
Theory & Applications
of Online Learning

Shai Shalev-Shwartz Yoram Singer

ICML, July 5th 2008

Motivation - Spam Filtering

For t = 1, 2, . . . , T

Receive an email

Expert advice: Apply d spam filters to get x ∈ {+1,−1}d

Predict ŷt ∈ {+1,−1}

Receive true label yt ∈ {+1,−1}

Suffer loss !(yt, ŷt)

Motivation - Spam Filtering

Goal – Low Regret

We don’t know in advance the best performing expert

We’d like to find the best expert in an online manner

We’d like to make as few filtering errors as possible

This setting is called ”regret analysis”. Our goal:

T∑

t=1

!(ŷt, yt)−min
i

T∑

t=1

!(xt,i, yt) ≤ o(T)

Regret Analysis

Low regret means that we do not loose much from
not knowing future events

We can perform almost as well as someone who observes the
entire sequence and picks the best prediction strategy in hindsight

No statistical assumptions

We can also compete with changing environment

In many cases, data arrives sequentially while
predictions are required on-the-fly

Applicable also in adversarial and competitive
environments (e.g. spam filtering, stock market)

Can adapt to changing environment

Simple algorithms

Theoretical guarantees

Online-to-batch conversions, generalization properties

Why Online ?

Outline

Tutorial’s goals: provide design and analysis tools for online algorithms

Part I:
What prediction tasks are possible

Outline

Tutorial’s goals: provide design and analysis tools for online algorithms

Part I:
What prediction tasks are possible

Regression with squared-loss Classification with 0-1 loss

Outline

Tutorial’s goals: provide design and analysis tools for online algorithms

Part I:
What prediction tasks are possible

Regression with squared-loss Classification with 0-1 loss

Outline

Tutorial’s goals: provide design and analysis tools for online algorithms

Part I:
What prediction tasks are possible

Regression with squared-loss Classification with 0-1 loss

Convexity is a key property

Outline

Tutorial’s goals: provide design and analysis tools for online algorithms

Online Convex Optimization

Outline

Tutorial’s goals: provide design and analysis tools for online algorithms

Online Convex Optimization

regression

experts’
advice

Outline

Tutorial’s goals: provide design and analysis tools for online algorithms

Online Convex Optimization

regression

Non-

Convex
experts’
advice

Outline

Tutorial’s goals: provide design and analysis tools for online algorithms

Online Convex Optimization

regression

Non-

Convex
experts’
advice

Convexification

Outline

Tutorial’s goals: provide design and analysis tools for online algorithms

Online Convex Optimization

regression

Non-

Convex
experts’
advice

Randomization

Convexification

Outline

Tutorial’s goals: provide design and analysis tools for online algorithms

Online Convex Optimization

regression

Non-

Convex
experts’
advice

Randomization

Convexification

class
ificatio

n

structured
output

Outline

Tutorial’s goals: provide design and analysis tools for online algorithms

Part II:
An algorithmic framework for online convex optimization

Outline

Tutorial’s goals: provide design and analysis tools for online algorithms

Part II:
An algorithmic framework for online convex optimization

Update Typeadditive multiplicative

Outline

Tutorial’s goals: provide design and analysis tools for online algorithms

Part II:
An algorithmic framework for online convex optimization

Update Type

U
pd

at
e

co
m

pl
ex

ity

follow-the-leader

gradient based

additive multiplicative

Outline

Tutorial’s goals: provide design and analysis tools for online algorithms

Part III:
Derived algorithms

• Perceptrons (aggressive, conservative)
• Passive-Aggressive algorithms for the hinge-loss
• Follow the regularized leader (online SVM)
• Prediction with expert advice using multiplicative updates
• Online logistic regresssion with multiplicative updates

Outline

Tutorial’s goals: provide design and analysis tools for online algorithms

Part IV:
Application - Mail filtering

• Algorithms derived from framework for
 online convex optimization:

•Additive & multiplicative dual steppers
• Aggressive update schemes: instantaneous dual maximizers

• Mail filtering by online multiclass categorization

Outline

Part V:
Not covered due to lack of time

• Improved algorithms and regret bounds:
 Self-tuning
 Logarithmic regret for strongly convex losses
• Other notions of regret: internal regret, drifting hypotheses
• Partial feedback: Bandit problems, Reinforcement learning
• Online-to-batch conversions

Problem I: Regression

Task: guess the next element of a real-valued sequence

What could constitute a good prediction strategy ?

Online Regression

For t = 1, 2, . . .

Predict a real number ŷt ∈ R

Receive yt ∈ R

Suffer loss (ŷt − yt)2

Regression (cont.)
Follow-The-Leader

Predict: ŷt = 1
t−1

t−1∑

i=1

yt

Similar to Maximum Likelihood

Regret Analysis

The FTL predictor satisfies:

∀y!,
T∑

t=1

(ŷt− yt)2−
T∑

t=1

(y!− yt)2 ≤ O(log(T))

FTL is minimax optimal (outside scope)

Regression (cont.)

Proof Sketch

Be-The-Leader: ỹt = 1
t

t∑

i=1

yt

The regret of BTL is at most 0 (elementary)

FTL is close enough to BTL (simple algebra)

(ŷt − yt)2 − (ỹt − yt)2 ≤ O(1
t)

Summing over t (harmonic series) and we are done

Problem II: Classification

Guess the next element of a binary sequence

Online Prediction
For t = 1, 2, . . .

Predict a binary number ŷt ∈ {+1,−1}

Receive yt ∈ {+1,−1}

Suffer 0− 1 loss

!(ŷt, yt) =

{
1 if yt #= ŷt

0 otherwise

Classification (cont.)

No algorithm can guarantee low regret !

Proof Sketch

Adversary can force the cumulative loss of the learner
to be as large as T by using yt = −ŷt

The loss of the constant prediction

y! = sign

(
∑

t

yt

)
is at most T/2

Regret is at least T/2

Intermediate Conclusion

Two similar problems

Predict the next real-valued element with squared loss

Predict the next binary-valued element with 0-1 loss

Size of decision set does not matter !

In the first problem, loss is convex and decision set is convex

Is convexity sufficient for predictability ?

Online Convex Optimization

Online Convex Optimization

For t = 1, 2, . . . , T

Learner picks wt ∈ S

Environment responds with convex loss !t : S → R

Learner suffers loss !t(wt)

Abstract game between learner and environment
Game board is a convex set S
Learner plays with vectors in S
Environment plays with convex functions over S

Online Convex Optimization -- Example I

Regression

S = R

Learner predicts element ŷt = wt ∈ S

A true target yt ∈ R defines a loss function
!t(w) = (w − yt)2

Online Convex Optimization -- Example II

Regression with Experts Advice

S = {w ∈ Rd : wi ≥ 0, ‖w‖1 = 1}

Learner picks wt ∈ S

Learner predicts ŷt = 〈wt,xt〉

A pair (xt, yt) defines a loss function
over S: !t(w) = (〈w,xt〉 − yt)2

Coping with Non-convex Loss Functions

Method I: Convexification

Find a surrogate convex loss function

Mistake bound model

Method II: Randomization

Allow randomized predictions

Analyzed expected regret

Loss in expectation is convex

Convexification and Mistake Bound

Non-convex loss: mistake indicator a.k.a 0-1 loss

Recall that regret can be as large as T/2

Surrogate loss function: hinge-loss

where

By construction

[a]+ = max {a, 0}

!0−1(ŷt, yt) =

{
1 if yt != ŷt

0 otherwise

!hi(w, (xtyt)) = [1 − yt〈wt,xt〉]+

!0−1(ŷt, yt) ≤ !hi(wt, (xtyt))

Convexification and Mistake Bound

Non-convex loss: mistake indicator a.k.a 0-1 loss

Recall that regret can be as large as T/2

Surrogate loss function: hinge-loss

where

By construction

[a]+ = max {a, 0}

!0−1(ŷt, yt) =

{
1 if yt != ŷt

0 otherwise

!hi(w, (xtyt)) = [1 − yt〈wt,xt〉]+

!0−1(ŷt, yt) ≤ !hi(wt, (xtyt))yt〈wt,xt〉

Convexification and Mistake Bound

Non-convex loss: mistake indicator a.k.a 0-1 loss

Recall that regret can be as large as T/2

Surrogate loss function: hinge-loss

where

By construction

[a]+ = max {a, 0}

!0−1(ŷt, yt) =

{
1 if yt != ŷt

0 otherwise

!hi(w, (xtyt)) = [1 − yt〈wt,xt〉]+

!0−1(ŷt, yt) ≤ !hi(wt, (xtyt))

!0−1

yt〈wt,xt〉

Convexification and Mistake Bound

Non-convex loss: mistake indicator a.k.a 0-1 loss

Recall that regret can be as large as T/2

Surrogate loss function: hinge-loss

where

By construction

[a]+ = max {a, 0}

!0−1(ŷt, yt) =

{
1 if yt != ŷt

0 otherwise

!hi(w, (xtyt)) = [1 − yt〈wt,xt〉]+

!0−1(ŷt, yt) ≤ !hi(wt, (xtyt))

!0−1

!hi

yt〈wt,xt〉

Randomization and Expected Regret
Example – Classification with Expert Advice

Learner receives expert advice xt ∈ [0, 1]d

Should predict ŷt ∈ {+1,−1}

Receive yt ∈ {+1,−1}

Suffer 0− 1 loss !0−1(ŷt, yt) = 1− δ(yt, ŷt)

Convexify by randomization:

Learner picks wt in d-dim probability simplex

Predict ŷt = 1 with probability 〈wt,xt〉

Expected 0− 1 loss is convex w.r.t. wt

E[ŷt %= yt] = yt+1
2 − yt〈wt,xt〉

Part II:
An Algorithmic Framework for
Online Convex Optimization

Online Learning with the Perceptron

Get a PhD in 3 month! A better job, more income and a better life
can all be yours. No books to buy, no classes to go …

Spam ?

Perceptron (Rosenblatt58)

Online Learning with the Perceptron

Get a PhD in 3 month! A better job, more income and a better life
can all be yours. No books to buy, no classes to go …

• emails encoded as vectors

Spam ?

Perceptron (Rosenblatt58)
spam

not spam

Online Learning with the Perceptron

Get a PhD in 3 month! A better job, more income and a better life
can all be yours. No books to buy, no classes to go …

• emails encoded as vectors

• hypothesis - linear separator

Spam ?

Perceptron (Rosenblatt58)
spam

not spam

Online Learning with the Perceptron

Get a PhD in 3 month! A better job, more income and a better life
can all be yours. No books to buy, no classes to go …

• emails encoded as vectors

• hypothesis - linear separator

No spam

Spam ?

Perceptron (Rosenblatt58)
spam

not spam

Online Learning with the Perceptron

Get a PhD in 3 month! A better job, more income and a better life
can all be yours. No books to buy, no classes to go …

• emails encoded as vectors

• hypothesis - linear separator

No spam
Feedback

Spam ?

Spam !

Perceptron (Rosenblatt58)

spam
not sp

am

Online Learning with the Perceptron

Get a PhD in 3 month! A better job, more income and a better life
can all be yours. No books to buy, no classes to go …

• emails encoded as vectors

• hypothesis - linear separator

• update:

No spam
Feedback

Spam ?

Spam !

w← w + yx

Perceptron (Rosenblatt58)

spam
not sp

am

Online Learning with the Perceptron

Get a PhD in 3 month! A better job, more income and a better life
can all be yours. No books to buy, no classes to go …

• emails encoded as vectors

• hypothesis - linear separator

• update:

No spam
Feedback

Spam ?

Spam !

w← w + yx

update if y〈w,x〉 < 1
(aggressive perceptron)

Regret

not spam

spam

Loss
of learner

Learner Environment Loss

Regret

not spam

spam

Loss
of learner

Learner Environment Loss

Regret

not spam

spam

Loss
of learner

Learner Environment Loss

Regret

not spam

spam

Loss
of learner

Learner Environment Loss

Regret

not spam

spam

Loss
of learner

Learner Environment Loss

Regret

not spam

spam

Loss
of learner

Learner Environment Loss

Regret

not spam

spam

Loss
of learner

Learner Environment Loss

Regret

not spam

spam

Loss
of learner

Learner Environment Loss

Regret

not spam

spam

Loss
of learner

Learner Environment Loss

Regret

not spam

spam

Loss
of learner

Best Loss
in hindsight

Learner Environment Loss

More Stringent Form of Regret

Original regret goal:

T∑

t=1

!hi(wt, (xt, yt)) ≤ min
w:‖w‖≤D

T∑

t=1

!hi(w, (xt, yt)) + o(T)

A stronger requirement:

T∑

t=1

!t(wt) ≤ min
w

σ

2
‖w‖2 +

T∑

t=1

!hi(w, (xt, yt))

From Regret to SVM
Rewriting !hi(·)

ξt = !hi(wt, (xt, yt)) ⇒ ξt ≥ 0 ∧ ξt ≥ 1− yt〈wt,xt〉

The target regret

min
w

σ

2
‖w‖2 +

T∑

t=1

!hi(w, (xt, yt))

can be rewritten as

min
w,ξ!0

σ

2
‖w‖2 +

T∑

t=1

ξt s.t. ξt ≥ 1− yt〈wt,xt〉

From Regret to SVM

!hi

Rewriting !hi(·)

ξt = !hi(wt, (xt, yt)) ⇒ ξt ≥ 0 ∧ ξt ≥ 1− yt〈wt,xt〉

The target regret

min
w

σ

2
‖w‖2 +

T∑

t=1

!hi(w, (xt, yt))

can be rewritten as

min
w,ξ!0

σ

2
‖w‖2 +

T∑

t=1

ξt s.t. ξt ≥ 1− yt〈wt,xt〉

From Regret to SVM

SVM Objective

!hi

Rewriting !hi(·)

ξt = !hi(wt, (xt, yt)) ⇒ ξt ≥ 0 ∧ ξt ≥ 1− yt〈wt,xt〉

The target regret

min
w

σ

2
‖w‖2 +

T∑

t=1

!hi(w, (xt, yt))

can be rewritten as

min
w,ξ!0

σ

2
‖w‖2 +

T∑

t=1

ξt s.t. ξt ≥ 1− yt〈wt,xt〉

Regret and Duality

The loss of Perceptron should be smaller than SVM objective

SVM duality

Primal SVM: P(w) =
σ

2
‖w‖2 +

T∑

t=1

"hi(w, (xt, yt))

Constrained form

min
w,ξ≥0

σ

2
‖w‖2 +

T∑

t=1

ξt s.t. 1− yt〈w,xt〉 ≤ ξt

Dual objective D(α) =
∑

t

αt −
1

2 σ

∥∥∥∥∥
∑

t

αtytxt

∥∥∥∥∥

2

Properties of Dual Problem

D(α) =
T∑

t=1

αt −
1

2 σ

∥∥∥∥∥

T∑

t=1

αtytxt

∥∥∥∥∥

2

Dedicated variable for each online round

If αt = . . . = αT = 0 then D(α)
can be optimized without the knowledge of
(xt, yt), . . . , (xT , yT)

D(α) can be optimized along the online process

Weak Duality max
α∈[0,1]m

D(α) ≤ min
w
P(w)

Core idea:
Online learning by incremental dual ascent

Properties of Dual Problem

D(α) =
T∑

t=1

αt −
1

2 σ

∥∥∥∥∥

T∑

t=1

αtytxt

∥∥∥∥∥

2

Dedicated variable for each online round

If αt = . . . = αT = 0 then D(α)
can be optimized without the knowledge of
(xt, yt), . . . , (xT , yT)

D(α) can be optimized along the online process

Weak Duality max
α∈[0,1]m

D(α) ≤ min
w
P(w)

Core idea:
Online learning by incremental dual ascent

Key
Analysis

Tool

Online Learning by Dual Ascent

Abstract Dual Ascent Learner

Initialize α1 = . . . = αT = 0

For t = 1, 2, . . . , T

Construct wt from dual variables (how ?)
Receive (xt, yt) from environment
Inform dual optimizer of new example
Obtain αt from dual optimizer

Online Learning by Dual Ascent

Lemma

Let Dt be the dual value at round t

Let ∆t = Dt+1 −Dt be the dual increase

Assume that ∆t ≥ !(wt, (xt, yt))− 1
2 σ

Then,

T∑

t=1

!(wt, (xt, yt))−
T∑

t=1

!(w", (xt, yt)) ≤ O(
√

T)

Online Learning by Dual Ascent

Lemma

Let Dt be the dual value at round t

Let ∆t = Dt+1 −Dt be the dual increase

Assume that ∆t ≥ !(wt, (xt, yt))− 1
2 σ

Then,

T∑

t=1

!(wt, (xt, yt))−
T∑

t=1

!(w", (xt, yt)) ≤ O(
√

T)

Proof follows from weak duality

Proof by animation
Primal Objective

Dual Objective

Proof by animation
Primal Objective

Dual Objective
∆t ≥ !(wt, (xt, yt))− 1

2 σ

D(α1, 0, . . . , 0)

Proof by animation
Primal Objective

Dual Objective

∆t ≥ !(wt, (xt, yt))− 1
2 σ

D(α1, α2, 0, . . . , 0)

D(α1, 0, . . . , 0)

Proof by animation
Primal Objective

Dual Objective

∆t ≥ !(wt, (xt, yt))− 1
2 σD(α1, α2, 0, . . . , 0)

D(α1, 0, . . . , 0)

Proof by animation
Primal Objective

Dual Objective

∆t ≥ !(wt, (xt, yt))− 1
2 σ

D(α1, α2, 0, . . . , 0)

D(α1, 0, . . . , 0)

D(α1, . . . ,αt, 0, . . .)

P(w!)

Proof by animation
Primal Objective

Dual Objective

∑

t

!t(wt)− T
2 σ ≤

∑

t

∆t = D(α1, . . . ,αT) ≤ P(w")

∆t ≥ !(wt, (xt, yt))− 1
2 σ

D(α1, α2, 0, . . . , 0)

D(α1, 0, . . . , 0)

D(α1, . . . ,αt, 0, . . .)

P(w!)

Interim Recap

To design an online algorithm:

Write an “SVM-like” problem

Switch to dual problem

Incrementally increase the dual

Remains to describe:

How to construct

Scheme works only if can guarantee a sufficient increase in dual form

Sufficient dual increase procedures

α ⇒ w

.

At the optimum w! =
1
σ

∑

t

α!
t ytxt

Along the online learning process wt =
1
σ

∑

i<t

αiyixi

Recursive form (weight update) wt+1 = wt +
1
σ

αtytxt

Note that dual can be rewritten as

Dt =
∑

i<t

αi −
1

2 σ
‖σwt‖2

α ⇒ w

Sufficient Dual Increase
For aggressive Perceptron

αt =

{
1 if 1− yt〈wt,xt〉 > 0
0 else

If αt = 0 then 0 = ∆t = "t(wt) and we’re good

If αt = 1 then

∆t =

∑

i≤t

αt − 1
2 σ‖σwt + αtytxt‖2

−
(

∑

i<t

αi − 1
2 σ‖σwt‖2

)

= 1− yt〈wt,xt〉 −
‖xt‖2

2 σ

≥ "t(wt)−
1

2 σ

Thus, in both cases we’re good

Three Directions for Generalization

Regularization

Aggressive dual updates:
PA, FoReL

General loss functions

Thus far:
specific settings

Next:
Primal-Dual apparatus

for online learning

f(w)
slope

=
λ

Background -- Fenchel Duality

Fenchel Conjugate

The Fenchel conjugate of the
function f : S → R is

f!(λ) = max
w∈S

〈w,λ〉 − f(w)

f(w)
slope

=
λ

Background -- Fenchel Duality

Fenchel Conjugate

The Fenchel conjugate of the
function f : S → R is

f!(λ) = max
w∈S

〈w,λ〉 − f(w)

f!(λ)

Background -- Fenchel Duality

f(w)

0

0

max
λ

− f!(−λ)− g!(λ) ≤ min
w

f(w) + g(w)

g(w)
f(w) + g(w)

Background -- Fenchel Duality

f(w)

0

0

max
λ

− f!(−λ)− g!(λ) ≤ min
w

f(w) + g(w)

tangent
slope λ tangent

slope − λ

g(w)
f(w) + g(w)

Background -- Fenchel Duality

f(w)

0

0

max
λ

− f!(−λ)− g!(λ) ≤ min
w

f(w) + g(w)

tangent
slope λ tangent

slope − λ

g(w)
f(w) + g(w)

−f!(−λ)−g!(λ)

Background -- Fenchel Duality

f(w)

0

0

max
λ

− f!(−λ)− g!(λ) ≤ min
w

f(w) + g(w)

tangent
slope λ tangent

slope − λ

g(w)
f(w) + g(w)

−f!(−λ)−g!(λ)

−f!(−λ)− g!(λ)

Background -- Fenchel Duality

f(w)

0

0

max
λ

− f!(−λ)− g!(λ) ≤ min
w

f(w) + g(w)

tangent
slope λ tangent

slope − λ

g(w)
f(w) + g(w)

−f!(−λ)−g!(λ)

−f!(−λ)− g!(λ)

Background -- Fenchel Duality

f(w)

0

0

max
λ

− f!(−λ)− g!(λ) ≤ min
w

f(w) + g(w)

tangent
slope λ tangent

slope − λ

g(w)
f(w) + g(w)

−f!(−λ)−g!(λ)

−f!(−λ)− g!(λ)

Regret and Duality

max
λ1,...,λT

−f!(−
∑

t

λt)−
∑

t

!!
t (λt) ≤ min

w∈S
f(w) +

T∑

t=1

!t(w)

Decomposability of the dual

Different dual variable associated with each online round

Future loss functions do not affect dual variables of cur-
rent and past rounds

Therefore, the dual can be improved incrementally

To optimize λ1, . . . ,λt, it is enough to know !1, . . . , !t

Primal-Dual Online Prediction Strategy

Online Learning by Dual Ascent

Initialize λ1 = . . . = λT = 0

For t = 1, 2, . . . , T

Construct wt from the dual variables
Receive !t

Update dual variables λ1, . . . ,λt

Sufficient Dual Ascent => Low Regret

Lemma
Let Dt be the dual value at round t.

Assume that Dt+1 −Dt ≥ !t(wt)− a√
T

Assume that maxw∈S f(w) ≤ a
√

T

Then, the regret is bounded by 2a
√

T

Proof follows directly from weak duality !

Proof Sketch of Low Regret

On one hand

DT+1 =
T∑

t=1

(Dt+1 −Dt) ≥
∑

t

!t(wt)−
T a√

T

On the other hand, from weak duality

DT+1 ≤ f(u) +
∑

t

!t(u) ≤ a
√

T +
∑

t

!t(u)

Comparing the lower and upper bound on DT+1

∑

t

!t(wt)−
T a√

T
≤ a
√

T+
∑

t

!t(u) ⇒
∑

t

!t(wt) ≤
∑

t

!t(u)+2a
√

T

Proof Sketch of Low Regret

On one hand

DT+1 =
T∑

t=1

(Dt+1 −Dt) ≥
∑

t

!t(wt)−
T a√

T

On the other hand, from weak duality

DT+1 ≤ f(u) +
∑

t

!t(u) ≤ a
√

T +
∑

t

!t(u)

Comparing the lower and upper bound on DT+1

∑

t

!t(wt)−
T a√

T
≤ a
√

T+
∑

t

!t(u) ⇒
∑

t

!t(wt) ≤
∑

t

!t(u)+2a
√

T

Strong Convexity => Sufficient Dual Increase

Definition – Strong Convexity

A function f is σ-strongly convex over S w.r.t ‖ ·‖ if

∀u,v ∈ S, f(u)+f(v)
2 ≥ f(u+v

2) + σ
8 ‖u− v‖2

f(u) f(v)

u v f(u)+f(v)
2 − f(u+v

2)

Strong Convexity => Sufficient Dual Increase

Definition – Strong Convexity

A function f is σ-strongly convex over S w.r.t ‖ ·‖ if

∀u,v ∈ S, f(u)+f(v)
2 ≥ f(u+v

2) + σ
8 ‖u− v‖2

f(u) f(v)

u v f(u)+f(v)
2 − f(u+v

2)

Strong Convexity => Sufficient Dual Increase

Definition – Strong Convexity

A function f is σ-strongly convex over S w.r.t ‖ ·‖ if

∀u,v ∈ S, f(u)+f(v)
2 ≥ f(u+v

2) + σ
8 ‖u− v‖2

f(u) f(v)

u v f(u)+f(v)
2 − f(u+v

2)

Example:
f(w) = 1

2‖w‖2
2 is 1 strongly

convex w.r.t. ‖ ·‖ 2

L-Lipschitz => Sufficient Dual Increase

Example:
!(w) = |y − 〈w,x〉| is L-Lipschitz
w.r.t. ‖ ·‖ with L = ‖x‖

Definition – Lipschitz

A function ! is L-Lipschitz w.r.t. ‖ ·‖ if

∀u,v ∈ S, |!(u)− !(v)| ≤ L ‖u− v‖

Strong Convexity => Sufficient Dual Increase

Sufficient Dual Increase for Gradient Descent
Assume:

f is σ-strongly convex w.r.t. ‖ ·‖

"t is convex, and L-Lipschitz w.r.t. ‖ ·‖ !

wt = ∇f!(−
∑

i<t λi)

Set λt to be a subgradient of "t at wt

Keep λ1, . . . ,λt−1 in tact

Then,

Dt+1 −Dt ≥ "t(wt)−
L2

2σ

General Algorithmic Framework

Online Learning by Dual Ascent

Choose σ-strongly convex complexity function f

For t = 1, 2, . . . , T

Predict wt = ∇f!(−
∑

i<t λi)
Receive "t

Update dual variables λ1, . . . ,λt s.t.
Dt+1 −Dt ≥ "t(wt)− L2

2σ
(e.g. by gradient descent)

General Algorithmic Framework

Online Learning by Dual Ascent

Choose σ-strongly convex complexity function f

For t = 1, 2, . . . , T

Predict wt = ∇f!(−
∑

i<t λi)
Receive "t

Update dual variables λ1, . . . ,λt s.t.
Dt+1 −Dt ≥ "t(wt)− L2

2σ
(e.g. by gradient descent)

Gradient descent on the (primal) loss results in
sufficient dual increase if f is strongly convex and the
losses are L-Lipshitz (do not grow excessively fast)

!t

General Regret Bound
Theorem – General Regret Bound

Assume:

f is σ-strongly convex w.r.t. ‖ ·‖

"t is convex, and L-Lipschitz w.r.t. ‖ ·‖ !

Then, the regret of all algorithms derived from the general
framework is upper bounded by f(w!) + T L2

2σ

General Regret Bound
Theorem – General Regret Bound

Assume:

f is σ-strongly convex w.r.t. ‖ ·‖

"t is convex, and L-Lipschitz w.r.t. ‖ ·‖ !

Then, the regret of all algorithms derived from the general
framework is upper bounded by f(w!) + T L2

2σ

Corollary – Euclidean norm Regularization

If S is the Euclidean ball of radius W and !t is convex,
and L-Lipschitz w.r.t. ‖ ·‖ 2

Set f = σ
2 ‖w‖

2 with σ =
√

T L
W

Then, the regret is upper bounded by L W
√

T

General Regret Bound
Theorem – General Regret Bound

Assume:

f is σ-strongly convex w.r.t. ‖ ·‖

"t is convex, and L-Lipschitz w.r.t. ‖ ·‖ !

Then, the regret of all algorithms derived from the general
framework is upper bounded by f(w!) + T L2

2σ

Corollary – Entropic regularization

If S is the d-dim probability simplex and !t is convex,
and L-Lipschitz w.r.t. ‖ ·‖∞

Set f = σ
∑

i wi log(d wi) with σ =
√

T L√
log(d)

Then, the regret is upper bounded by L
√

log(d) T

Generalizations and Related Work

!t

f(w)

D
ua

l u
pd

at
e

Family of loss functions (!t)

Online Learning (Perceptron, lin-
ear regression, multiclass predic-
tion, structured output, ...)

Game theory (Playing repeated
games, correlated equilibrium)

Information theory (Prediction of
individual sequences)

Convex optimization (SGD, dual
decomposition)

Generality and Related Work

!t

f(w)

D
ua

l u
pd

at
e

Regularization function (f)

Online learning
(Grove, Littlestone, Schuurmans;
Kivinen, Warmuth;
Gentile; Vovk)

Game theory
(Hart and Mas-collel)

Optimization
(Nemirovsky, Yudin;
Beck, Teboulle, Nesterov)

Unified frameworks
(Cesa-Bianchi and Lugosi)

Generality and Related Work

!t

f(w)

D
ua

l u
pd

at
e

Dual update schemes

Only two extremes were studied:

Gradient update (naive update
of a single dual variable)
Follow the leader (Equivalent to
full optimization)

Our analysis enables the usage the
entire spectrum of possible updates

Part III:
Derived Algorithms

Fenchel Dual of SVM

SVM primal:
σ

2
‖w‖2

︸ ︷︷ ︸
f(w)

+
T∑

i=1

[1− yi〈w,xi〉]+︸ ︷︷ ︸
!i(w)

Fenchel dual of f(w) ⇒ f"(λ) = max
w
〈w,λ〉 − σ

2
‖w‖2

λ− σw = 0 ⇒ λ/σ = w ⇒ f"(λ) = 〈λ/σ,λ〉 − σ

2
‖λ/σ‖2 =

1
2σ
‖λ‖2

Fenchel dual of hinge-loss f"(λ) =
{
−α λ = −αx and α ∈ [0, 1]
∞ otherwise

The Fenchel dual of SVM

−f∗(−
∑

t

λt)−
∑

t

$"(λt) = − 1
2σ
‖−

∑

t

αtytxt‖2−
∑

t

−αt s.t. αi ∈ [0, 1]

Since f!(v) = f!(−v) and ∇f!(v) = v,

wt+1 = ∇f!(−
∑

i<t+1

λi) =
∑

i<t+1

αixi =
∑

i<t

αixi + αtxt = wt + αtxt

We saw that obtain a regret bound if Dt+1 − Dt ≥ "t(wt) − L2

2σ where
L is the Lipschitz constant of "t w.r.t ‖ ·‖ !

We can use gradient descent (on the primal) to achieve sufficient increase
of the dual objective:

Gradient descent:
1. λt = −xt (λt = −αtxt with αt = 1) when [1− yt〈wt,xt〉]+ > 0
2. λt = 0 otherwise

Dual increase: Dt+1 −Dt ≥ "t(wt)− 1
2σ

Can we potentially make faster progress in
the dual while maintaining the regret bound?

Online SVM Revisited

Since f!(v) = f!(−v) and ∇f!(v) = v,

wt+1 = ∇f!(−
∑

i<t+1

λi) =
∑

i<t+1

αixi =
∑

i<t

αixi + αtxt = wt + αtxt

We saw that obtain a regret bound if Dt+1 − Dt ≥ "t(wt) − L2

2σ where
L is the Lipschitz constant of "t w.r.t ‖ ·‖ !

We can use gradient descent (on the primal) to achieve sufficient increase
of the dual objective:

Gradient descent:
1. λt = −xt (λt = −αtxt with αt = 1) when [1− yt〈wt,xt〉]+ > 0
2. λt = 0 otherwise

Dual increase: Dt+1 −Dt ≥ "t(wt)− 1
2σ

Can we potentially make faster progress in
the dual while maintaining the regret bound?

Online SVM Revisited

!hi

Since f!(v) = f!(−v) and ∇f!(v) = v,

wt+1 = ∇f!(−
∑

i<t+1

λi) =
∑

i<t+1

αixi =
∑

i<t

αixi + αtxt = wt + αtxt

We saw that obtain a regret bound if Dt+1 − Dt ≥ "t(wt) − L2

2σ where
L is the Lipschitz constant of "t w.r.t ‖ ·‖ !

We can use gradient descent (on the primal) to achieve sufficient increase
of the dual objective:

Gradient descent:
1. λt = −xt (λt = −αtxt with αt = 1) when [1− yt〈wt,xt〉]+ > 0
2. λt = 0 otherwise

Dual increase: Dt+1 −Dt ≥ "t(wt)− 1
2σ

Can we potentially make faster progress in
the dual while maintaining the regret bound?

Online SVM Revisited

!hi
yt〈wt,xt〉

Gradient is 0

Since f!(v) = f!(−v) and ∇f!(v) = v,

wt+1 = ∇f!(−
∑

i<t+1

λi) =
∑

i<t+1

αixi =
∑

i<t

αixi + αtxt = wt + αtxt

We saw that obtain a regret bound if Dt+1 − Dt ≥ "t(wt) − L2

2σ where
L is the Lipschitz constant of "t w.r.t ‖ ·‖ !

We can use gradient descent (on the primal) to achieve sufficient increase
of the dual objective:

Gradient descent:
1. λt = −xt (λt = −αtxt with αt = 1) when [1− yt〈wt,xt〉]+ > 0
2. λt = 0 otherwise

Dual increase: Dt+1 −Dt ≥ "t(wt)− 1
2σ

Can we potentially make faster progress in
the dual while maintaining the regret bound?

Online SVM Revisited

!hi

yt〈wt,xt〉Gradient is -X

Aggressive Dual Ascend Schemes (1)

Locally aggressive update:

1. Leave λ1, . . . ,λt−1 intact from previous rounds
2. λt+1 = . . . = λT = 0 : yet to observe future examples
3. Set λt = −αtxt to maximize the increase in the dual

Maximizing the ”instantaneous” dual w.r.t αt is a scalar
optimization problem that often can be solved analytically

Increase in dual is at least as large as increase due to gradient
descent. The locally aggressive scheme achieves at least as
good a regret bound as the aggressive Perceptron

Aggressive Dual Ascend Schemes (1)

λt = arg min
µ
D(λ1, . . . ,λt−1,µ, 0, . . . , 0)

Locally aggressive update:

1. Leave λ1, . . . ,λt−1 intact from previous rounds
2. λt+1 = . . . = λT = 0 : yet to observe future examples
3. Set λt = −αtxt to maximize the increase in the dual

Maximizing the ”instantaneous” dual w.r.t αt is a scalar
optimization problem that often can be solved analytically

Increase in dual is at least as large as increase due to gradient
descent. The locally aggressive scheme achieves at least as
good a regret bound as the aggressive Perceptron

Aggressive Dual Ascend Schemes (II)
Follow the regularized leader (Forel):

1. λt+1 = . . . = λT = 0 as before
2. Set λ1, . . . ,λt so as to maximize the resulting dual

Primal of dual with λt+1 = . . . ,λT = 0 is

Pt(w) = σf(w) +
t∑

i=1

"i(w)

Strong duality: D(λ!
1, . . . ,λ

!
t) = Pt(w!)

Thus, on round t we set wt to be the optimum of an instanta-
neous primal problem: wt = arg minw σf(w)+

∑t
i=1 "i(w)

Increase in dual is at least as large as increase of locally
aggressive update. Forel is at least as good as scheme I

Locally Aggressive Update for Online SVM

The Fenchel dual of SVM is D(α) =
T∑

t=1

αt −
1

2 σ

∥∥∥∥∥

T∑

t=1

αtytxt

∥∥∥∥∥

2

We saw that obtain a regret bound if Dt+1 − Dt ≥ #t(wt) − L2

2σ where
L is the Lipschitz constant of #t w.r.t ‖ · ‖"

We can use gradient descent (on the primal) to achieve sufficient increase
of the dual objective:

Gradient descent: αt = 1 if [1− yt〈wt,xt〉]+ > 0

Dual increase: Dt+1 −Dt ≥ #t(wt)− 1
2σ

Aggressively increase the dual by choosing αt to maximize ∆t = Dt+1−Dt

Passive-Aggressive: Locally Aggr. Online SVM

Recall once more SVM’s dual: D(α) =
T∑

t=1

αt −
1

2 σ

∥∥∥∥∥

T∑

t=1

αtytxt

∥∥∥∥∥

2

The change in the dual due to a change of αt

∆t =

∑

i≤t

αt − 1
2 σ‖σwt + αtytxt‖2

−
(

∑

i<t

αi − 1
2 σ‖σwt‖2

)

= αt(1− yt〈wt,xt〉)− α2
t
‖xt‖2

2 σ

Quadratic equation in αt with boundary constraints αt ∈ [0, 1]

α"
t = max

{
0,min

{
1, σ

1− yt〈wt,xt〉)
‖xt‖2

}}

Passive-Aggressive: if margin ≥ 1 do nothing otherwise use α"
t

Passive-Aggressive: Locally Aggr. Online SVM

Recall once more SVM’s dual: D(α) =
T∑

t=1

αt −
1

2 σ

∥∥∥∥∥

T∑

t=1

αtytxt

∥∥∥∥∥

2

The change in the dual due to a change of αt

∆t =

∑

i≤t

αt − 1
2 σ‖σwt + αtytxt‖2

−
(

∑

i<t

αi − 1
2 σ‖σwt‖2

)

= αt(1− yt〈wt,xt〉)− α2
t
‖xt‖2

2 σ

Quadratic equation in αt with boundary constraints αt ∈ [0, 1]

α"
t = max

{
0,min

{
1, σ

1− yt〈wt,xt〉)
‖xt‖2

}}

Passive-Aggressive: if margin ≥ 1 do nothing otherwise use α"
t

α=1α=0

α

Online SVM by Following the Leader
Instantaneous primal Pt(w) = σ/2‖w‖2 +

∑t
i=1 "i(w)

Dual of Pt(w)

D(α1, . . . ,αt|αt+1 = . . . = 0) =
t∑

i=1

αi −
1
2σ

∥∥∥∥∥

t∑

i=1

αiyixi

∥∥∥∥∥

2

Follow the regularized leader - Forel:
(α!

1, . . . ,α
!
t) = arg min

α1,...,αt

D(α1, . . . ,αt|αt+1 = . . . = 0)

From strong duality

w!
t = arg min

w
Pt(w) ⇔ w!

t =
t∑

i=1

α!
i yixi

The regret of FOREL is at least as good as PA’s regret

Entropic Regularization
Motivation – Prediction with expert advice:

Learner receives a vector xt = (x1
t , . . . , x

d
t) ∈ [−1, 1]d

of experts advice

Learner needs to predict a target ŷt ∈ R

Environment gives correct target yt ∈ R

Learner suffers loss |yt − ŷt|

Goal: predict almost as well as best committee of experts
∑

t |yt − ŷt| −
∑

t |yt − 〈w!,xt〉| != o(T)

Modeling:

S is the d-dimensional probability simplex

Loss functions: !t(w) = |yt − 〈w,xt〉|

Entropic Regularization (cont.)

Prediction with expert advice – regret:

Consider working with f(w) = σ
2 ‖w‖

2

Regret is L W
√

T where:

S is the probability simplex and thus
W = maxw∈∆ ‖w‖ = 1
Lipschitz constant is L = max ‖x‖ =

√
d

Regret is O(
√

d T)

Is this the best we can do in terms of dependency in d?

Entropic Regularization (cont.)
Prediction with expert advice – Entropic regularization:

Consider working with

f(w) =
n∑

j=1

wj log
(

wj

1/n

)
= log(n) +

∑

j

wj log(wj)

‖·‖1, ‖·‖∞ for assessing convexity and Lipschitz constants

f is 1-strongly convex w.r.t. ‖ · ‖1

Regret is L W
√

T where:

S is the probability simplex and thus
W = maxw∈∆ f(w) = log(n)
Lipschitz constant of !t(w) = |yt−〈w,xt〉| is L = 1
since ‖xt‖∞ ≤ 1
Regret is O(

√
log(d) T)

Entropic Regularization Multiplicative PA
Generalized hinge loss [γ − yt〈w,xt〉]+
Use f(w) = log(n) +

∑n
j=1 wj log(wj) (w in prob. simplex)

Fenchel dual of f : f!(λ) = log

 1
n

n∑

j=1

eλj

Primal problem

P(w) = σ

log(n) +
n∑

j=1

wj log(wj)

 +
T∑

t=1

[γ − yt〈w,xt〉]+

Define θ =
∑

i λi = 1
σ

∑
i αiyixi to write dual problem

D(α) = γ
∑

i

αi − σ log

 1
n

n∑

j=1

eθj

 s.t. αi ∈ [0, 1]

PA Update with Entropic Regularization
Find αt with maximal local dual increase
(closed form for maximal increase if xt ∈ {−1, 0, 1}n)

α!
t = arg max

α∈[0,1]
γα− σ log

(
1
n

t−1∑

i=1

αiyixi + αytxt

)

Define θt =
1
σ

t∑

i=1

α!
i yixi

Update wt = ∇f!(θt)

wt,j = exp(θt,j)/Zt where Zt =
∑

r

exp(θt,r)

Use wt,j ∼ exp(θt,j) to obtain a multiplicative update

wt+1,j = wt,j exp(α!
t ytxt,j)/Z̃t

PA Update with Entropic Regularization

Regret is
O(

√
log(d) T)

Find αt with maximal local dual increase
(closed form for maximal increase if xt ∈ {−1, 0, 1}n)

α!
t = arg max

α∈[0,1]
γα− σ log

(
1
n

t−1∑

i=1

αiyixi + αytxt

)

Define θt =
1
σ

t∑

i=1

α!
i yixi

Update wt = ∇f!(θt)

wt,j = exp(θt,j)/Zt where Zt =
∑

r

exp(θt,r)

Use wt,j ∼ exp(θt,j) to obtain a multiplicative update

wt+1,j = wt,j exp(α!
t ytxt,j)/Z̃t

Online Logistic Regression
Loss: log (1 + exp(−yt〈w,xt〉))

Primal problem

σf(w) +
T∑

t=1

log (1 + exp(−yt〈w,xt〉))

Define θ =
∑

i(αi/σ)yixi

Dual problem (for f(w) = DKL(w‖u))

D(α) =
∑

t

H(αt) − σ log

 1
n

n∑

j=1

eθj

Find αt with sufficient dual increase using binary
search for αt ∈ [0, 1]

Update (Zt ensures wt+1 ∈ ∆n)

wt+1,j = wt,j e(αt/σ) yt xt,j/Zt

Online Logistic Regression
Loss: log (1 + exp(−yt〈w,xt〉))

Primal problem

σf(w) +
T∑

t=1

log (1 + exp(−yt〈w,xt〉))

Define θ =
∑

i(αi/σ)yixi

Dual problem (for f(w) = DKL(w‖u))

D(α) =
∑

t

H(αt) − σ log

 1
n

n∑

j=1

eθj

Find αt with sufficient dual increase using binary
search for αt ∈ [0, 1]

Update (Zt ensures wt+1 ∈ ∆n)

wt+1,j = wt,j e(αt/σ) yt xt,j/Zt

Same update form as
multiplicative PA for SVM

Online Logistic Regression
Loss: log (1 + exp(−yt〈w,xt〉))

Primal problem

σf(w) +
T∑

t=1

log (1 + exp(−yt〈w,xt〉))

Define θ =
∑

i(αi/σ)yixi

Dual problem (for f(w) = DKL(w‖u))

D(α) =
∑

t

H(αt) − σ log

 1
n

n∑

j=1

eθj

Find αt with sufficient dual increase using binary
search for αt ∈ [0, 1]

Update (Zt ensures wt+1 ∈ ∆n)

wt+1,j = wt,j e(αt/σ) yt xt,j/Zt

Online Logistic Regression
Loss: log (1 + exp(−yt〈w,xt〉))

Primal problem

σf(w) +
T∑

t=1

log (1 + exp(−yt〈w,xt〉))

Define θ =
∑

i(αi/σ)yixi

Dual problem (for f(w) = DKL(w‖u))

D(α) =
∑

t

H(αt) − σ log

 1
n

n∑

j=1

eθj

Find αt with sufficient dual increase using binary
search for αt ∈ [0, 1]

Update (Zt ensures wt+1 ∈ ∆n)

wt+1,j = wt,j e(αt/σ) yt xt,j/Zt

Regret is
O(

√
log(d) T)

Back to “Classical” Perceptron

Focus on rounds with mistakes (yt〈wt,xt〉 ≤ 0)

Assume norm of instances bounded by 1 (∀t : ‖xt‖ ≤ 1)

Recall ∆t = αt − 1
2 (αtyt〈wt,xt〉+ α2

t‖xt‖2/σ)

From assumptions ∆t ≥ αt − 1
2σ α2

t

Two version of the Perceptron:

Aggressive Perceptron:
αt = 1 whenever #t(wt) > 0
Scaled version of classical Perceptron:
αt = 1 only when #t(wt) ≥ 1

Upon an update ∆t ≥ 1− 1
2σ for both versions

Back to “Classical” Perceptron

Focus on rounds with mistakes (yt〈wt,xt〉 ≤ 0)

Assume norm of instances bounded by 1 (∀t : ‖xt‖ ≤ 1)

Recall ∆t = αt − 1
2 (αtyt〈wt,xt〉+ α2

t‖xt‖2/σ)

From assumptions ∆t ≥ αt − 1
2σ α2

t

Two version of the Perceptron:

Aggressive Perceptron:
αt = 1 whenever #t(wt) > 0
Scaled version of classical Perceptron:
αt = 1 only when #t(wt) ≥ 1

Upon an update ∆t ≥ 1− 1
2σ for both versions

0

Back to “Classical” Perceptron

Focus on rounds with mistakes (yt〈wt,xt〉 ≤ 0)

Assume norm of instances bounded by 1 (∀t : ‖xt‖ ≤ 1)

Recall ∆t = αt − 1
2 (αtyt〈wt,xt〉+ α2

t‖xt‖2/σ)

From assumptions ∆t ≥ αt − 1
2σ α2

t

Two version of the Perceptron:

Aggressive Perceptron:
αt = 1 whenever #t(wt) > 0
Scaled version of classical Perceptron:
αt = 1 only when #t(wt) ≥ 1

Upon an update ∆t ≥ 1− 1
2σ for both versions

0

yt〈wt,xt〉 Aggressive Update

Back to “Classical” Perceptron

Focus on rounds with mistakes (yt〈wt,xt〉 ≤ 0)

Assume norm of instances bounded by 1 (∀t : ‖xt‖ ≤ 1)

Recall ∆t = αt − 1
2 (αtyt〈wt,xt〉+ α2

t‖xt‖2/σ)

From assumptions ∆t ≥ αt − 1
2σ α2

t

Two version of the Perceptron:

Aggressive Perceptron:
αt = 1 whenever #t(wt) > 0
Scaled version of classical Perceptron:
αt = 1 only when #t(wt) ≥ 1

Upon an update ∆t ≥ 1− 1
2σ for both versions

0

yt〈wt,xt〉
Classical Update

Back to “Classical” Perceptron

Focus on rounds with mistakes (yt〈wt,xt〉 ≤ 0)

Assume norm of instances bounded by 1 (∀t : ‖xt‖ ≤ 1)

Recall ∆t = αt − 1
2 (αtyt〈wt,xt〉+ α2

t‖xt‖2/σ)

From assumptions ∆t ≥ αt − 1
2σ α2

t

Two version of the Perceptron:

Aggressive Perceptron:
αt = 1 whenever #t(wt) > 0
Scaled version of classical Perceptron:
αt = 1 only when #t(wt) ≥ 1

Upon an update ∆t ≥ 1− 1
2σ for both versions

Achieves a Regret Bound

0

yt〈wt,xt〉
Classical Update

Back to “Classical” Perceptron

Focus on rounds with mistakes (yt〈wt,xt〉 ≤ 0)

Assume norm of instances bounded by 1 (∀t : ‖xt‖ ≤ 1)

Recall ∆t = αt − 1
2 (αtyt〈wt,xt〉+ α2

t‖xt‖2/σ)

From assumptions ∆t ≥ αt − 1
2σ α2

t

Two version of the Perceptron:

Aggressive Perceptron:
αt = 1 whenever #t(wt) > 0
Scaled version of classical Perceptron:
αt = 1 only when #t(wt) ≥ 1

Upon an update ∆t ≥ 1− 1
2σ for both versions

Achieves a Mistake Bound

0

yt〈wt,xt〉
Classical Update

Universality of Classical Perceptron
Resulting update - ”scaled” Perceptron:

wt+1 =
{

wt + 1
σ ytxt if 〈wt,xt〉yt ≤ 0

wt otherwise

Use weak duality to obtain that ε
(
1− 1

2σ

)
≤

∑
t ∆t ≤ P(w")

Performance the same regardless of choice of σ

Choose σ so as to minimize regret bound

ε(T) ≤
T∑

t=1

#hi(〈u,xt〉, yt) + ‖u‖
√

ε(T)

Bound implies that

ε(T) ≤ L" + ‖u‖
√
L" + ‖u‖2 where L" =

∑

t

#hi (〈u,xt〉, yt)

Universality of Classical Perceptron
Resulting update - ”scaled” Perceptron:

wt+1 =
{

wt + 1
σ ytxt if 〈wt,xt〉yt ≤ 0

wt otherwise

Use weak duality to obtain that ε
(
1− 1

2σ

)
≤

∑
t ∆t ≤ P(w")

Performance the same regardless of choice of σ

Choose σ so as to minimize regret bound

ε(T) ≤
T∑

t=1

#hi(〈u,xt〉, yt) + ‖u‖
√

ε(T)

Bound implies that

ε(T) ≤ L" + ‖u‖
√
L" + ‖u‖2 where L" =

∑

t

#hi (〈u,xt〉, yt)

Perceptron is approximate

universal online SVM

Universality of Classical Perceptron
Resulting update - ”scaled” Perceptron:

wt+1 =
{

wt + 1
σ ytxt if 〈wt,xt〉yt ≤ 0

wt otherwise

Use weak duality to obtain that ε
(
1− 1

2σ

)
≤

∑
t ∆t ≤ P(w")

Performance the same regardless of choice of σ

Choose σ so as to minimize regret bound

ε(T) ≤
T∑

t=1

#hi(〈u,xt〉, yt) + ‖u‖
√

ε(T)

Bound implies that

ε(T) ≤ L" + ‖u‖
√
L" + ‖u‖2 where L" =

∑

t

#hi (〈u,xt〉, yt)

Part IV:
A Case Study:

Online Email Categorization

The Task - Email Categorization

On each round:

Receive an email message

Recommend the user a folder to which this email should go

Pay a unit loss if user does not agree with prediction

Learn the “true” folder the email should go to

Goal

Minimize cumulative loss

Modeling (highlights)

Feature representation

Represent email as bag-of-words (d-dimensional binary vectors)

Multi-vector multiclass construction

The loss function

The 0-1 loss function is not convex. Use hinge-loss as surrogate

The regularization

Euclidean & Entropic

Dual update

Three dual update schemes

Modeling: Multiple Vector Construction

r block

Prediction : ŷt = max
r

〈w, φ(xt, r)〉

... Brush the eggplant slices with olive oil and season with pepper.
Toss the peppers with a little olive oil. Place both on the ...

Email

oil

xt = [1 , 0 , 0 , 1 , 0 , . . .]

φ(xt, r) = [0 , . . . , 0 , xt , 0 , . . . ,0]

Modeling: Loss Functions

0

5

〈w,φ
(x t,

y t)〉

〈w,φ
(x t,

r)〉

!t(w) = max
r !=yt

1− 〈w, φ(xt, yt)− φ(xt, r)〉 ≥ !0−1(ŷt, yt)

Modeling: Loss Functions

0

5

〈w,φ
(x t,

y t)〉

〈w,φ
(x t,

r)〉

!
≥ 1

!t(w) = max
r !=yt

1− 〈w, φ(xt, yt)− φ(xt, r)〉 ≥ !0−1(ŷt, yt)

Modeling: Regularization

Euclidean regularization f(w) = σ
2 ‖w‖2

2

Entropic regulaization f(w) = σ
∑

i wi log(d wi)

Expected Performance

Recall the regret bounds we derived

Euclidean: (maxt ‖xt‖2) ‖w!‖2
√

T

Entropic: (maxt ‖xt‖∞) ‖w!‖1
√

log(d)T

Let s be the length of the longest email

Let r be the number of non-zero elements of w!

Then, Entropic
Euclidean ≤

√
r log(d)

s

Modeling: Dual Update Schemes

DA1: Fixed sub-gradient

λt = vt ∈ ∂"t(wt)

DA2: Sub-gradient with optimal step size

λt = αtvt where αt = argmax
α

D(λ1, . . . ,λt−1, αvt, 0, . . .)

DA3: Optimizing current dual vector

λt = arg max
λ
D(λ1, . . . ,λt−1,λ, 0, . . .)

Results: 3 dual updates

1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

re
la

tiv
e

er
ro

r

DA1
DA2
DA3

1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

re
la

tiv
e

er
ro

r

DA1
DA2
DA3

Entropic Euclidean

7 different users from the Enron data set

Results: 3 dual updates

1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

re
la

tiv
e

er
ro

r

DA1
DA2
DA3

1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

re
la

tiv
e

er
ro

r

DA1
DA2
DA3

Entropic Euclidean

7 different users from the Enron data set

Results: 2 regulairzation

1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

re
la

tiv
e

er
ro

r

Euclidean
Entropic

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

re
la

tiv
e

er
ro

r

Euclidean
Entropic

DA1 DA3

Part V:
Further directions

 (not covered)

Self-Tuned parameters

Our algorithmic framework relies on the strong convexity
parameter σ

The optimal choice of σ depends on unknown parameters
such as the horizon T and the Lipschitz constants of "t(·)

It is possible to infer these parameters ”on-the-fly”

Logarithmic Regret for Strongly Convex

The dependence of the regret on T in the bounds we
derived is O(

√
T)

This dependency tight in a minimax sense

It is possible to obtain O(log(T)) regret if the loss func-
tion is strongly convex

Main idea: when the loss function is strongly convex
additional regularization is not required (the function f
can be omitted) and by taking diminishing steps ∼ 1/t

Online-to-Batch conversions

Online algorithms can be used in batch settings

Main idea: if an online algorithm performs well on a se-
quence of i.i.d. examples then an ensemble of online hy-
potheses should generalize well

Thus, we need to construct a single hypothesis from the
sequence of online generated hypotheses

This process is called ”Online-to-Batch” conversions

Popular conversions: pick the averaged hypothesis, the ma-
jority vote, use a validation set for choosing a good hypothe-
sis, or simply pick at random a hypothesis from the ensemble

References

There are numerous relevant papers by:

Littlestone, Warmuth, Kivinen, Vovk, Azoury, Freund, Schapire,Gentile, Auer, Grove,
Schurmmanns, Long, Smola, Williamson, Herbster, Kalai, Vempala, Hazan ...

A comprehensive book on online prediction that also covers the
connections to game theory and information theory

Prediction Learning and Games.
N. Cesa-Bianchi and G. Lugosi. Cambridge university press, 2006.

The “online convex optimization” model was introduced by Zinkevich

Use of duality for online learning due to Shalev-Shwartz and Singer

Most of the topics covered in the tutorial can be found in

Online Learning: Theory, Algorithms, and Applications.
S. Shalev-Shwartz. PhD Thesis, The Hebrew University, 2007.
Advisor: Yoram Singer

