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Abstract

When a series of problems are related, representations derived from learning ear-
lier tasks may be useful in solving later problems. In this paper we propose a novel
approach to transfer learning with low-dimensional, non-linear latent spaces. We
show how such representations can be jointly learned acrossmultiple tasks in a
Gaussian Process framework. When transferred to new tasks with relatively few
training examples, learning can be faster and/or more accurate. Experiments on
digit recognition and newsgroup classification tasks show significantly improved
performance when compared to baseline performance with a representation de-
rived from a semi-supervised learning approach or with a discriminative approach
that uses only the target data.

1 Introduction

When faced with a new task, it is advantageous to exploit knowledge and structures found useful
in solving related problems. A common paradigm to exploit such knowledge is to learn a feature
space from previous tasks and transfer that representationto a future task [2, 5, 17, 1]. Ideally, the
transferred representation is of lower dimension than the raw feature space, and the set of functions
implied by the new representation still contains the optimal classifier for the new task. When this
is the case, the new task can be learned more robustly and/or with fewer training examples in the
transferred space than in the raw space.

In this paper we propose a novel approach to transfer learning based on discovering a non-linear
low dimensional latent space that is shared accross tasks ina Gaussian process framework, and
transferring that space to future tasks.

Transfer of probabilistic representations has been explored in a Gaussian Processes (GP) paradigm,
by explicitly sharing a covariance function and/or kernel hyperparameters across tasks [10, 18].
More recently, Bonilla et al. extended previous approachesto model the relateness between tasks
with a parametric [3] and non-parametric covariance [4]. However, it is often the case that the
relateness is not task-dependent but sample dependent. In other words some samples of task A might
be related to task B, while some other samples might not be related at all. Our method estimates
the relateness of the different samples by estimating a low dimensional representation that is shared
across tasks. Samples that are related are close in latent space.

Probably the closest approach to ours is the one developed byTeh et al. [16], that proposed a
semiparametric linearly mixed factor model that models thedependencies by a set of Gaussian
Processes. In contrast, our method learns directly a non-linear low dimensional latent space that is



shared accross tasks. When using a Gaussian noise model, our model does not require a variational
approximation.

Experiments on digit recognition and newsgroup classification tasks indicate that the ability to trans-
fer non-linear, low-dimensional features across problemscan provide significant performance im-
provements, especially when the target task has relativelyfew training examples compared to the
source problems used to learn the latent space. Baseline experiments confirm that learning the
shared latent space discriminatively is important; semi-supervised learning underperformed transfer
learning.

In the remainder of the paper, we first describe our approach to learn a discriminative latent space
with a single classification task. We then extend this to the multi-task setting, jointly optimizing
the latent space to account for each task as well as the underlying data. The learnt latent space is
used when learning future tasks. We experiment with different digit recognition and newsgroups
classification tasks, and conclude with a discussion of our method and avenues for future work.

2 Probabilistic Discriminative Latent Variable Model

Conventional classification methods suffer when applied toproblems with high dimensional input
spaces and very small training sets. If, however, the high dimensional data in fact lie on a low-
dimensional manifold, accurate classification may be possible with a small amount of training data
if that manifold is discovered by the classification method.

More formally, letY = [y1, · · · ,yN ]T be the matrix composed of all the observations, withyi ∈
ℜD, and letZ = [z1, · · · , zN ]T be the matrix composed of all the labels, withzi ∈ ℜS . Traditional
discriminative approaches to classification tried to estimate the mapping from observations to labels.
Probabilistic discriminative approaches estimate the probability of the labels given the observations
p(Z|Y).

We are interested in learning a low dimensional representation of the data useful for classification.
To have a full Bayesian treatement of the problem, one shouldmarginalize over all the possible
latent configurations

p(Z|Y) =

∫

X

p(Z,X|Y)dX , (1)

whereX = [x1, · · · ,xN ]T denote the matrix whose rows represent the positions in latent space,
xi ∈ ℜd. However, such marginalization is intractable when the relationship between the obser-
vations and the labels is non-linear. Instead one could approximatep(Z|Y) by taking the MAP
estimate ofX. Similar approximations have been used to learn latent variable models [7].

We place a Gaussian process prior over the observations, such that

p(Y|X) =

D
∏

i=1

N(y(j)|0,KY ) (2)

wherey(i) is thei-th column ofY, and the elements of the kernel matrixKY ∈ ℜN×N are defined
by the covariance function,(KY )i,j = kY (xi,xj). In particular, we use a kernel that is the sum of
an RBF, a bias or constant term, and a noise term,

kY (x,x′) = β1 exp

(

−
β2

2
||x− x′||2

)

+ β3δx,x′ + β4 ,

whereβ̄ = {β1, · · · , β4} comprises the kernel hyperparameters that govern the output variance, the
RBF support width, the bias and the variance of the additive noise, respectively.

We introduce an additional intermediate variableu ∈ ℜS , such thatU = [u1, · · · ,uN ]T and place
a Gaussian process prior overU

p(U|X) =

S
∏

j=1

N(U(j)|0, K̂Z) , (3)
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Figure 1:Graphical modelsof (a) GPLVM, (b) our probabilistic discriminative model for a single
task, and (c) our Discriminative Transfer model.

whereU(j) is thej-th column ofU. We relate this intermediate variable to the observed labelusing
a noise model, p(Z|U). Different noise models can be chosen, typical examples arethe Gaussian
and probit noise models.

Assuming independence between the observations and labelsgiven the latent variables

p(Y,Z|X) = p(Y|X)p(Z|X) (4)

we can write

p(X|Y,Z) ∝ p(X)p(Y|X)

∫

U

p(Z|U)p(U|X)dU . (5)

Fig. 1 (b) depicts the graphical model of our discriminativelatent variable model.

With a Gaussian noise model,p(Z|U) = N (Z|U, σ2I), the integral in (5) can be done in closed
form, and learning the model is equivalent to minimizing thenegative log posterior

L =
D

2
ln |KY | +

1

2
tr

(

K−1
Y YYT

)

+
S

2
ln |KZ | +

1

2
tr

(

K−1
Z ZZT

)

+
∑

i

lnβi +
∑

i

ln γi +
∑

i

||xi||
2 + C1 (6)

whereC1 is a constant andKZ = K̂Z + σ2I. With a Gaussian noise model, the model is similar to
the one introduced by [15] to learn a common structure between two observation types. However, the
context is very different; we are interested in learning a latent space that can discriminate between
classes.

With a non-Gaussian noise model an aproximation to the integral needs to be performed. To approxi-
mate the integral required in (6) we used a single pass of the expectation propagation algorithm [12];
this is sometimes known as assumed density filtering (ADF). Updates of site means and parameters
of the ADF approximation were interleaved with updates of the latent locations.

Fig. 2 shows an example where a two-class problem is learned using (a) PCA, (b) GPLVM, and our
probabilistic discriminative model with (c) Gaussian and (d) probit noise models. Jointly learning
the reconstruction and classification mappings separates the different classes in the latent space and
results in better classification performance.

The Gaussian noise model leads to a greater separation of thedata in latent space. This is perhaps to
be expected, as the constraints imposed by the labels through the Gaussian noise model are stronger
than those imposed by a probit noise model. The probit noise model simply forces the respective
classes to fall either side of the decision boundary, whereas the Gaussian noise model encodes extra
information about how far each class should be apart on average. Fig. 3 shows mean classification
errors for the USPS database as a function of the number of examples when using the Gaussian and
probit noise models for 2–D and 3–D latent spaces. Note that the Gaussian noise model in general
outperforms the probit.
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Figure 2:Probabilistic discriminative model. Low dimensional representations learned using (a)
PCA, (b) GPLVM, (c) our probabilistic discriminative model(Section 2) with a Gaussian noise
model, and (d) our probabilistic discriminative model witha probit noise model. The data is com-
posed of two different classes. The training examples of thetwo classes are depicted as red crosses
and green circles. Note how the discriminative model separates the classes, specially when using a
Gaussian noise model.
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Figure 3: Noise models: Mean error for a discriminative single-task model using Gaussian and
probit noise models and 2–D and 3–D latent spaces. The task consists in discriminating 3’s vs 5’s in
the USPS database. For the same latent space dimensionality, the Gaussian noise model performs in
general better than the probit noise model. The results wereaveraged over 5 trials.

3 Transfer Learning with a Shared Latent Space

In our transfer learning scenario we are interested in learning a low dimensional representation from
a set of related problems. We assume that if a latent space wasuseful for a set of tasks, it will be
useful for future related tasks.



One of the advantages of using a low dimensional representation of the data for classification is that
fewer parameters need to be estimated, thus reducing the number of examples required for training.
Therefore, if we can find a useful low dimensional representation using previous tasks, we can
effectively reduce the number of examples needed for learning the new task. More importantly, the
latent space can discover how related the different samplesare: points that are close in latent space
are related.

In this section we show how the discriminative latent variable model described above can be ex-
tended to the transfer learning scenario. In particular, weadopt an asymmetric approach that first
learns a latent space from a set of related problems, and thenuses that low dimensional space to
perform classification for the target task.

3.1 Jointly learning P related problems

In this section we describe how to learnP related tasks with a discriminative shared representation.
Let Y(p) = [y

(p)
1 , · · · ,y

(p)
Np

]T be theNp observations associated to problemp. Similarly letX(p) =

[x
(p)
1 , · · · ,x

(p)
N ]T , be the latent coordinates for problemp, andZ(p) = [z

(p)
1 , · · · , z

(p)
Np

]T be the labels
for thep-th problem.

Since we want to discover the relateness of the samples from different tasks, we place a Gaussian
process prior over all observations from all related problems such that

p(Ȳ|X̄) =
1

T1
exp

(

−
1

2
tr

(

K−1
Y ȲȲT

)

)

, (7)

whereT1 is a normalization factor,̄Y = [Y(1), · · · ,Y(P )]T is the set of all observations,̄X =
[X(1), · · · ,X(P )]T are the latent coordinates for all problems, andKY is the covariance matrix
formed by elements of all the problemsk(x

(p)
i ,x

(k)
j ).

Note that in (7) all tasks can be related (i.e., the covariance matrix is not block diagonal), and that the
proximity in the latent space captures the relateness at thesample level, i.e., if two observations of
different tasks are related, their corresponding latent coordinates will be close, and their covariance
k(x

(p)
i ,x

(k)
j ) will be large.

As the mapping from latent space to labels is different for each problem, we assume independence
of the labels of the different problems given the latent variables,

p(Ȳ, Z̄|X̄) = p(Ȳ|X̄)

P
∏

i=1

p(Z(p)|X(p)), (8)

whereZ̄ are the labels for all problems.

Note that our model (Fig. 1 (c)) is a generative model of the data with a shared latent space across
problems, and a set of independent (given the latent variables) mappings modeling each classifica-
tion task

p(Z(p)|X̄(p)) =

∫

U(p)

p(Z(p)|U)p(U(p)|X(p))dU(p) . (9)

As before, we place a Gaussian process prior onp(U(p)|X(p)). Different noise models can be
chosen. In particular, when using a Gaussian noise model, the integration in (9) can be done in
closed form. Learning the model is then done by minimizing the negative log posterior that is

LTL =
D

2
ln |KY | +

1

2
tr

(

K−1
Y YYT

)

+

P
∑

i=1

(

S

2
ln |KZ | +

1

2
tr

(

K
(p)−1

Z ZZ(p)T
)

)

+
∑

i

lnβi +
P

∑

p=1

∑

i

ln γ
(p)
i +

∑

i

||xi||
2 + C2 (10)

whereC2 is a constant,K(p)
Z = K̂

(p)
Z + σ2

pI, and γ̂(p) are the hyperparameters associated with
problemp. Note that now, there areP ∗ Np + NY hyperparameters to estimate, whereNp is the
number of hyperparameters to model a single latent space to labels mapping, andNY is the number
of hyperparameters of the mapping from the latent space to the observations.



3.2 Transfer learning with the joint model

Now that we can find a low dimensional representation that is useful for multiple tasks, we turn our
attention to the problem of using that representation in a future task.

Let Y(target) be the observations for the target problem. Given the latentrepresentation learned
from p related problems, our transfer learning algorithm proceeds as follows. First the target latent
positionsX(target) are infered, and then the mapping from latent space to labelsis learned using a
Gaussian Process.

Infering the latent positions for the target observations involves maximizing
p(Y(target)|X(target), X̄, Ȳ). This is computationally expensive. To speed up this process
we incorporate back-constraints [11] to learn the inverse mapping (i.e., mapping from observations
to latent space) as a parametric functionxij = gj(yi;a). In particular we use an MLP to model
the relation between̄X andȲ. Given the target observations, their latent coordiantes are computed
simply by evaluating the parametric mappingx

(target)
ij = gj(y

(target)
i ;a), wherea is learned from

the related problems.

An alternative approach to our transfer learning method consists of jointly learning the target and
related problems. However, in practice when the target problems have few examples compared to
the related problems, the results are very similar. The advantage of the two step optimization is
that if the latent space has already been learned (from a potentially very large collection of related
problems) training the target tasks becomes very fast.

4 Experimental Results

We conducted experiments on two datasets, the USPS dataset from the UCI repository, and a news-
group dataset [6]. We compare our transfer learning approach (Section 3) to two baselines. The
first baseline ignores the related problems and learns a discriminative single-task model (Section 2)
using only data from the target problem.

The second baseline uses only the observations from the related problems but not their labels. More
specifically, it learns a PCA space using data from the related problems and projects the target
observations onto that space. It then learns the mapping from the projected target samples to the
target labels with a Gaussian process.

For all experiments we used a two dimensional latent space and a Gaussian noise model motivated
by the results shown in Section 2 (Fig. 3). All optimizationswere performed with conjugate gradient
descent and run for a maximum of100 iterations.

4.1 USPS dataset

We conducted experiments on the first five digits of the USPS dataset; we regard the binary detection
of each digit as a separate task. Each of the tasks consists ofdetecting one digit from the other digits1.
For every task we generate a labeled training set by randomlypicking 300 positive examples and
300 negative examples (sampled from the other four digits). We generate a testing set for each task
in a similar manner.

In the first set of experiments we transfer a representation learned from600 training examples (300
positive and300 negative) from a single other problem. We evaluate the performance of our al-
gorithm and the baselines for different training set sizes of the target problem using10 random
partitions of the data. As depicted by Fig. 4, in all cases thediscriminative single problem model
(Section 2) gives lower error rates than the PCA-based semi-supervised baseline, illustrating the im-
portance of learning the latent space discriminatively. Transferring from any task except from digit
5 increases performance relative to the baseline, suggesting that digit 5 might not be as related. The
self-transfer case gives an upperbound on the performance of transfer learning; it tells us what the
performance would be if the problems werefully related (Fig. 4 (c)).

1In particular we focus on detecting 3’s from the other digits (i.e., 1’s, 2’s, 4’s, 5’s) since it is known to be
one of the most difficult problems in this dataset.
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Figure 4:Transfering the latent spacelearned from a single source problem to a target problem.
The target problem is to discriminate 3’s from other digits,and the source problems are to similarly
detect (a) 1’s, (b) 2’s, (c) 3’s, (d) 4’s, and (e) 5’s. Each related problem is trained with300 positive
examples and300 negative examples of the other four digits. Our algorithm (red) is compared
against two baselines: a single-task probabilistic discriminative model that learns a latent space only
from the target data (black) and the result of PCA-based semi-supervised learning with unlabeled
data from the source problem (green). Note that the 5’s problem might be less related to the 3’s
since the transfer learning does not help. In all cases except self-transfer (c), the PCA baseline
underperforms the discriminative probabilistic model, showing the importance of discriminatively
learning the latent space.
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Figure 5:Joint learning of the latent space from multiple source problems and transfer to the target
task. The source and target problems are as above. Results using Discriminative Transfer are shown
in red and are compared against two baselines, PCA-based semi-supervised learning (green) and a
single-task probabilistic discriminative model trained on the target problem (black). Transfer from
other related (and less related) problems improves the performance with respect to learning with a
single-task model, especially when the number of examples is small. PCA-based semi-supervised
learning performs poorly in this case. Figure (a) shows results when using100 positive examples
and100 negative examples for each related problem, and (b) shows results with200 positive and
200 negative examples.

The previous experiment showed that transferring a shared latent space from a related problem can
significantly reduce the number of training examples neededto learn the target problem. However,
in practice we do not know what problem to choose for transferbecause we do not know a priori
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Figure 6: NewsGroups dataset: (a) Mean error rates over the 10 newsgroup tasks. (b-c) Mean
error rates over the 10 newsgroup tasks when trained with 8 samples. Task 1= Motorcycles vs MS-
Windows, Task 2= Baseball vs Politics.misc, Task 3= Religion vs Politics.guns Task 4= Atheism vs
Autos, Task 5= IBM.hardware vs Forsale, Task 6= Politics.middleeast vs Sci.med, Task 7= Christian
vs Hockey, Task 8= Space vs MAC.hardware, Task 9= Windows.x vs Electronics, Task 10= Sci.crypt
vs Comp.graphics

which problems are related. What we need is a transfer learning algorithm that takes a set containing
mostly related problems and learns good shared latent spaces without being adversely affected by
the presence of a few less-related problems. In our second set of experiments we test the robustness
of our transfer learning algorithm in this more realistic scenario and transfer a shared representation
from all previous problems (i.e., detecting 1’s, 2’s, 4’s, 5’s). The results in Fig. 5 show that our trans-
fer learning approach improves performance significantly compared to the baselines. Our algorithm
performs similarly using200 (Fig. 5(a)) or400 (Fig. 5(b)) examples for each related problem.

4.2 20 Newsgroups Dataset

We used a standard newsgroup classification dataset [6] thatcontains postings from 20 different
newsgroups2. Following [14], 10 binary classification tasks were definedby randomly pairing
classes (e.g., a task consists of predicting if a given document belongs to the Motorcycles or MS-
Windows newsgroup). Each document was represented using a bag of words. A vocabulary of
approximately 1700 words was created by taking the union of the 250 most frequent words for each
of the 20 newsgroups (after stemming and removing stop words). Note that this setting is different
from the one in [14], where every binary task used a vocabulary formed by picking the 250 most
frequent words for each of the two topics in the discrimination task.

To construct a transfer learning setting we divide the tasksinto two groups, the first contained tasks
1 to 5 and the second contained tasks 6 to 10. We jointly learned each group, and use the problems
from the other group as target tasks. 100 documents were usedfor each related problem. We report
results averaged over 10 partitions of the data.

Fig. 6 (a) shows average test error results over the 10 tasks for the discriminative single-task model,
PCA and our transfer learning approach. For small training set sizes (i.e. less than 16 examples)
using transfer learning produces significantly lower average error than both baselines.

Fig. 6 (b-c) shows test error results for each task when trained with 8 examples. For 6 out of
the 10 tasks we observe positive transfer; transfer learning reduced the error by at least 9% and at
most 38 %. The tasks that exhibit most positive transfer are:Christian vs Hockey, and Space vs
MAC.hardware. For two tasks there is no significant difference between transfer learning and the
baseline. Finally, for the tasks Politics.middleeast vs Sci.med and Sci.crypt vs Comp.graphics we
observe negative transfer.

2Atheism, Autos, Baseball, Motorcycles, MS-Windows,Christian, Comp.graphics, Electronics,Forsale,
Hockey, IBM.hardware, MAC.hardware, Politics.guns, Politics.middleeast, Politics.misc, Religion, Sci.crypt,
Sci.med, Space, Windows.x



5 Conclusion and Discussion

We have presented a new method for transfer learning based onshared non-linear latent spaces that
estimates task relateness in a per-sample basis. Our methodperforms joint optimization within a
Gaussian Process framework, and discovers latent spaces which are simultaneously effective at de-
scribing the observed data and solving several classification tasks. When transferred to new tasks
with relatively few training examples, learning can be faster and/or more accurate with this approach.
Experiments on digit recognition and newsgroup classification tasks demonstrated significantly im-
proved performance when compared to baseline performance with a representation derived from a
semi-supervised learning approach or with a discriminative approach that uses only the target data.

We now turn to discuss possible extensions of the algorithmsproposed in this paper.

Semi-supervised learning: The discriminative latent space model of section 2, and the joint
model of section 3 can be extended to the semi-supervised case by simply constructing the co-
variance matrixKY over the label and unlabeled data, while definingKZ only over the labeled
examples.

Making the algorithm efficient: The main computational burden of our approach is the compu-
tation of the inverse ofKY , its computational cost being of the order ofO(N3), whereN is in the
number of training examples in all the problems. The latest Gaussian proceses sparsification tech-
niques [13] can be applied to both algorithms presented in this paper in the same way as they were
applied to the Gaussian Process Latent Variable Model [8]. Of particular interest is their application
to the mapping from latent space to observations since it is the most expensive computationally. The
complexity of our algorithms can then be reduced toO(NM2), whereM is the number of inducing
variables.

Noise models: Different noise models can be exploited in our framework, resulting in different
behaviours. In this paper we have shown results using a Gaussian and a probit noise model. In
the experiments we performed, the Gaussian noise model outperformed the probit, learning a more
discriminative latent space. Other noise models could alsobe exploited. Of particular interest to us
is theNull Category Noise Model (NCNM) [9] for semi-supervised learning that explicity attempts
to separate the different classes. A rigourous comparison of different noise models is our subject of
future research.
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