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Abstract—Recovering the 3D shape of a nonrigid surface from a single viewpoint is known to be both ambiguous and challenging.
Resolving the ambiguities typically requires prior knowledge about the most likely deformations that the surface may undergo. It often
takes the form of a global deformation model that can be learned from training data. While effective, this approach suffers from the fact
that a new model must be learned for each new surface, which means acquiring new training data and may be impractical.

In this paper, we replace the global models by linear local ones for surface patches, which can be assembled to represent arbitrary
surface shapes as long as they are made of the same material. Not only do they eliminate the need to retrain the model for different
surface shapes, they also let us formulate 3D shape reconstruction from correspondences as either an algebraic problem that can be
solved in closed-form or a convex optimization problem whose solution can be found using standard numerical packages.

We present quantitative results on synthetic data, as well as qualitative ones on real images.

Index Terms—Deformable surfaces, Monocular shape recovery, Deformation models

O

1 INTRODUCTION complex surface deformations for surfaces made of difteren

Being able to recover the 3D shape of deformable surfad@&terials from singlénputimages when correspondences can
using a single camera would make it possible to field recol® estgbhshed with aeferenceimage in which the surface
struction systems that run on widely available hardwaravHo Shape is .known. . :

ever, because many different 3D shapes can have virtualy th In earhe_r work [29], we used nonlinear Gaussian Process
same projection, such monocular shape recovery is ianrerjnatent Varlable Models to represent t_he space of local sarfa
ambiguous. The solutions that have been proposed over fleformations. This has proved effective to recover the 3D de

years mainly fall into two classes: Those that involve pbgsi formations of relatively featureless surfaces from imafges
inspired models [32], [8], [19], [18], [22], [21], [35], [3&nd which only limited shape information can be extracted. This

those that learn global models from training data [9], [4], [ ability, however_, came at a price: Using no_nlinear Qefo'r_mrat
6], [11, (331, [17], [2], [15], [36], [39], [28]. The former models results in highly non-convex objective functionkjak
solutions often entail designing complex objective fuois requires good initialization. Furthermore, truly captgrithe

and require hard-to-obtain knowledge about the precise nfhavior of a material stills requires acquiring trainirgtal
terial properties of the target surfaces. The latter requast which involves a painstaking motion capture process.

amounts of training data, which may not be available eithe,r,In this work, we advocate using simpler linear models

and only produce models for specific object shapes. As|r}15tead to represent the local deformations in conjunction
inextensibility constraints. We show that, depending

consequence, one has to learn a specific deformation mo\efgh

for each individual object, even when all objects are made 8f Whether the constraints are formulated as equalities or
the same material inequalities on distances between vertices of the mesh that

To overcome these limitations, we note that represents the surface, reconstruction can be formuléteat e

locally all s of hsically h ; as a algebraic problem that can be solved in closed form or
» locally all parts of a physically homogeneous surfatky 5 convex one whose solution can be found using standard
obey the same deformation rules;

. . numerical routines [5]. Either way, this relieves us frome th
« the local deformations are more constrained than thoﬁged of an initialization and allows automatic reconstourct
of the global surface and can be learned from few%lrr sharply folding shapes such as those of Fig. 1 from
examples. single imagesFurthermore, this entails no loss of accuracy
To take advantage of these facts, we represent the manffoldath respect to the nonlinear models, especially when using
local surface deformations, and regularize the recontsruc inequality constraints as we first proposed in [25] rathanth
of a global surface by encouraging its patches to conform #ige equality constraints we introduced in [27]. Finally, if
the local models. As shown in Flg 1, this allows us to reCOVﬂécessary, the linear models can be learned from Synthﬁtica
generated data without even having to acquire motion captur
e M. Salzmann is with the Toyota Technological Institute atc&@fo, IL, data, which makes our approach practical even when such
60637, USA. motion capture cannot be performed.
e P.Fuais with the School of Computer and Communication SerEcole [N short, we propose a generally applicable approach to re-
Polytechnique Fédérale, 1015 Lausanne, Switzerland. covering 3D shape from single images that is fully automated
This work was supported in part by the Swiss National Sci¢oemdation. and can handle very complex deformations including sharp




Fig. 1. Reconstruction of deformable surfaces undergoing complex deformations. Top Row: Reconstructed 3D mesh
overlaid on the input image. Bottom Row: Side view of the same mesh.

folds and potentially featureless parts of the surface kwhie Nonrigid structure-from-motion methods also rely on
believe to be beyond the current state-of-the-art. learned linear models to constrain the relative motion of 3D
points. Early approaches [7], [1] used known basis vectors,
but the idea was expanded to simultaneously recover theeshap
2 RELATED WORK and the modes from image sequences [6], [33], [39], [2],,[15]
3D reconstruction of nonrigid surfaces from single imaggsg]. However, since they rely on tracking points over long
is a severely under-constrained problem since many differgequences, these methods often fail in practice. Only very
shapes can produce very similar projections. Many methoggently has this problem been alleviated by using hieieath
have therefore been proposed over the years to favor the M&Fdrs [34], which assumes that the image measurements
likely shapes and disambiguate the problem. and 3D shapes come from a common probability distribu-
The earliest approaches were inspired by physics and {ibn whose parameters are unknown. In any event, while
volved minimizing the sum of an internal energy representinearning deformation modes online is a very attractive jidea
the physical behavior of the surface and an external ofife resulting methods are only effective for relatively §ma
derived from image data [32]. Many variations, such ageformations since using a large number of deformation mode
balloons [8], deformable superquadrics [19] and thingdatmakes the solution more ambiguous. Furthermore, whether
under tension [18], have since been proposed. Modal anglarned offline or online, global models have the drawback

ysis has been applied to reduce the number of degreesppbnly being valid for a particular surface shape.
freedom of the problem by modeling the deformations as

linear combinations of vibration modes [22], [21]. Sincegh
formulations oversimplify reality, especially in the pesse
of large deformations, more accurate nonlinear models w

Recently, we proposed to replace the global deformation
models by local ones that can be learned from smaller amounts
é)rfetraining data [29]. We represented the deformations céllo

- tches of a surface with Gaussian Process Latent Variable
proposed [35], [3]. However, to correctly reflect realityese pa .
models need to be carefully hand-crafted, and give rise %odels (GPLVM) [13], and showed that a global deformation

highly nonlinear energy terms. In short, even though inCO[P_rior could be obtained by combining thg local ones follcgvir_1
porating physical laws into the algorithms seems natuha, ta Product of Experts (PoE) [12] paradigm. This let us build

resulting methods suffer from two major drawbacks. Fireg o models yalid for any shape made of a particular material, and
must specify material parameters that are typically unknOV\}hu_S avoided the need to I(_aarn a new model for every new
Second, making them accurate in the presence of large defé?lem shape. Hovyever_, using a nonlmear_representat!on of
mations requires designing very complex objective fumtio 1€ local deformation ¥|elds non-convex obje<_:t|ve funm;(_)_
that are often difficult to optimize. Thgrefore, to be effective, these modgls require goodalniti

Methods that learn global models from training data wefgation and can only be used for tracking purposes.
introduced to overcome these limitations. As in modal anal- Several methods have recently been proposed to recover the
ysis, surface deformations can be expressed as linear camape of inextensible surfaces without an explicit defaiona
binations of deformation modes. These modes, however, anedel. Some are specifically designed for applicable sasfac
obtained from training examples rather than from stiffnessich as sheets of paper [11], [14], [23]. Others explicitly
matrices and can therefore capture more of the true varialilcorporate the fact that the distances between surfacgspoi
ity. For faces, Active Appearance Models [9] pioneered thimust remain constant as constraints in the reconstruction
approach in 2D and were quickly followed by 3D Morphablerocess [27], [10], [24], [31]. This approach is very attiae
Models [4]. In previous work [28], we used a similar approachecause many materials do not perceptibly shrink or stretch
for general nonrigid surfaces and introduced a practical was they deform. However, in our experience, additional reg-
of generating synthetic training data. ularization is still required when the surface is not tegtur



Reference Input Output

Fig. 2. Establishing 3D-to-2D correspondences. Given the reference mesh and image, we compute correspondences
between 3D mesh locations given in barycentric coordinates and 2D feature points. From a new input image, we
compute SIFT [16] matches with the reference image, which links the 3D surface points to 2D locations on the input
image. The 3D shape is then obtained by deforming the mesh to make the 3D points best reproject on the input image.

enough. Furthermore, as will be discussed below, the constd SHAPE FROM CORRESPONDENCES
distance assumption may be violated in the presence of shg{Rnis section, we formulate 3D surface reconstructiomrfro

folds, which introduces inaccuracies. 3D-to-2D correspondences as a linear problem. We then show
that the resulting linear system is ill-conditioned and sthu
3 APPROACH AND FORMULATION requires additional constraints.

In this paper, we present a method that combines the str&ngth ) )
of inter-vertex distance constraints with those of locdode 4-1 Linear Formulation
mation models. It incorporates the following ingredients:  Following [26], we first show that, given a set of 3D-to-2D

« Shapefrom correspondences. We show that reconstruct- correspondences, the vector of vertex coordin&esan be

ing 3D shape from 3D-to-2D correspondences amourifdind as the solution- of a Iinegr system. .
to solving an ill-conditioned linear problem. Let p be a 3D point belonging to facet with barycen-

« Linear local models: To regularize the reconstructiontric coordinatesibi, b2, bs]. Hence, we can write it ap =

and handle untextured surface parts, we introduce linear—1 biVyi » Where{vy;}i—1 23 are the three vertices of
local models that can be learned either from motioi@cet f. The fact thatp projects to the 2D image location

capture data or from easy-to-generate synthetic trainifig: v) can now be expressed by the relation

data.
u
« Inter-Vertex Distance Constraints: Distance constraints A(bivis+bavis+bsvys) =k | v (1)
are inherently non-linear and therefore not effectively en v ’ v 1 ’

forced by the linear models. We therefore introduce them
as non-linear constraints in our optimization scheme. WWhere & is a scalar accounting for depth. Since, from the
will show that this results in either an algebraic probler@st row of Eq. 1,k can be expressed in terms of the vertex
that can be solved in closed-form or a convex optimizgoordinates, we have
tion problem, depending on whether the constraints are

formulated as equalities or inequalities. [ bhH  bH  bsH } :;; -0, )
In the remainder of the paper, we discuss each one of these Vi3
three ingredients in more detail. We then evaluate quantita.
tively the resulting algorithms. with u
To this end, we represent a surface as a triangulated mesh H=A3:3— { v } Asg 3)
made ofn, verticesv; = [z;,v:, 2] , 1 <i < n, connected . . _
by n. edges. LetX = [v],---,vI ]” be the vector of where A2, 3 contains the first two rows oA, and As is

coordinates obtained by concatenating the the third one.mn. such correspondences between 3D surface
We assume that we are given a setpf3D-to-2D corre- points and 2D image locations therefore provitte. linear
spondences between the surface and an image. As depicte§®jjstraints such as those of Eqg. 2. They can be jointly
Fig. 2, each correspondence relates a 3D point on the me&fPressed by the linear system
expressed in terms of its barycentric coordinates witheesp MX = 0 @)
to the facet to which it belongs, and a 2D feature in the image. ’
Additionally, we assume the camera to be calibrated anslhereM is a2n. x 3n,, matrix obtained by concatenating the
therefore, the matrix of intrinsic parametetsto be known. To [ 5:H b.H bsH | matrices of Eq. 2.
simplify our notations without loss of generality, we exgge  Although solving the system of Eq. 4 yields a surface that
the vertex coordinates in the camera referential. Note, thegprojects correctly on the image, there is no guarantdettha
since we allow all the mesh vertices to move simultaneousBD shape corresponds to reality. Indeed, not only is the onk
rigid surface motion is possible. M not full due to the well-known global scale ambiguity, but,
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vide the mesh into overlapping patches and model their
deformations as linear combinations of modes. This lets
05 us represent surfaces of arbitrary shape or topology by
adequately assembling local patches.
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Fig. 3. Top row: Original and side views of a surface we take the overall mesh deformation energy to be the sum of
used to generate a synthetic sequence. The 3D shape those. In the appendix, we use motion capture data to provide
was reconstructed by an optical motion capture system. empirical evidence that an energy formulated in this manner
Bottom row: Eigenvalues corresponding to the linear sys- can be understood as the negative log of a shape prior.
tem of Eq. 4 written from correspondences randomly Assuming that all parts of the surface follow similar defor-
established for the mesh of the top left figure. The system  mation rules, the modes are the same for all patches and can
was written in terms of 243 vertex coordinates. One third  be learned jointly, which minimizes the required amount of
of the eigenvalues are close to zero. training data. Since patches can be assembled into ailyitrar
shaped global meshes, only one deformation model need be
for all practical purposes, it is even lower. More specifical |€arned, irrespective of mesh shape and topology. Furtirerm
even where there are many correspondences, one third, Ipgal models also let us explicitly account for the fact that
n,, of the eigenvalues oMM are very close to zero, asParts of the surface are much less textured than others and
illustrated by Fig. 3. In [26], we showed that this corresgon Should therefore rely more strongly on the deformation rhode
to one depth ambiguity per mesh vertex. As a result, everi smHnis would not be possible with a global representation.
amounts of noise produce large instabilities in the receverPepending on parameter settings, it would either penalize
shape. complex deformations excessively, or allow the poorlyuesd
This suggests that additional constraints have to be add€gions to assume unlikely shapes.
to guarantee a unique and stable solution. In the following, L€t X: be thex-, y-, z-coordinates of am; x n; square
we will show that using linear local deformation models ifatch of the mesh. We model the variationsXof as a linear
conjunction with inter-vertex distance constraints ddesjob combination ofn,,, modes, which we write in matrix form as
and yields effective solutions. X; = X%+ Ac; , (5)

5 LINEAR LOCAL MODELS where X? represents the coordinates of the patch in the

ference imageA is the matrix whose columns are the

. . . . r
In this section we 'erdl.Jce our surface deforr‘r_\atlon mOdﬁjodes, ana; is the corresponding vector of mode weights.
and show that it lets us introduce a regularization term that

{ trains the def i h f q i practice, the columns ofA contain the eigenvectors of
greatly constrains the detormations the surlace can underg, , training data covariance matrix, and were computed by
However, this does not remove all ambiguities, which mak

the lenath traints of Section 6 %%rforming Principal Component Analysis on a set of de-
€ length constraints ot section & hecessary. formed5 x 5 meshes. As in [28], these meshes were obtained

_ by simulating inextensible deformations. More specifigall
5.1 Learning Local Models we assigned random values uniformly sampled in the range
Representing the shape of a non-rigid surface as a lingafr/6, /6] to a determining subset of the angles between the
combination of basis vectors is a well-known technique hSu¢acets of the mesh. Some of the resulting modes are depicted
a deformation basis can be obtained by modal analysis [2R],Fig. 5. Note that the same modes were usedalbrour
[21], from training data [9], [4], [28], or directly from the experiments, independently of the material or shape of the
images [39], [2], [15], [34], [38]. surface of interest.

As shown in Fig. 4, we follow a similar idea, but, rather In [29], we introduced nonlinear local models. While they
than introducing a single model for the whole surface, weffer a more accurate representation of the space of pessibl
subdivide the mesh into sets of overlapping patches and imodeformations, which is known to be nonlinear, they suffer
the deformation of each one as a linear combination of modé&®m two drawbacks. First, they yield a highly non-convex
This lets us derive a deformation energy for each patch, asidape likelihood function, which only makes them practical



Fig. 5. Visual interpretation of the local deformation modes. We show the effect of adding (blue) or subtracting (green)
some of the modes to the mean shape (red). Note that, despite the fact that all the training examples were inextensible
deformations of a mesh, PCA yields extension modes.

for tracking purposes. Second, to accurately capture theespinversely proportional to the number of correspondences in
of feasible deformations of a particular material, they chegpatchi. We take it to be

training examples acquired from a real object, which ineslv ;

a painstaking process. Our linear local models have theradva i — exp (_ : Tin ) )
tage that they can be learned from synthetic training da, t median(nf, >0, 1 <k <nyp)

can easily be generated. Furthermore, as long as sufficientl i . ) _
many modes are kept, they define an hyper-ellipsoid thiperen, is the number of inlier matches in patgh Note
encompasses the true nonlinear deformation space. Thereffiat the formulation of the shape regularization of Eq. &&pa
they can model arbitrarily complex shapes. In practice, H® the need to explicitly mtrqduce additional latent vialés
remain as general as possible, we ke#pthe modes and as was the case for the no_nl_mear Iocgl_models_ [29].
enforce deformations to remain plausible by regularizigrt 10 Prevent us from obtaining the trivial solutidXl = X°

coefficients according to their importance, as describéabe 0 the problem of Eq. 8, we solve it in conjunction with the
projection equations of Eq. 4. This lets us express the shape

reconstruction problem as the solution of

5.2 Local Models for Shape Recovery ) o2
When using a linear model for shape recovery, the usual mmﬁmzeHMX” + HWZL (X_X )H ' (10)

approach is to replace the original unknowns by the mm%?nce within theL,;-norms, both terms are linear X, this

welghts._However, since we model the global surface. W't|s equivalent to solving in the least-squares sense tharline
overlapping local patches, doing so would not constrain t Cstemn

shapes predicted by the weights associated to two suchgsatc

to be consistent. Fortunately, since the deformation modes S [ }1( } =0, (11)
are orthonormal, the coefficients of Eq. 5 can be directly
computed fromX; as where
T 0 o M 0
C; = A (Xz — Xz) . (6) S = WlL —WlLXO . (12)

We therefore use the vector of surface coordin&emtro- In Fig. 6, we plot the eigenvalueS”S for the mesh of
duced in Section 4.1. To enforce the individual surfacelpegc Fig 3.As' we can see, much fewer eigenvalues are close to

to conform to our linear local model, we use all the modeg,, g than before. This suggests that our linear local rsodel

and introduce the penalty term truly improve the conditioning of our problem. However, ssm
) eigenvalues remain small, which implies that some ambaguit

’ are still unresolved. This, for example, is the case of toball

where X is a diagonal matrix that contains the eigenvalu%‘:ale ambiguity that can be modeled by the extension modes

associated to the eigenvectorsAn It measures how far the . ?p%ted I(;]tFI?‘. IEI_) ' 'I(;herefg.re, atddtlﬁonal (E)c;nstralnts techie
c;, and therefore th&;, are from the training data. We then/Ntroduced to tully disambiguate the probiem.
write the global regularization term as the solution to the

R

optimization problem 6 NONLINEAR CONSTRAINTS
nnn%mzeHWzL (X=X, (8) In this section, we introduce the additional nonlinear con-

straints that, in conjunction with the linear local modefs o
whereL is ann,n? x n,, matrix which concatenates, copies the previous section, make shape recovery from 3D-to-2D
of X~1/2AT spread over the global mesK according to correspondences well-posed. We first introduce inextéitgib
the vertices of then, patchesX;, and X° is the reference constraints, and show that they yield a closed-form satutio
shape of the global mesNV; is a diagonal matrix containing of the reconstruction problem. Then, because these cartstra
n, individual valuesw; designed to account for the factmay be violated in the presence of sharp folds, we replace
that poorly-textured patches should rely more stronglyten tthem by distance inequalities, which results in a convex
model than well-textured ones. In other words, should be formulation.
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2 Fig. 7. Schematic representation of why inextensibility

15 constraints are ill-suited for sharp folds. Left: Two points
of the discrete representation of a continuous surface in

! its rest configuration. Right: When deformed, while the
05 geodesic distance between the two points is preserved,
the Euclidean one decreases. This suggests that distance

0 50 100 150 200 inequality constraints should be used rather than equali-

Fig. 6. Eigenvalues corresponding to the linear system of ties.

Eq. 11 for the mesh of Fig. 3. Note that fewer eigenvalues

are close to zero than when relying on texture only. the products3;s; must sum up to one. This yields the linear
However, some remain small, which suggests that the  gqyation

linear local models do not fully disambiguate the problem. s
> Bisirtt =1, (16)
=1

6.1 Distance Equality Constraints which we solve together with the quadratic edge constraints

Several recent approaches [24], [10], [27] rely on the faatt  Sincen, < 3n,, linearization becomes a viable option
many deformable surfaces, such as clothes or paper, afg netar solve our quadratic equations. To this end, we consider
inextensible. In our case, this means enforcing consgaittihe quadratic terms as additional variables, and define the
expressed as new (ns(ns + 3)/2)-dimensional vector of unknows ds =

. bl ,bg’7, such that
vy = vill? = 2y, VG B) € €, (g PPl

T
where £ represents the set of. edges of the mesh, and bi [Brs -+ s Bn. ], and T
I, is the length of the edge joining vertgxand vertexk Pa = [B181- BiBn,, P20, 520y s B, Bn.]” -

in the reference configuration. A typical way to solve suchinging a shape that satisfies the constraints describeceabo

quadratic constraints in closed-form is to linearize th&t&m, a4 now be expressed as solving the optimization problem
which involves introducing new unknowns for the quadratic

terms. In our case, this would yiefth,, (3n,+1)/2 unknowns, minimize |Dbg — d||* + ws (s> by — 1)2 . @7

which, for meshes of reasonable size, would quickly become _ _ )

intractable. Instead, we propose to describe the solutisnsWhereD is ann, x n(ns+1)/2 matrix built from the known

Eq. 11 with a reduced number of unknowns, which lets s d is then. x 1 vector of edge lengths in the reference

effectively enforce inextensibility constraints. configuration, ang*™+! is the row vector containing the last
Following the idea introduced in [20], we write the solutiorflément of eachs;. w; is a weight that sets the influence of

of the linear system of Eq. 11 as a weighted sum of tﬁg.e constraint of Eq. 16, an_d was alwqys set to 1le6. Note Fhat,

eigenvectorss; ,1 < i < n, of STS, which are associated With our new unknowns, this problem is equivalent to solving

with the n, smallest eigenvalues. Therefore we write a linear system in the least-squares sense, which can be done
" in closed-form.
X | _ - However, solving the problem of Eq. 17 directly would
=Y Bisi, (14) . oblen L0 :
1 p yield a meaningless solution since nothing links the linear

terms with the quadratic ones. To overcome this problem, we

since any such linear combinationsfis in the kernel o87'S multiply the linear equation of Eq. 16 by the individua)
and produces a mesh that simultaneously projects corregilich yieldsn, new equations of the form

on the image and conforms to the linear local models. Our .
problem now becomes one of finding appropriate values for ~ 5 3nu+l _ g 18
the 3;, which are the new unknowns. Zﬁ]ﬁlsz =5 (18)

We are now in a position to exploit the inextensibility of the , , . ,
surface by choosing thé; so that edge lengths are preservecﬁdd'ng these equations to Eq. 17 provides the missing link

Such; can be expressed as the solution of a set of quadraﬁﬁtween linear and quadratlc terms. Note_ that this dqes not
equations of the form truly guarantee consistency between the linear and quedrat

terms, but, in practice, it proved sufficient to yield meafin
Ns Na
- ; - reconstructions. We therefore solve the optimization @b
1> Bt = Bisk? =12, (15) P
i=1 =1

=1

minibmize |Dbg — d|*+w, ((s3nv+lb1 - 1)2 + ||D1qb||2) ,
where s{ is the 3x1 sub-vector ofs; corresponding to the (29)

coordinates of vertex ;. In addition to these quadratic con-where Dyq is ann, x ns(ns + 3)/2 matrix. Note that this
straints, we need to express the fact that the last eleméntpmblem can still be solved in closed-form. Given its sauati



Fig. 8. With a perspective camera model, lines-of-sight
are not parallel. Therefore, maximizing the area of a mesh (©) (d)

can be achieved by pushing it away from the camera. Top:  Fig. 9. Synthetic data acquired with a motion capture
In the absence of noise this can be done by maximizing  system. (a,b) Mesh and corresponding textured image of
the depth of the point along the line-of-sight. Bottom: With g smoothly deforming piece of cardboard. (c,d) Similar

noise, we replace the depth d; by the projection of the images for a piece of cloth with sharper folds.
point on the line-of-sight.

However, while our inequalities prevent the mesh from

we can compute the shape of the deforming surface froy,nging, they still allow it to shrink to a single point.igh
Eq. 14 with the linear terms of vecttr. Selecting the correct could be remedied by maximizing the mesh area under our

numbern, of eigenvectors to take into account is done by,straints. However, this would yield a non-convex proble
testing for all values smaller than a predefined threshaid, &,gteaq we exploit the fact that, in the perspective camera
by picking the one that gives the smallest mean edge lengi,je| the lines-of-sight are not parallel, as depicted Hzy t
variation. In practice the maximum value for was set to 20. top drawing of Fig. 8. Thus the largest distance between two
6.2 Distance Inequality Constraints points is reached when the surface is furthest away from the
' ) q y . ) _ . camera. Therefore, a nontrivial reconstruction can beiobda
As we will show in the results section, the |nextenS|b|I|t)fJy maximizing the depthi; of each point along its line-of-
constraints yield good reconstruction of smoothly defoini sjght ;. While, with noise-free correspondences, 3D surface
surfa(_:es. However, as illustrated by Fig. 7, such co_nSHa%oints are completely defined by their position along the
are violated when folds appear between mesh vertices, hﬁ(‘es-of—sight, they should be allowed to move away from
cause the Euclidean distance between points on the surfagen in the presence of noise, as depicted by the bottom
may decrease. It is therefore truer to reality to replace the Fig. 8. Therefore, rather than maximizinlg, we consider

inextensibility constraints by constraints that allow &S the projections ofp; on its line-of-sightq;, which can be
to come closer to each other, but not to move further apagmputed as

than their geodesic distance [25]. For all pairs of neighigpr plq; =X"B q; , (22)

verticesv; and v, we therefore replace the constraints of . . o _
Eq. 13 by inequality constraints written as where B; is the 3 x 3n,, matrix containing the barycentric

coordinates of point placed to correctly match the vertices
Vi = vill <Lk - (20)  of the facet to which the point belongs.
Note that, contrary to inextensibility constraints, thdstance =~ We can then add the maximization of the terms of Eq. 22
inequalities are convex [5]. As a consequence, there is ad néo the optimization problem of Eq. 21, which yields the new
to linearize them, and we could directly solve the problem convex problem

o 4. 0 Min
minimize ||MX]| + [[W,L (X - X%)]| @D inimize [IMX] + [|[WiL (X — X°)|| - wq > X"B]s;
subject to ||vi — vl <1k, V(j, k) €. X i=1

: . . oo subj —vi|| <1, j
This could be done using available convex optimization |aacI?ubJeCt bo l[vie = vill < Ljw, VG, k) € £, (23)

ages [30] by introducing a slack variable to minimize thetherewy is a weight that controls the relative influence of
norm [5]. depth maximization and image error minimization. In pregti
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Fig. 10. Reconstruction error for the cardboard sequence. Fig. 11. Similar plots as in 10 for the deformations of a
Mean vertex-to-vertex distance to ground-truth meshes piece of cloth.
from synthetic correspondences (top) and SIFT corre-
spondences (bottom). We compare our results with those  correspondences and tracks the deformation from frame to
of the methods in [27] (cyan) and [29] (green). Results frame due to the non-convexity of its objective function.
obtained with equality constraints are shown in red and To make our experiments as realistic as possible, we ob-
with inequalities in blue. tained 3D meshes, such as those of Fig. 9(a,c), by deforming
a sheet of cardboard and a more flexible piece of cloth in
we setwy to 2/3 because computing depths involvies,, front of an optical motion capture system. We then created
values agains®n;, projection equations. Since we simplycorrespondences in two different manners. We first created
added linear terms to the previous objective function, thempletely synthetic correspondences by randomly sagplin
optimization problem remains convex. the barycentric coordinates of the mesh facets, projecting
them with a known camera, and adding zero-mean Gaussian
noise with variance 2 to the image locations. To simulate
7 EXPERIMENTAL RESULTS real data even more accurately, we textured the meshes and

We now present results obtained on synthetic and real dataggnerated images, such as the ones of Fig. 9(b,d), withramifo
using our linear local models with either the inextensipili intensity noise in the rangé—10,10]. We then obtained
constraints of Section 6.1 or the distance inequalitieseaf-S correspondences by matching SIFT [16] features between a
tion 6.2. Note that the meshes we used to produce thesesresigiterence image and the inputimages. To cope with the esitlie
all have different dimensions. Nevertheless, thanks tdamal  resulting from this procedure, we implemented an iterated
models, we only had to compute the deformation modes onfgaveighting procedure that decreases a radius inside which

for 5x5 pacthes and then to combine them appropriately feerrespondences are considered as inliers. In practice, we
the different meshes. initialized this radius to 50 pixels and divided it by 2 at kac

iteration. We then weighted each valid line of the mafkik

i of Eq. 4 by a weight
7.1 Synthetic Data
We applied our two approaches to synthetic data to quantita- w; = exp (—
tively evaluate their performance. Furthermore, we compar
them against our closed-form solution relying on a globatheree; is the reprojection error of correspondericandn;,
deformation model and inextensibility constraints [27hda is the number of inliers. The same procedure was used with
against nonlinear local deformation models [29]. Note th#he synthetic outliers described below and with real images
the latter method relies on template matching instead discussed in Section 7.2.

€

) ()

median(e; , 1 < j < np)



(a) (b) (d)
Fig. 12. Visual comparison of the recovered meshes for the deformation of Fig. 9(a). (a) Ground truth. Mesh recovered
with (b) non-linear local models, (c) global model with equality constraints, (d) local models with equality constraints,
(e) local models with inequality constraints. Beacause the deformation is fairly smooth, all recovered shapes are fairly
similar.

(@) (b) () (d) (e)

Fig. 13. Visual comparison of the recovered meshes for the deformation of Fig. 9(c). (a) Ground truth. Mesh recovered
with (b) non-linear local models, (c) global model with equality constraints, (d) local models with equality constraints, (e)
local models with inequality constraints. Because the folds are sharp, using equality constraints tends to oversmooth
whereas inequalities or nonlinear models yields better results.

In Figs. 10 and 11, we compare the results of the fowur approach to outliers by assigning random image location
different techniques on the sheet of cardboard and the piecdo a given percentage of the synthetic correspondences. In
cloth, respectively. We plot the mean vertex-to-vertexatise Fig. 15, we plot the mean reconstruction error over the
between the reconstructed mesh and the ground-truth one.€@quences as a function of the outlier rate. As we can see,
the top plot of each figure, we show the results obtained wibloth methods are robust to up to 50% outliers. However, the
synthetic matches, and on the bottom one, the errors olbtailmistance equality constraints are more stable for high#ieou
with SIFT matches. In Figs. 12 and 13, we visually comparates.
the results of all approaches for the frames in which theIn Figs. 16 and 17, we show the limitations of our approach
deformation is largest, i.e. frames 100 and 60, respegtivelvhen there is little texture concentrated in a single arehef
From these curves, we can observe that using inequalityrface, which almost amounts to a worst-case scenario. To
constraints gives better results, especially for the pidctoth. this end, we textured the same cardboard and cloth surfaces
This was to be expected since sharp folds are better modedsdbefore to create images such as the ones of Fig. 17(afd), an
by inequalities. Furthermore, we can observe that local andmputed sift correspondences from them. Fig. 16 depiets th
global models used in conjunction with equality constminteconstruction errors for the different frames of the seges.
perform similarly. While this might seem disappointingcé Note that the values are significantly higher than those of
models still have the advantage of being more general thiigs. 10 and 11. In Fig. 17(b,c,e,f), we plot the recovered
the global ones in the sense that they let us model arbitr&@® shapes for the same frames as in Fig. 12 and 13 to quan-
shapes. Finally, while nonlinear local models perform weltitatively evaluate these results. Note that the reconstdl
they involve tracking the surface throughout the sequenceirfaces are much flatter than before. This was to be expected
which can result in drift, as can be observed at the end sifhce we only have shape information for the textured pad, a
the cardboard sequence. Additionally, they are much maeggests that additional image cues, such as edges or ghadin
computationally expensive than the closed-form or convekould be used.
optimization methods.

To test the robustness of our approaches to the lack o2 Real Images
texture, we used the synthetic correspondences, and remowe tested our approach on real images taken with a 3-CCD
randomly selected subsets of them. In Fig. 14, we plot ti®/ camera. In each one of the following figures, we show the
average reconstruction error over the sequences as aduncthesh recovered overlaid on the input image and the same mesh
of the percentage of removed correspondences. As shownsegn from a different viewpoint. Note that, even though our
the plots, accuracy does not decrease significantly untitmaeesults were obtained from video sequences, nothing limés t
correspondences are gone. Finally, we tested the robsstfiesshape recovered in the consecutive frames. We first used the
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Fig. 14. To evaluate the influence of the lack of texture on
our methods, we removed randomly selected subsets of Fig. 15. We
correspondences. We plot the mean reconstruction error 0 outliers by
over the whole sequence as a function of the percentage  ©f some co

struction err

evaluated the robustness of our approaches
setting random values to the image locations
rrespondences. We plot the mean recon-
or over the whole sequence as a function
r rate for the cardboard data (top) and the

of removed matches for the cardboard data (top) and the :
cloth sequence (bottom). The stars indicate the standard ©f the outlie dd
deviation of the error. cloth sequence (bottom). The stars indicate the standard
deviation of the error.
equality constraints to recover the deformations of smigoth
50 —Eq. Constraints

deforming objects such as the sheets of paper of Fig. 18. In
Fig. 19, we show that, if the mesh is fine enough, the equality
constraints can still reconstruct folds. However, if thieléoon
the surface do not correspond to mesh edges as in the case in
Fig. 20, these constraints are not appropriate anymoreaAs ¢
be observed in the bottom row of the figure, the folds cannot be
modeled correctly, and the recovered shapes are too smooth.
This is not the case anymore with distance inequalities, as
shown in the second row. Fig. 21 depicts results obtained
with our distance inequality constraints on two other fléxib
surfaces. Finally, we applied our method to recover the shap
of the non-rectangular surface depicted by Fig. 22. In thgec
the correspondences were obtained by tracking markerseon th
sail. In Fig. 22(g), we show how we covered the entire sail
with local models. Note that the additional vertices regdiby
our local models have no negative influence on the recovered
shapes since they do not contain any correspondences.

Mean 3D error [mm]

8 CONCLUSION
In this paper, we have presented linear local deformation
models for 3D shape reconstruction from monocular imagtz:s_.
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Reconstruction errors from SIFT correspon-

We have shown that these models have the advantage of béittl 16. )
more general than global ones, and of being easier to depfg/ces on the poorly textured surfaces of Fig. 17(a,d) for
than nonlinear local models. Furthermore, we have showrPiece of cardboard (left) and for a piece of cloth (right)
that, when used in conjunction with distance constraimisyt NOt€ that these errors are significantly larger than those
yield accurate solutions to the shape recovery problem. ¢hFigs. 10 and 11.
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(d)

Fig. 17. Recovering the shape of poorly textured surfaces (a,d). (b,e) 3D reconstruction using equality constraints.
(c,f) 3D reconstruction using inequality constraints. Since we only exploit shape information in the center of the image,
the recovered surfaces are far too smooth.
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Fig. 18. Recovering the shape of a piece of paper. First and third rows: Mesh recovered using equality constraints
overlaid on the input image. Second and fourth rows: Side view of that mesh.

particular, we have introduced distance equality constisai use of shading and silhouettes would give additional cuas th
and have proposed a closed-form solution to the recongiructcould paliate the lack of texture. Ultimately, we hope such
problem. Due to the limitation of these constraints to r@rovcues could be formulated in a similar convex optimization

sharp folds, we have shown how to replace them with distanitamework as our current approach.

inequalities, which yield a convex optimization problem.
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Fig. 19. Reconstructing a sharp fold in a piece of cloth. From top to bottom:

overlaid on the input image, side view of that mesh.
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Fig. 20. Reconstruction of a deforming cloth. From top to bottom: Mesh recovered using inequality constraints overlaid
on the image, side view of that mesh, side view of the mesh recovered using equality constraints. As in the synthetic
case, using equality constraints results in oversmoothing whereas using inequalities does not.
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Fig. 21. We recovered several complex deformations of other cloth materials. First and third rows: Mesh recovered
using inequality constraints overlaid on the original image. Second and fourth rows: Same mesh seen from a different

viewpoint.
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additional vertices and facets. Note that they do not affect the reconstructions since they contain no correspondences.
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APPENDIX: PROBABILISTIC INTERPRETATION

In Section 5, we took the deformation energy of a mesh
to be the sum of deformation energies over individual and
overlapping patches. In probabilistic terms, this meaas e
compute the likelihood of a specific 3D shape as the product
of the likelihood of its component patches. Since the pache
share vertices, there are not independent from each otlder an
it is therefore not completely obvious why this would result
in the effective regularizer that our results show it to be. |
this appendix, we provide empirical evidence as to why this
is indeed the case.

To this end, we used motion capture data similar to what
we used in Section 7.1. It was acquired by sticking 3mm wide
hemispherical reflective markers on a rectangular surfade a
deforming it arbitrarily in front of six infrared Vicof™ cam- . . .
eras that reconstruct the 3D positions of individual matrkerF'g‘ _23‘ Top row: Normalized covariance and precision
We did this both for a9z7 grid of markers on a piece of matrlces for the cloth data. Bottom row: The same ma-
cloth and a9z9 grid of markers on a piece of cardboardf”ces for the cardboard data. Note that the precision

the latter being of course much stiffer than the former. L&patrices sr? clearly banded if one treats the light blue

X! = [21,51,21, - TPx0, YPxQ» 2Pxq) T be the vector of 8r€as asDeINg zeros.

the corresponding concatenated coordinates acquiremhed,ti _ _ _ .
with P = 7 andQ = 9 for the cloth andP = 9 and@ = 9 for Mathieu Salzmann received his B.Sc and M.Sc degrees in
the cardboard. In this manner, we acquired several thous&@nputer science in 2004 from EPFL (Swiss Federal Institute
X' vectors for each. The left column of Fig. 23 depicts th@f Technology). He obtained his PhD degree in computer
corresponding normalized covariance matrices and thet righsion in 2009 from EPFL. He then joined the International
column their inverses, known as tpescisionmatrices. Computer Science Institute and the EECS departement at UC

In this figure, dark red represents positive values, dark blgerkeley as a postdoctoral fellow. Recently, he joined TTI
negative values, and light blue values close to zero. Thezef Chicago as a Research Assistant Professor. His reseaeth int
if one treats these small values as truly being zero, Bhe €sts include non-rigid shape recovery, human pose estimati
precision matrices only have a few non zero diagonals f8Pi€ct recognition, and optimization techniques for cotepu
materials as different as cloth and cardboard. This is Gogmit VISION.
because, assuming that té vectors are normally distributed, Pascal Fua received the engineering degree from the Ecole

the likelihood of an arbitraryK vector can be estimated as Polytechnique, Paris, in 1984 and the PhD degree in computer
science from the University of Orsay in 1989. He joined EPFL

P(X) x exp(—XTPX) . (25) (Swiss Federal Institute of Technology) in 1996, where he is
L _ now a professor in the School of Computer and Communi-
Because closelr examination of ti mgtnx re\_/eals that cation Science. Before that, he worked at SRI International
its non-zero diagonals correspond to interactions betweglqd at INRIA Sophia-Antipolis as a computer scientist. His

neighboring mesh vertices, this means that the likelihobd Q.51 interests include shape modeling and motion +ecov

Eg. 25 can be rewritten as ery from images, human body modeling, and optimization-
P(X) x He:vp(—XiTPiXi) ’ (26) based techniques for image analysis and synthesis. He has
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(co)authored more than 150 publications in refereed jdarna
] ] and conferences. He has been an associate editor of the IEEE
where theX; are the coordinates of the vertices of squarfransactions for Pattern Analysis and Machine Intelligenc

patches such as those introduced in Section bd(P(X)) and has been a program committee member and an area chair
is therefore close to being a sum of terms computed ovgf several major vision conferences.

individual patches, which constitutes empirical evideiicat
our energy formulation is true to reality.



