models one can
often formulate and solve the tracking problem straightforwardly with deterministic
optimisation. Here, tracking is expressed as a nonlinear least-squares optimization,
and then solved using Levenberg-Marquardt [44].

The tracking is performed with a sliding temporal window. At each time instant t
we find the optimal target parameters for f frames within a temporal window from
time t to time t+ f − 1. Within this window, the relevant target parameters include
the subspace coefficients, {αi}

m
i=1, the global position and orientation of the body at

each frame {gj} and the phases of the motion at each frame {µj}, for t ≤ j < t+f :

St = [α1, . . . , αm, µt, . . . , µt+f−1,gt, . . . ,gt+f−1] . (7)

While the global pose and phase of the motion vary throughout the temporal win-
dow, the unknown subspace coefficents are assumed to be constant over the win-
dow.

After minimizing an objective function over the unknown parameters St, we extract
the pose estimate at time t that is given by the estimated subspace coefficients
{α̂i}, along with the global parameters and phase at time t, i.e., ĝt and µ̂t. Because
the temporal estimation windows overlap from one time instant to the next, the
estimated target parameters tend to vary smoothly over time. In particular, with such
a sliding window the estimate of the pose at time t is effectively influenced by both
past and future data. It is influenced by past data because we assume smoothness
between parameters at time t and estimates already found at previous time instants
t− 1 and t− 2. It is influenced by future data as data constraints on the motion are
obtained from image frames at times t+ 1 through t+ f − 1.
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(a)

(b)

(c)

Fig. 7. Sampling the first five components of each single activity database produce phys-
ically possible motions. The odd rows show the highest probability sample that for each
single-motion database, which is the at the origin αi = 0, ∀i. The even rows show some
low probability samples very far from the training motions to demonstrate that even those
samples produce realistic motions. The coefficients for these motion are shown in Fig. 6
(a,b,c) respectively. First two rows (a): Walking, Middle rows (b): Running, Last two
rows (c): Golf swing samples.
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Fig. 8. Sampling the multi-activity subspace. The 4 samples that generate the motions of
Fig. 9 are depicted.

Fig. 9. Sampling the first two components of a multi-activity database compose of walking
and running motions can produce physically impossible motions. The coefficients of the
motions depicted in this figure are shown in Fig. 8. Top row: Physically impossible mo-
tion. The input motion space compose of walking and running is not convex. Middle row:
Physically possible motion close to a walking. Bottom row: Motion close to a running. As
the convexity of the input space is assumed when doing PCA, and it may not be the case,
the resulting motion as a combination of principal directions can be physically impossible.
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4.1 Objective Function

We use the image data to constrain the target parameters with a collection of nobs

constraint equations of the form

O(xi,S) = εi , 1 ≤ i ≤ nobs , (8)

where the xi are 2D image features, O is a differentiable function whose value
is zero for the correct value of S and noise-free data, and εi denotes the residual
error in the ith constraint. Our objective is to minimize the sum of the squared
constraint errors. Because some measurements may be noisier than others, and our
observations may come from different image properties that might not be commen-
surate with one another, we weight each constraint of type type with a constant,
wtype. In effect, this is equivalent to a model in which the constraint residuals are
IID Gaussian with isotropic covariance, and the weights are just inverse variances.
In practice, the values of the different wtype are chosen heuristically based on the
expected errors for each type of observation.

Finally, since image data are often noisy, and sometimes underconstrain the target
parameters, we further assume regularization terms that encourage smoothness in
the global model. We also assume that the phase of the motion varies smoothly. The
resulting total energy to be minimized at time t, Ft, can therefore be expressed as

Ft = Fo,t + Fg,t + Fµ,t + Fα,t (9)

with

Fo,t =
nobs
∑

i=1

wtypei

∥

∥

∥Otypei(xi,S)
∥

∥

∥

2

, Fg,t = wG

t+f−1
∑

j=t

‖gj − 2gj−1+ gj−2‖
2 ,

Fµ,t =wµ

t+f−1
∑

j=t

(µj − 2µj−1+ µj−2)
2 , Fα,t = wα

m
∑

i=1

(αi − α̂i)
2 , (10)

where Otype is the function that corresponds to a particular observation type, wG,
wµ and wα are scalar weights, and α̂i denote the subspace coefficients estimated
in the previous window of f frames at time t − 1. The value of f is chosen to be
sufficiently large to produce smooth results; in practice we use f = 3. Finally, in
(10), the variables gt−1, gt−2, µt−1 and µt−2 are taken to be the values estimated
from previous two time instants, and are therefore fixed during estimation at time
t.

Minimizing Ft using the Levenberg-Marquardt algorithm [44] involves computing
its Jacobian with respect to the elements of the state vector S. Since the O func-
tions of Eq. 10 are differentiable with respect to the elements of S, computing the
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derivatives with respect to the gt is straightforward. Those with respect to the αi

and µt can be written as

∂Ft

∂αi

=
t+f−1
∑

k=t

D
∑

j=1

∂Fo,t

∂θk
j

·
∂θk

j

∂αi

+
∂Fα,t

∂αi

, (11)

∂Ft

∂µk

=
D
∑

j=1

∂Fo,t

∂θk
j

·
∂θk

j

∂µk

+
∂Fµ,t

∂µk

, (12)

where the θk
j represents the vector of individual joint angles at phase µk, defined

as the j’th component of ψ(µk, α1, · · · , αm) in Eq. 6. The derivatives of Ft with
respect to theD individual joints angles ∂Fo,t

∂θk
j

can be easily computed [45]. Because

the θk
j are linear combinations of the Θk

ij eigen-poses, ∂θk
j

∂αi
reduces to Θk

ij , the jth
coordinate of Θk

i . Similarly, we can write

∂θk
j

∂µk

=
m
∑

i=1

αi

∂Θk
ij

∂µk

, (13)

where the ∂Θk
ij

∂µt
can be evaluated using finite differences and stored when building

the motion models, as depicted in Fig. 2.

Recall that for cyclic motions such as walking and running, the phase is periodic
and hence the second order prediction µj−1 − µj−2 should be taken mod 1 in
Eq. 9. This allows the cyclic tracking sequences to be arbitrarily long, not just a
single cycle. Of course, one can also track sequences that comprise fractional parts
of either cyclic or acyclic motion model.

The weights w in Eq. (10) were set manually, but their exact values were not found
to be particularly critical. In some experiments the measurements provided suffi-
cient strong constraints that the smoothness energy terms in Eq. (10) played a very
minor role; in such cases the values of wG, wµ and wα could be set much smaller
than the weights on the measurement errors in Fo,t. Nonetheless, for each set of
experiments below (i.e, those using the same types of measurements), the weights
were fixed across all input sequences.

4.2 Computational Requirements

The fact that one can track effectively with straight-forward optimization means
that our prior motion models greatly constrain the inference problem. That is, the
resulting posterior distributions are not so complex (e.g., multimodal) that one must
use computationally demanding inference methos such as sequential Monta Carlo
or particle filtering.
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Monte Carlo approaches, like that in [8], rely on randomly generating particles
and evaluating their fitness. Because the cost of creating particles is negligible, the
main cost of each iteration comes from evaluating a log likelihood, such as Ft in
(9), for each particle. In a typical particle filter, like the Condensation algorithm
[7], the number of particles needed to effectively approximate the posterior on aD-
dimensional state space grows exponentially with D [5,46]. With dimensionality
reduction, like that obtained with the subspace motion model, the state dimension
is greatly reduced. Nevertheless, the number of particles required can still be pro-
hibitive [8].

By contrast, the main cost at each iteration of our deterministic optimization scheme
comes from evaluating Ft and its Jacobian. In our implementation, this cost is
roughly proportional to 1 + log(D) times the cost of computing Ft alone, where
D is the number of joint angles of (12). The reason this factor grows slowly with
D is that the partial derivatives, ∂Ft

∂θj
, which require most of the computation, are

computed analytically and involve many intermediate results than can be cached
and reused. As a result, with R iterations per frame, the total time required by our
algorithm is roughly proportional R(1 + log(D)) times the cost of evaluating Ft.
Since we use a small number of iterations, less than 15 for all experiments in this
paper, the total cost of our approach remains much smaller than typical probabilis-
tic methods. The different experiments run in this paper took less than a minute per
frame, with a non-optimized implementation.

5 Monocular Tracking

We first demonstrate our approach in the context of monocular tracking [47]. Since
we wish to operate outdoors in an uncontrolled environment, tracking people wear-
ing normal clothes, it is difficult to rely solely on any one image cue. Here we
therefore take advantage of several sources of information.

5.1 Projection Constraints

To constrain the location of several key joints, we track their approximate image
projections across the sequence. These 2D joint locations were estimated with a
2D image-based tracker. Figure 10 shows the 2D tracking locations for two test
sequences; we track 9 points for walking sequences, and 6 for the golf swing.

For joint j, we therefore obtain approximate 2–D positions xj in each frame. From
the target parameters S we know the 3–D position of the corresponding joint. We
then take the corresponding constraint function, Ojoint(xj,S), to be the 2–D Eu-
clidean distance between the joint’s projection into the image plane and the mea-

16



Fig. 10. 2D Tracking using the WSL tracker. Top row: Tracking the chest, knees, head,
ankles and visible arm. The tracked upper body joints are shown in red, with the head and
tracked lower joints points shown in yellow. Bottom row: Regions used for tracking the
ankles, knees, and head are shown.

Fig. 11. Poor quality foreground binary mask. First row: Extracted from the walking se-
quence of Fig. 12 and Second row: from the golf swing of Fig. 17.

surement of its 2-D image position.

5.2 Foreground and Background

Given an image of the background without the subject, we can extract rough binary
masks (silhouettes) of the foreground, like those in Fig. 11. Because the background
in our video is not truly static the masks are expected to be noisy. Nevertheless,
they can be exploited as follows. We randomly sample the binary mask, and for
each sample xi we define a Background/Foreground function Ofg/bg(xi,S) that is
0 if the line of sight through xi intersects the model. Otherwise, it is equal to the
3D distance between the line of sight and the nearest model point. In other words,
Ofg/bg is a differentiable function that introduces a penalty for each point in the
foreground binary mask that does not back-project onto the model.

MinimizingOfg/bg in the least squares sense tends to maximize the overlap between
the model’s projection and the foreground binary mask. This helps to prevent target
drift.
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5.3 Point Correspondences (Optical Flow)

We use 2–D point correspondences in pairs of consecutive images as an additional
source of information: We project the 3–D model into the first image of the pair.
We then sample image points to which the model projects and use a normalized
cross-correlation algorithm to compute displacements of these points from that
frame to the next. This provides us with measurement pairs of corresponding points
in two consecutive frames, pi = (x1

i ,x
2
i ). The correspondence penalty function,

Ocorr(pi,S) is given as follows: We back-project x1
i to the 3–D model surface and

reproject it to the second image. We then take Ocorr(pi,S) to be the Euclidean
distance in the image plane between this reprojection and corresponding x2

i .

5.4 Experimental Results

We test our tracker on real and synthetic data. In each case the use of prior mo-
tion models is crucial; without the motion models the tracker diverge within a few
frames in every experiment.

5.4.1 Real data

The results shown here were obtained from uncalibrated images. The motions were
performed by subjects of unknown sizes wearing ordinary clothes that are not par-
ticularly textured. To perform our computation, we used rough guesses for the sub-
ject sizes and for the intrinsic and extrinsic camera parameters. For each test se-
quence we manually initialize the position and orientation of the root node of the
body in the first frame so that it projects approximately to the right place.

We also manually specify the 2D locations of the joints to be tracked by WSL [48].
WSL is a robust, motion-based 2D tracker that maintains an online adaptive appear-
ance model. The model adapts to slowly changing image appearance with a natural
measure of the temporal stability of the underlying image structure. By identifying
stable properties of appearance the tracker can weight them more heavily for mo-
tion estimation, while less stable properties can be proportionately down-weighted.
This gives it robustness to partial occlusions. In the first frame we specified 9 points
that we wish to track, namely, the ankles, knees, chest, head, left shoulder, elbow
and hand.

This entire process requires only a few mouse clicks and could easily be improved
by using automated posture detection techniques (e.g., [20,26,21,22,24]). Simple
methods were used to detect the key postures defined in Section 3 for each se-
quence. Using spline interpolation, we assign an initial value for µt for all the
frames in the sequence, as depicted in Figs. 13b and 16b. Finally, the motion is ini-
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Fig. 12. Monocular Tracking of a 43 frames walking motion. First two rows: The skeleton
of the recovered 3D model is projected onto the images. Bottom two rows: Volumetric
primitives of the recovered 3D model projected into a similar view.

tially taken to be the mean motion Θ0, i.e., the subspace coefficients αi are initially
set to zero. Given these initial conditions we minimize Ft in (9) using Levenberg-
Marquardt.

5.4.1.1 Walking Fig. 12 shows a well-known walking sequence [8,49,50]. To
perform the 2D tracking we used a version of the WSL tracker [48]. To initialize the
phase parameter, µt, we used a simple background subtraction method to compute
foreground masks (e.g., see Fig. 11). Times at which the mask width was minimal
were taken to be the times at which the legs were together (i.e., µt = 0.25 or
µt = 0.75). Spline interpolation was then used to approximate µt at all other frames
in the sequence (see Fig. 13b). More sophisticated detectors [20–22,24] would be
necessary in more challenging situations, but were not needed here.

The optimal motion found is shown in Figure 12. There we show the estimated 3D
model projected onto several frames of the sequence. We also show the rendered
3D volumetric model alone. The tracker was successful, producing a 3D motion
that is plausible and well synchronized with the video. The right (occluded) arm
was not tracked by the WSL tracker, and hence was only weakly constrained by the
objective function. Note that even though it is not well reconstructed by the model
(does not fit the image data), it has a plausible rotation.

5.4.1.2 Golf Swing As discussed in Section 3.3, the golf swings used to train
the model were full swings from the CMU database. They were performed by nei-
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Fig. 13. Automatic Initialization of the virtual time parameter µt for the walking sequence
of Fig. 12. (a) Width of the detected silhouette. (b) Spline interpolation for the detected
key-postures.

Fig. 14. Monocular Tracking a full swing in a 45 frame sequence. First two rows: The
skeleton of the recovered 3–D model is projected into a representative subset of images.
Middle two rows: Volumetric primitives of the recovered 3–D model projected into the
same views. Bottom two rows: Volumetric primitives of the 3–D model as seen from
above.
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Fig. 15. Detected hand trajectories for the full swing in Fig. 14 and the approach swing
in Fig. 18. The left and right hand positions (pixel units) are represented in black and red
respectively.

ther of the golfers shown in Figs. 14, 17 and 18. With the WSL tracker we tracked
five points on the body, namely, the knees, ankles and head (see Fig. 10). Because
the hand tends to rotate during the motion, to track the wrists we have found it
more effective to use a club tracking algorithm [51] that takes advantage of the
information provided by the whole shaft. Its output is depicted by the first row of
Fig. 15, and the corresponding recovered hand trajectories by the second row. This
tracker does not require any manual initialization. It is also robust to mis-detections
and false alarms and has been validated on many sequences. Hypotheses on the po-
sition are first generated by detecting pairs of close parallel line segments in the
frames, and then robustly fitting a 2D motion model over several frames simulta-
neously. From the recovered club motion, we can infer the 2D hand trajectories of
the bottom row of Fig. 15.

For each sequence, we first run the golf club tracker [51]. As shown in Fig. 16a, for
each sequence, the detected club positions let us initialize the phase parameters by
telling us in which four frames the key postures of Fig. 4 can be observed. With the
times of the key postures, spline interpolation is then used to assign a phase to all
other frames in the sequence (see Fig. 16b). As not everybody performs the motion
at the same speed, these phases are only initial guesses, which are refined during
the actual optimization. Thus the temporal alignment does not need to be precise,
but it gives a rough initialization for each frame.

Figures 14 and 17 show the projections of the recovered 3D skeleton in a repre-
sentative subset of images of two full swings performed by subjects whose motion

21



80 90 100 110 120 130 140 150 160 170 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 ti
m

e

Frame number

(a) (b)

Fig. 16. Assigning normalized times to the frames of Fig. 14. (a) We use the automatically
detected club positions to identify the key postures of Fig. 4. (b) The corresponding nor-
malized times are denoted by red dots. Spline interpolation is then used to initialize the µt

parameter for all other frames in the sequence.

Fig. 17. Monocular tracking a 68 frame swing sequence. The skeleton of the recovered 3–D
model is projected onto the images.

was not used in the motion database. Note the accuracy of the results. Figure 18
depicts a short swing that is performed by a different person. Note that this motion
is quite different both from the full swing motion of Fig. 14 and from the swing
used to train the system. The club does not go as high and, as shown in Fig. 15, the
hands travel a much shorter distance. As shown by the projection of the 3D skele-
ton, the system has enough flexibility to generalize to this motion. Note, however,
that the right leg bends too much at the end of the swing, which is caused by the
small number of training motions and the fact that every training swing exhibited
the same anomoly. A natural way to avoid this problem in the future would be to
use a larger training set with a greater variety of motions.

Finally, Fig. 19 helps to show that the model has sufficient flexibility to do the
wrong thing given insufficient image data. That is, even though we use an activity-
specific motion model, the problem is not so constrained that we are guaranteed to
get valid postures or motions without using the image information correctly.
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Fig. 18. Monocular Tracking an approach swing during which the club goes much less
high than in a driving swing. The skeleton of the recovered 3–D model is projected onto
the images.

(a) (b) (c) (d) (e) (f)

Fig. 19. Tracking using only joint constraints vs using the complete objective function. (a)
Original image. (b) 2–D appearance based tracking result. (c) 2–D projection of the tracking
results using only joint constraints. The problem is under-constrained and a multiple set of
solutions are possible. (d) 3–D tracking results using only joint constraints. (e) and (f) The
set of solutions is reduced using correspondences.

5.4.2 Synthetic data

We projected 3D motion capture data using a virtual camera to produce 2D joint
positions that we then use an input to our tracker. The virtual camera is such that
the projections fall within a 640x480 virtual image, with the root projecting at the
center of the image. We initialized the phase of the motion µt to a linear function,
0 at the beginning and 1 at the end of the sequence. The style of the motion was
initialized to be the mean motion. Both µt and the {αi} were refined during the
tracking.

We used temporal windows of sizes 3 and 5, with very similar results, as shown in
Fig. 20. We also tested the influence of the number of 2D joint positions given as
input to the tracker, by using the whole set of joints, or the same subset of joints
used to track the sequence of Fig. 12, namely, the ankles, knees, chest, head, shoul-
der, elbow and hand. Both cases result in very similar accuracy, as depicted in Fig.
20. The errors, as expected, are bigger when tracking testing data than training data.
Note that the tracker is very accurate, the 3D errors are 0.7 cm per joint in mean for
the training sequences and 1.5 cm in mean for the testing sequences.

It is also of interest to test the sensitivity of the tracker to the relative magnitudes
of the smoothness and observation weights in Eq. (10). Fig. 21 shows the results of
tracking synthetic training and testing sequences with different values of wtype/ws,
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Training Test

2D proj. 3D loc. Euler 2D proj. 3D loc. Euler

All, f = 3 0.960 7.271 0.031 1.849 15.079 0.086

Subset, f = 3 1.024 7.575 0.0322 1.979 15.062 0.0839

All, f = 5 1.093 7.246 0.0272 2.041 15.823 0.087

Subset, f = 5 1.153 7.721 0.0293 2.182 15.791 0.0847
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Fig. 20. Tracking mean errors as a function of the window size and the number of 2D
constraints. Three types of errors (2D projection (pixels), 3D location (mm), Euler angles
(radians) are depicted. Each plot is split in two groups, the left one represents errors when
tracking training data and the right one test data. For each group 4 error bars of 2 different
colors are depicted, each color represents a different window size (3 on red, and 5 on green).
For each color two bars show the errors first for the complete set of joints and then for the
subset of joints, with similar results. Note that the estimated 3D joint location errors are
very small, 0.7 cm in mean for the training data sequences, and 1.5 cm for the testing ones.

ranging from 0.1 to 10, with ws = wg = wµ = wα. All experiments yielded similar
results, indicating that the tracker is not particularly sensitive to these parameters.

5.4.3 Failure Modes

We have demonstrated that the tracking works well for different cyclic (walking)
and a-cyclic motions (golfing). The tracked motions are different from the ones
used for training, but remain relatively close. In this section we use a caricatured
walking sequence to test when the generalization capabilities of our motion models
fail. The caricatured walking is very different from the motions used for training,
and the PCA-based motion models do not generalize to this motion well. The style
coefficients recovered by the tracker are very far from the training ones (at least
6 standard deviations), resulting in impossible poses as depicted by Fig. 22, when
using a 3 or 5 frame temporal window.

When using PCA-based motion models, one should track motions that remain rel-
atively close to the training data, since the only motions that the tracker is capable
of producing are those in the subspace. In case other motions are wanted to be
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Training Test

2D proj. 3D loc. Euler 2D proj. 3D loc. Euler

wtype/ws = 0.1 1.262 7.979 0.0291 2.104 15.621 0.0865

wtype/ws = 1 1.632 9.895 0.0347 2.384 14.692 0.0715

wtype/ws = 10 1.808 12.263 0.0339 2.812 16.934 0.0728
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Fig. 21. Tracking mean errors as a function of the weights. Tracking results are given
for experiments with three different types of measurement errors (2D projection (pixels),
3D location (mm), Euler angles (radians)). Each plot is split in two groups, the left one rep-
resents errors when tracking training data and the right one for tracking test data. For each
group 3 error bars of different colors are depicted. Each color represents different relative
weights (dark green wtype/ws = 0.1, green wtype/ws = 1, and yellow wtype/ws = 10),
with ws = wg = wµ = wα. Note that tracker is not very sensitive to the specific value of
the weights.

Fig. 22. Tracking 40 frames of an exaggerated gait. First two rows: 3 frame window. Last
two rows: 5 frame window. The tracker results in impossible positions.

tracked, one should include examples of such motions when learning the models,
or apply other techniques such as Gaussian Processes (GP) [34] that have better
generalization properties.
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6 Multi-view Tracking

When several synchronized video streams are available, we use a correlation-based
stereo algorithm [52] to extract a cloud of 3–D points at each frame, to which we
fit the motion model.

6.1 Objective Function

Recall from Section 3 that we represent the human body as a set of volumetric
primitives attached to an articulated 3–D skeleton. For multi-view tracking we treat
them as implicit surfaces as this provides a differentiable objective function which
can be fit to the 3D stereo data while ignoring measurement outliers. Following
[45] the body is divided into several body parts; each body part b includes nb ellip-
soidal primitives attached to the skeleton. Associated with each primitive is a field
function fi, of the form

fi(x,S) = bi exp(−aidi(x,S)) , (14)

where x is a 3–D point, ai, bi are constant values, di is the algebraic distance to the
center of the primitive, and S, is the state vector in (7). The complete field function
for body part b is taken to be

f b(x,S) =
nb
∑

i=1

fi(x,S) , (15)

and the skin is defined by the level set

SK(x,S) =
B
⋃

b=1

{x ∈ R3|f b(x,S) = C} (16)

where C is a constant, and B is the total number of body parts. A 3D point x is said
attached to body part b if

b = arg min
1≤i≤B

|f i(x,S) − C| (17)

For each 3D stereo point, xi, we write

Ostereo(xi,S) = f b(xi,S) − C . (18)

Fitting the model to stereo-data then amounts to minimizing (9), the first term of
which becomes

t+f−1
∑

j=t

B
∑

b=1

∑

xi∈b

(f b(xi,j,S) − C)2 , (19)
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Fig. 23. Tracking a running motion. The legs are now correctly positioned in the whole
sequence.

where xi,j is a 3D stereo point belonging to frame j. Note that Ostereo is differen-
tiable and its derivatives can be computed efficiently [45].

6.2 Experimental Results

We use stereo data acquired using a Digiclopstm operating at a 640×480 resolution
and a 14Hz frame rate. Because the frame rate is slow, the running subject of Fig. 23
remains within the capture volume for only 6 frames. The data shown in Fig. 24 are
noisy and have low resolution for two reasons. First, to avoid motion blur, we used
a high shutter speed that reduced exposure. Second, because the camera was fixed
and the subject had to remain within the capture volume, she projected onto a small
region of the image during the sequences. Of course, the quality of this stereo data
could have been improved by using more sophisticated equipment. Nevertheless,
our results show that the tracker is robust enough to exploit data acquired with
cheap sensors.

Initially, the motion subspace coefficients are set to zero, as above. We manually
initialized the phase of the motion µt in the first and last frame of the sequence.
These points were then interpolated to produce an initial phase estimate in every
frame. The initial guess does not have to be precise because the tracking does not
work directly with the images but with the 3D data.

Fig. 25 shows results on walking sequences performed by two subjects whose mo-
tion capture data were also used as training data for the motion models. One can see
from the figures that the legs are correctly positioned. The errors in the upper-body
are caused by the large amount of noise in the stereo data.

Figure 26 depicts results from a walking sequence with a subject whose motion was
not included in the training data. In this case he was also wearing four gyroscopes
on his legs, one for each sagittal rotation of the hip and knee joints. The angular
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Fig. 24. Input stereo data for the running sequence of Fig. 23. Side views of the 3–D points
computed by the Digiclops tm system. Note that they are very noisy and lack depth because
of the low quality of the video sequence.

Fig. 25. Using low resolution stereo data to track the two women whose motions were not
used to learn the motion model. The recovered skeleton poses are overlaid in white.

speeds they measured were used solely for comparison purposes. Their output was
integrated to yield the absolute angles shown as dotted curve in Fig. 27. We overlay
on these plots the values recovered by our tracker, showing that they are close, even
though the left leg is severely occluded. Given the position of the visible leg, the
PCA motion model constrains the occluded one to be in a plausible position close
to the real one.

Figure 23 shows results for the running sequence of Fig. 24 using the running mo-
tion model. The pose of the legs is correctly recovered. The upper body tracking
remains relatively imprecise because average errors in the stereo data are larger

28



Fig. 26. Tracking a walking motion from a subject whose motion was not recorded in the
database. The legs are correctly positioned.
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Fig. 27. Comparing recovered rotation angles using visual tracking (solid curve), and by
integrating gyroscopic data (smooth curve) for the walk of Fig. 26. Left column: Right
hip and knee sagittal rotations. Right Column: Same thing for the left leg. Note that both
curves are very close in all plots, even though the left leg is severely occluded.

than the distance between the torso and the arms. Improving this would require
the use of additional information, such as silhouettes. Here we restrict ourselves to
stereo data to show that our framework can be used with very different objective
functions.

Having a set of subspace coefficients per frame gives the system the freedom to
automatically evolve from one activity to another. To demonstrate this we used
our motion model learned for the combined running and walking data to track a
transition from walking to running (see Fig. 28). In the first few frames the subject
is walking, then for a couple of frames she performs the transition and runs for the
rest of the sequence. The arms are not tracked because we focus on estimating the
motion parameters of the lower body only. Here again, the legs are successfully
tracked with small errors in foot positioning that are due to the fact that ankle
flexion is not part of the motion database.

6.3 Recognition

The motion style is encoded by the subspace coefficients in (4). They measure the
deviation from the average motion along orthogonal directions. Recall that during
tracking, the subspace coefficients are permitted to vary from frame to frame. For
recognition, we further reconstruct the 3D motion of the person with a single set
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Fig. 28. Tracking the transition between walking and running. In the first four frames the
subject is running. The transition occurs in the following three frames and the sequence
ends with running. The whole sequence is shown.

Fig. 29. Style coefficents, αi, obtained when tracking a training sequence. The training
data is shown in cyan. Different colors show different window sizes and number of 2D
joint constraints.

of subspace coefficients for the entire sequence [53]. The reason is that we want
to recover an average motion style during the sequence. Moreover, the estimate of
the style coefficients is more reliable if we increase the number of poses we use
to obtain it If we allow the style parameters to vary from frame to frame the style
estimation is noisier, but the tracker is typically more accurate. This is illustrated
in Fig. 29, when tracking with ground truth data and varying the subspace coeffi-
cients. Note that although the coefficients are close to the ones of that subject, their
variance is relatively large.

The tracking algorithm used for recognition is divided into two steps. First, the nor-
malized time µt and the global motion gt are optimized frame by frame, assuming
a constant style equal to the mean motion Θ0. This provides a good initial estimate
for a second step, where a global optimization is performed. In the global fit, the
normalized time and global motion parameters are allowed to vary in every frame,
but only one set subspace coefficients is used to represent the entire motion se-
quence. This is equivalent to minimizing (9), where the size of the sliding window
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(a) (b) (c)

Fig. 30. Recognition of walking people from stereo data: Walking motions from the training
data are shown in the first four subspace dimensions. Each person is shown with a distinct
color and symbol. Small black circles denote the estimated subspace coefficients, αi, ob-
tained from video of people whose motions were included in the training set. The small
black triangles depict subspace coefficients obtained from video of people whose motions
were not included in the training set. (a) First two PCA components of a model learned
from 4 subjects. Notice that in the first two dimensions the estimated coefficients for the
test subject are easily confused with those of the training subjects. (b-c) First four compo-
nents of a model learned with 9 subjects. In the first four dimensions the motions of the
training subjects cluster nicely, and the subspace coefficients estimated for a test subject do
not lay close to any one cluster of the training subjects.

is f = T + 1.

Figure 30 (a) depicts the first two subspace coefficients, αi, for the database used
for the tracking. The four subjects of the subspace are well separated in the first two
dimensions. The estimated coefficients for each one of the two examples depicted
by Fig. 25 are shown as circles and a triangle represents the estimated value for the
subject in Fig. 26 whose motion is not included in the training dataset. For both
women, the first two recovered coefficients fall in the center of the cluster formed
by their recorded motion vectors. Also note that while the new subject’s motion
does appear consistent with one of the training subjects in the first two subspace
dimensions, they are quite different in the next two dimensions.

Figure 30 (b,c), depicts the first four subspace coefficients, αi, for a model learned
using nine subjects. The estimated coefficients for each one of the two examples
depicted in Fig. 25 are shown as circles and as triangles for the subject of Fig. 26
whose motion is not recorded in the database. Once more, for both women, the first
four recovered coefficients fall in the center of the cluster formed by their recorded
motion vectors using optical motion capture, meaning that they have been well es-
timated. Higher order coefficients exhibit small variations that can be attributed to
the fact that walking on a treadmill changes the style. Typically the subjects tend
to bend the back more when performing the walking in a treadmill to maintain bal-
ance. For the man whose motion was not recorded in the database, the recovered
coefficients fall within two different clusters when looking at the first two coeffi-
cients or at the third and fourth, meaning that this person forms a different cluster
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in four dimensions. It is not recognized as any of the nine persons of the database.

The use of motion instead of pose allow us to simply use a closest neighboourd
algorithm for classification. Note that if we use pose (see Fig. 5), the recognition
is more difficult and a more complex classification algorithm, such as SVM or
Adaboost, should be used.

7 Conclusion and Future Work

We have presented an approach to incorporating strong motion models that yields
full 3–D reconstruction using a single-hypothesis hill-climbing approach. This re-
sults in much lower computational complexity than the current multi-hypothesis
techniques. We have demonstrated the effectiveness of our approach for monocu-
lar and multi-view tracking of cyclic motions as walking and running and acyclic
motions as golf swinging.

The major limitation of the current approach is the number of examples needed
to create a database with good generalization properties. We are currently investi-
gating non linear probabilistic techniques that reduces considerably the number of
examples required [34].
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