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Abstract

When a series of problems are related, representationseddriym learning ear-
lier tasks may be useful in solving later problems. In thiggrave propose a novel
approach to transfer learning with low-dimensional, niokedr latent spaces. We
show how such representations can be jointly learned aono#tiple tasks in a
Gaussian Process framework. When transferred to new taskselatively few
training examples, learning can be faster and/or more atzuExperiments on
digit recognition and newsgroup classification tasks shigwificantly improved
performance when compared to baseline performance witiprasentation de-
rived from a semi-supervised learning approach or with eroiignative approach
that uses only the target data.

1 Introduction

When faced with a new task, it is advantageous to exploit kedgé and structures found useful
in solving related problems. A common paradigm to exploghsknowledge is to learn a feature
space from previous tasks and transfer that representatiafiuture task [2, 5, 17, 1]. Ideally, the
transferred representation is of lower dimension thandkefeature space, and the set of functions
implied by the new representation still contains the optiohassifier for the new task. When this
is the case, the new task can be learned more robustly an@tfofewer training examples in the
transferred space than in the raw space.

In this paper we propose a novel approach to transfer legutméised on discovering a non-linear
low dimensional latent space that is shared accross tasks@aussian process framework, and
transferring that space to future tasks.

Transfer of probabilistic representations has been egglor a Gaussian Processes (GP) paradigm,
by explicitly sharing a covariance function and/or kerngpbérparameters across tasks [10, 18].
More recently, Bonilla et al. extended previous approatbanodel the relateness between tasks
with a parametric [3] and non-parametric covariance [4].wieeer, it is often the case that the
relateness is not task-dependent but sample dependettheinnmrds some samples of task A might
be related to task B, while some other samples might not lag¢ectlat all. Our method estimates
the relateness of the different samples by estimating a Iovesional representation that is shared
across tasks. Samples that are related are close in lateg.sp

Probably the closest approach to ours is the one developéiklyet al. [16], that proposed a
semiparametric linearly mixed factor model that models dependencies by a set of Gaussian
Processes. In contrast, our method learns directly a meadilow dimensional latent space that is



shared accross tasks. When using a Gaussian noise modelpdal does not require a variational
approximation.

Experiments on digit recognition and newsgroup classifiogtasks indicate that the ability to trans-

fer non-linear, low-dimensional features across problears provide significant performance im-

provements, especially when the target task has relatfeghtraining examples compared to the
source problems used to learn the latent space. Baselirexigmts confirm that learning the

shared latent space discriminatively is important; sempiesvised learning underperformed transfer
learning.

In the remainder of the paper, we first describe our appraaddarn a discriminative latent space
with a single classification task. We then extend this to thdtintask setting, jointly optimizing
the latent space to account for each task as well as the yimdpdata. The learnt latent space is
used when learning future tasks. We experiment with diffetigit recognition and newsgroups
classification tasks, and conclude with a discussion of aethod and avenues for future work.

2 Probabilistic Discriminative Latent Variable Model

Conventional classification methods suffer when applieprtdblems with high dimensional input
spaces and very small training sets. If, however, the highedsional data in fact lie on a low-
dimensional manifold, accurate classification may be jpéessvith a small amount of training data
if that manifold is discovered by the classification method.

More formally, letY = [yi,---,yn]? be the matrix composed of all the observations, vithe
NP, and letZ = [z, - ,zn]T be the matrix composed of all the labels, withe R3. Traditional
discriminative approaches to classification tried to eaterthe mapping from observations to labels.
Probabilistic discriminative approaches estimate théaldity of the labels given the observations
p(Z[Y).

We are interested in learning a low dimensional represientaf the data useful for classification.
To have a full Bayesian treatement of the problem, one showdyinalize over all the possible
latent configurations

p(ZY) = /X P(Z, XY )X | 1)

whereX = [xj,---,xy|’ denote the matrix whose rows represent the positions intlatgace,
x; € R4, However, such marginalization is intractable when thatiehship between the obser-
vations and the labels is non-linear. Instead one couldexppeatep(Z|Y) by taking the MAP
estimate ofX. Similar approximations have been used to learn latenalbblimodels [7].

We place a Gaussian process prior over the observatiortstisaic
p(Y|X) = HN )0, Ky) @

wherey ;) is thei-th column ofY, and the elements of the kernel matkx- < RNVXN are defined
by the covariance functiotKy ), ; = ky (xi,x;). In particular, we use a kernel that is the sum of
an RBF, a bias or constant term, and a noise term,

brx) = Gresp (<2 lx =¥} + b+ 1

wheres = {31, - - , 1} comprises the kernel hyperparameters that govern the oeggance, the
RBF support width, the bias and the variance of the additdise) respectively.

We introduce an additional intermediate variable ®°, such thatU = [uy,--- ,uy]” and place
a Gaussian process prior ovigr

S
j=1
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Figure 1:Graphical modelsof (a) GPLVM, (b) our probabilistic discriminative modelrfa single
task, and (c) our Discriminative Transfer model.

whereU ;y is thej-th column ofU. We relate this intermediate variable to the observed lasielg
anoise model, p(Z|U). Different noise models can be chosen, typical exampleshar&aussian
and probit noise models.

Assuming independence between the observations and Gibelsthe latent variables
p(Y, Z[X) = p(Y|X)p(Z|X) 4

we can write
(XY, Z) x p(X)p(Y|X) /U p(Z|U)p(U[X)dU . (5)

Fig. 1 (b) depicts the graphical model of our discriminatatent variable model.

With a Gaussian noise model(Z|U) = AN(Z|U, ¢1), the integral in (5) can be done in closed
form, and learning the model is equivalent to minimizing tiegative log posterior

D 1 1
L = ShKy|+gtr (Ky'YYT™) + §1n|KZ| + gt (K,;'2zZ")

+ > B+ Y Iy + Y [xill*+ C (6)

where(; is a constant an&K ;, = K + ¢2I. With a Gaussian noise model, the model is similar to
the one introduced by [15] to learn a common structure batwee observation types. However, the
context is very different; we are interested in learningtariaspace that can discriminate between
classes.

With a non-Gaussian noise model an aproximation to theiategeds to be performed. To approxi-
mate the integral required in (6) we used a single pass ofhectation propagation algorithm [12];
this is sometimes known as assumed density filtering (ADpidtes of site means and parameters
of the ADF approximation were interleaved with updates efltitent locations.

Fig. 2 shows an example where a two-class problem is learsiad () PCA, (b) GPLVM, and our
probabilistic discriminative model with (c) Gaussian ad)l grobit noise models. Jointly learning
the reconstruction and classification mappings sepatfa¢edifferent classes in the latent space and
results in better classification performance.

The Gaussian noise model leads to a greater separationadthé latent space. This is perhaps to
be expected, as the constraints imposed by the labels ththagsaussian noise model are stronger
than those imposed by a probit noise model. The probit nois@efsimply forces the respective
classes to fall either side of the decision boundary, wissteaGaussian noise model encodes extra
information about how far each class should be apart on geeréig. 3 shows mean classification
errors for the USPS database as a function of the number of@ga when using the Gaussian and
probit noise models for 2-D and 3-D latent spaces. Note tleaGaussian noise model in general
outperforms the probit.
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Figure 2: Probabilistic discriminative model. Low dimensional representations learned using (a)
PCA, (b) GPLVM, (c) our probabilistic discriminative mod¢bection 2) with a Gaussian noise
model, and (d) our probabilistic discriminative model wéthprobit noise model. The data is com-
posed of two different classes. The training examples ofileclasses are depicted as red crosses
and green circles. Note how the discriminative model sdépaithe classes, specially when using a
Gaussian noise model.
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Figure 3: Noise models Mean error for a discriminative single-task model usingu&aan and
probit noise models and 2—-D and 3-D latent spaces. The taskst®in discriminating 3's vs 5’s in
the USPS database. For the same latent space dimensighaiGaussian noise model performs in
general better than the probit noise model. The results axgmged over 5 trials.

3 Transfer Learning with a Shared Latent Space

In our transfer learning scenario we are interested in Iegralow dimensional representation from
a set of related problems. We assume that if a latent spacesedsl for a set of tasks, it will be
useful for future related tasks.



One of the advantages of using a low dimensional represemiaftthe data for classification is that
fewer parameters need to be estimated, thus reducing thieenwhexamples required for training.
Therefore, if we can find a useful low dimensional repredentausing previous tasks, we can
effectively reduce the number of examples needed for legrttie new task. More importantly, the
latent space can discover how related the different sanapéepoints that are close in latent space
are related.

In this section we show how the discriminative latent vagainodel described above can be ex-
tended to the transfer learning scenario. In particularadept an asymmetric approach that first
learns a latent space from a set of related problems, andusesithat low dimensional space to
perform classification for the target task.

3.1 Jointly learning P related problems

In this section we describe how to leafhrelated tasks with a discriminative shared representation

LetY® = [y'?) ... ,yg\’,’z]T be theN, observations associated to problgnSimilarly let X () =
xP,... x)T be the latent coordinates for problemandZ® = [z, - .. ’Z%Z]T be the labels

for the p-th problem.

Since we want to discover the relateness of the samples fitfenetht tasks, we place a Gaussian
process prior over all observations from all related protdesuch that

o 1 1 o
p(Y|X) = T exXp (—Qtr (KYIYYT)) , )
1
whereT} is a normalization factory = [Y(),... | Y(P))T is the set of all observationX =
(XM ... XP)NT are the latent coordinates for all problems, dg¢ is the covariance matrix

formed by elements of all the problerh@g(.p), x§k)).

Note that in (7) all tasks can be related (i.e., the covaganatrix is not block diagonal), and that the
proximity in the latent space captures the relateness ataimple level, i.e., if two observations of
different tasks are related, their corresponding lateotdioates will be close, and their covariance

k(x{”, x!*)) will be large.

As the mapping from latent space to labels is different fahgaroblem, we assume independence
of the labels of the different problems given the latentalales,

p(Y,ZX) = p(Y[X) Hp ®x®), ®)

whereZ are the labels for all problems.

Note that our model (Fig. 1 (c)) is a generative model of tha déth a shared latent space across
problems, and a set of independent (given the latent vasalohappings modeling each classifica-
tion task

p(Z®)[XP)) = / | )p(z(mm)p(U(p)‘X@))dU(p) . ©)
U

As before, we place a Gaussian process priop@d(?)|X(?)). Different noise models can be
chosen. In particular, when using a Gaussian noise modelintegration in (9) can be done in
closed form. Learning the model is then done by minimizirgyriegative log posterior that is
P
D 1 _ S 1 -1 T
Lry = ShfKy|+ 5t (K'YYT) + ) (21n|KZ + 5t (k™ 2z ))

i=1

+ Zmﬂz + ZZan’) + ) Il + O (10)

plz

whereC; is a constantK'? Z = K(Z) + 021, and 4 are the hyperparameters associated with
problemp. Note that now, there ar® = N, + Ny hyperparameters to estimate, whé¥g is the
number of hyperparameters to model a single latent spaebétsl mapping, ant¥y- is the number

of hyperparameters of the mapping from the latent spaceetolikervations.



3.2 Transfer learning with the joint model

Now that we can find a low dimensional representation thaséful for multiple tasks, we turn our
attention to the problem of using that representation irtaréutask.

Let Y (ter9¢t) pe the observations for the target problem. Given the latgresentation learned
from p related problems, our transfer learning algorithm prosesedfollows. First the target latent
positionsX (*fa79¢t) gre infered, and then the mapping from latent space to labtarned using a
Gaussian Process.

Infering the latent positions for the target observationswvoives maximizing
p(Y (target)| x (target) X y). This is computationally expensive. To speed up this p®ces
we incorporate back-constraints [11] to learn the inverapping (i.e., mapping from observations
to latent space) as a parametric function = g;(y;;a). In particular we use an MLP to model
the relation betweeX andY. Given the target observations, their latent coordiantesamputed

simply by evaluating the parametric mappirng‘"g“) =g (ygt‘"geﬂ; a), wherea is learned from
the related problems.

An alternative approach to our transfer learning methodsist® of jointly learning the target and
related problems. However, in practice when the targetlpmb have few examples compared to
the related problems, the results are very similar. The ratdge of the two step optimization is
that if the latent space has already been learned (from atpate very large collection of related
problems) training the target tasks becomes very fast.

4 Experimental Results

We conducted experiments on two datasets, the USPS datasetife UCI repository, and a news-
group dataset [6]. We compare our transfer learning appré&ection 3) to two baselines. The
first baseline ignores the related problems and learns ardisative single-task model (Section 2)
using only data from the target problem.

The second baseline uses only the observations from thtedegdeoblems but not their labels. More
specifically, it learns a PCA space using data from the rélat®blems and projects the target
observations onto that space. It then learns the mappimg fhe projected target samples to the
target labels with a Gaussian process.

For all experiments we used a two dimensional latent spag@daussian noise model motivated
by the results shown in Section 2 (Fig. 3). All optimizatiovesre performed with conjugate gradient
descent and run for a maximum B0 iterations.

4.1 USPS dataset

We conducted experiments on the first five digits of the USR&seé# we regard the binary detection
of each digit as a separate task. Each of the tasks consdgsaating one digit from the other digfts
For every task we generate a labeled training set by randpioking 300 positive examples and
300 negative examples (sampled from the other four digits). Wfeegate a testing set for each task
in a similar manner.

In the first set of experiments we transfer a representatiaméd fron600 training examples300
positive and300 negative) from a single other problem. We evaluate the padace of our al-
gorithm and the baselines for different training set sizethe target problem using0 random
partitions of the data. As depicted by Fig. 4, in all casesdiseriminative single problem model
(Section 2) gives lower error rates than the PCA-based sapervised baseline, illustrating the im-
portance of learning the latent space discriminativelansferring from any task except from digit
5 increases performance relative to the baseline, suggastt digit 5 might not be as related. The
self-transfer case gives an upperbound on the performance of transfeingait tells us what the
performance would be if the problems wéudy related (Fig. 4 (c)).

1In particular we focus on detecting 3's from the other digits (i.e., 1%, &5, 5's) since it is known to be
one of the most difficult problems in this dataset.
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Figure 4: Transfering the latent spacelearned from a single source problem to a target problem.
The target problem is to discriminate 3's from other digitsg the source problems are to similarly
detect (a) 1's, (b) 2’s, (c) 3's, (d) 4's, and (e) 5’s. Eactatet! problem is trained witB00 positive
examples an@00 negative examples of the other four digits. Our algorithed)ris compared
against two baselines: a single-task probabilistic disitrative model that learns a latent space only
from the target data (black) and the result of PCA-based-seérvised learning with unlabeled
data from the source problem (green). Note that the 5's probhight be less related to the 3's
since the transfer learning does not help. In all cases &xxmptransfer (c), the PCA baseline
underperforms the discriminative probabilistic modebwing the importance of discriminatively
learning the latent space.
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Figure 5:Joint learning of the latent space from multiple source problems and tearefthe target
task. The source and target problems are as above. ResoljdDiscriminative Transfer are shown
in red and are compared against two baselines, PCA-basaesaparvised learning (green) and a
single-task probabilistic discriminative model trainadtbe target problem (black). Transfer from
other related (and less related) problems improves theimeaince with respect to learning with a
single-task model, especially when the number of examplasiall. PCA-based semi-supervised
learning performs poorly in this case. Figure (a) showsltesuhen usingl00 positive examples
and 100 negative examples for each related problem, and (b) shasudtsewnith 200 positive and
200 negative examples.

The previous experiment showed that transferring a shatedtlspace from a related problem can
significantly reduce the number of training examples neadédeiarn the target problem. However,
in practice we do not know what problem to choose for trankésrause we do not know a priori
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Figure 6: NewsGroups dataset: (a) Mean error rates over the 10 newsgroup tasks. (b-c) Mean
error rates over the 10 newsgroup tasks when trained witln®les. Task 1= Motorcycles vs MS-
Windows, Task 2= Baseball vs Politics.misc, Task 3= Retigie Politics.guns Task 4= Atheism vs
Autos, Task 5= IBM.hardware vs Forsale, Task 6= Politicddigeast vs Sci.med, Task 7= Christian
vs Hockey, Task 8= Space vs MAC.hardware, Task 9= WindowsEd@ctronics, Task 10= Sci.crypt

vs Comp.graphics

which problems are related. What we need is a transfer legalgorithm that takes a set containing
mostly related problems and learns good shared latent spatieout being adversely affected by
the presence of a few less-related problems. In our secamd egperiments we test the robustness
of our transfer learning algorithm in this more realistiesario and transfer a shared representation
from all previous problems (i.e., detecting 1's, 2's, 4’s)5The results in Fig. 5 show that our trans-
fer learning approach improves performance significardgiygared to the baselines. Our algorithm
performs similarly usin@00 (Fig. 5(a)) or400 (Fig. 5(b)) examples for each related problem.

4.2 20 Newsgroups Dataset

We used a standard newsgroup classification dataset [6Ltmaains postings from 20 different
newsgroups Following [14], 10 binary classification tasks were defirgdrandomly pairing
classes (e.g., a task consists of predicting if a given decitrinelongs to the Motorcycles or MS-
Windows newsgroup). Each document was represented usiiag aftwords. A vocabulary of
approximately 1700 words was created by taking the unioh@®?60 most frequent words for each
of the 20 newsgroups (after stemming and removing stop WolNiste that this setting is different
from the one in [14], where every binary task used a vocaputznmed by picking the 250 most
frequent words for each of the two topics in the discrimioatiask.

To construct a transfer learning setting we divide the tastikstwo groups, the first contained tasks
1 to 5 and the second contained tasks 6 to 10. We jointly lele@aeh group, and use the problems
from the other group as target tasks. 100 documents werefoisedch related problem. We report
results averaged over 10 partitions of the data.

Fig. 6 (a) shows average test error results over the 10 taskisd discriminative single-task model,
PCA and our transfer learning approach. For small traingtgsizes (i.e. less than 16 examples)
using transfer learning produces significantly lower agerarror than both baselines.

Fig. 6 (b-c) shows test error results for each task whenethinith 8 examples. For 6 out of
the 10 tasks we observe positive transfer; transfer legn@duced the error by at least 9% and at
most 38 %. The tasks that exhibit most positive transfer @teristian vs Hockey, and Space vs
MAC.hardware. For two tasks there is no significant diffeebetween transfer learning and the
baseline. Finally, for the tasks Politics.middleeast vensed and Sci.crypt vs Comp.graphics we
observe negative transfer.

2ptheism, Autos, Baseball, Motorcycles, MS-Windows,Christian, Conaplgics, Electronics,Forsale,
Hockey, IBM.hardware, MAC.hardware, Politics.guns, Politics.n@ddst, Politics.misc, Religion, Sci.crypt,
Sci.med, Space, Windows.x



5 Conclusion and Discussion

We have presented a new method for transfer learning bassidlamed non-linear latent spaces that
estimates task relateness in a per-sample basis. Our mpénfmms joint optimization within a
Gaussian Process framework, and discovers latent spadels avk simultaneously effective at de-
scribing the observed data and solving several classditatisks. When transferred to new tasks
with relatively few training examples, learning can beéasind/or more accurate with this approach.
Experiments on digit recognition and newsgroup classifioatisks demonstrated significantly im-
proved performance when compared to baseline performaitbeawepresentation derived from a
semi-supervised learning approach or with a discrimieadipproach that uses only the target data.

We now turn to discuss possible extensions of the algorifimogosed in this paper.

Semi-supervised learning: The discriminative latent space model of section 2, and dlirat j
model of section 3 can be extended to the semi-supervisadgasimply constructing the co-
variance matrixKy- over the label and unlabeled data, while definkig only over the labeled
examples.

Making the algorithm efficient: The main computational burden of our approach is the compu-
tation of the inverse oKy, its computational cost being of the order@fN?), whereN is in the
number of training examples in all the problems. The lateis<Sian proceses sparsification tech-
niques [13] can be applied to both algorithms presentedisnpiéper in the same way as they were
applied to the Gaussian Process Latent Variable Model [Bha@icular interest is their application

to the mapping from latent space to observations sincehieisrtost expensive computationally. The
complexity of our algorithms can then be reducedtaV M?), whereM is the number of inducing
variables.

Noise models: Different noise models can be exploited in our frameworkuteng in different
behaviours. In this paper we have shown results using a aauasd a probit noise model. In
the experiments we performed, the Gaussian noise modedrdotmed the probit, learning a more
discriminative latent space. Other noise models could la¢sexploited. Of particular interest to us
is theNull Category Noise Model (NCNM) [9] for semi-supervised learning that explicityextipts
to separate the different classes. A rigourous comparisdifferent noise models is our subject of
future research.
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