Lecture 3
 Feedforward Networks and Backpropagation
 CMSC 35246: Deep Learning

Shubhendu Trivedi
\&
Risi Kondor
University of Chicago

April 3, 2017

- Things we will look at today
- Recap of Logistic Regression
- Things we will look at today
- Recap of Logistic Regression
- Going from one neuron to Feedforward Networks
- Things we will look at today
- Recap of Logistic Regression
- Going from one neuron to Feedforward Networks
- Example: Learning XOR
- Things we will look at today
- Recap of Logistic Regression
- Going from one neuron to Feedforward Networks
- Example: Learning XOR
- Cost Functions, Hidden unit types, output types
- Things we will look at today
- Recap of Logistic Regression
- Going from one neuron to Feedforward Networks
- Example: Learning XOR
- Cost Functions, Hidden unit types, output types
- Universality Results and Architectural Considerations
- Things we will look at today
- Recap of Logistic Regression
- Going from one neuron to Feedforward Networks
- Example: Learning XOR
- Cost Functions, Hidden unit types, output types
- Universality Results and Architectural Considerations
- Backpropagation

Recap: The Logistic Function (Single Neuron)

Likelihood under the Logistic Model

$$
p\left(y_{i} \mid \mathbf{x} ; \theta\right)=\left\{\begin{array}{l}
\sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right) \text { if } y_{i}=1 \\
1-\sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right) \text { if } y_{i}=0
\end{array}\right.
$$

- We can rewrite this as:

Likelihood under the Logistic Model

$$
p\left(y_{i} \mid \mathbf{x} ; \theta\right)=\left\{\begin{array}{l}
\sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right) \text { if } y_{i}=1 \\
1-\sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right) \text { if } y_{i}=0
\end{array}\right.
$$

- We can rewrite this as:

$$
p\left(y_{i} \mid \mathbf{x}_{i} ; \theta\right)=\sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right)^{y_{i}}\left(1-\sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right)\right)^{1-y_{i}}
$$

Likelihood under the Logistic Model

$$
p\left(y_{i} \mid \mathbf{x} ; \theta\right)=\left\{\begin{array}{l}
\sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right) \text { if } y_{i}=1 \\
1-\sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right) \text { if } y_{i}=0
\end{array}\right.
$$

- We can rewrite this as:

$$
p\left(y_{i} \mid \mathbf{x}_{i} ; \theta\right)=\sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right)^{y_{i}}\left(1-\sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right)\right)^{1-y_{i}}
$$

- The log-likelihood of θ (cross-entropy!):

$$
\begin{aligned}
& \log p(Y \mid X ; \theta)=\sum_{i=1}^{N} \log p\left(y_{i} \mid \mathbf{x}_{i} ; \theta\right) \\
= & \sum_{i=1}^{N} y_{i} \log \sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right)+\left(1-y_{i}\right) \log \left(1-\sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right)\right)
\end{aligned}
$$

The Maximum Likelihood Solution

$$
\log p(Y \mid X ; \theta)=\sum_{i=1}^{N} y_{i} \log \sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right)+\left(1-y_{i}\right) \log \left(1-\sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right)\right)
$$

The Maximum Likelihood Solution

$$
\log p(Y \mid X ; \theta)=\sum_{i=1}^{N} y_{i} \log \sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right)+\left(1-y_{i}\right) \log \left(1-\sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right)\right)
$$

- Setting derivatives to zero:

The Maximum Likelihood Solution

$$
\log p(Y \mid X ; \theta)=\sum_{i=1}^{N} y_{i} \log \sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right)+\left(1-y_{i}\right) \log \left(1-\sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right)\right)
$$

- Setting derivatives to zero:

$$
\begin{gathered}
\frac{\partial \log p(Y \mid X ; \theta)}{\partial \theta_{0}}=\sum_{i=1}^{N}\left(y_{i}-\sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right)\right)=0 \\
\frac{\partial \log p(Y \mid X ; \theta)}{\partial \theta_{j}}=\sum_{i=1}^{N}\left(y_{i}-\sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right)\right) \mathbf{x}_{i, j}=0
\end{gathered}
$$

The Maximum Likelihood Solution

$$
\log p(Y \mid X ; \theta)=\sum_{i=1}^{N} y_{i} \log \sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right)+\left(1-y_{i}\right) \log \left(1-\sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right)\right)
$$

- Setting derivatives to zero:

$$
\begin{gathered}
\frac{\partial \log p(Y \mid X ; \theta)}{\partial \theta_{0}}=\sum_{i=1}^{N}\left(y_{i}-\sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right)\right)=0 \\
\frac{\partial \log p(Y \mid X ; \theta)}{\partial \theta_{j}}=\sum_{i=1}^{N}\left(y_{i}-\sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right)\right) \mathbf{x}_{i, j}=0
\end{gathered}
$$

- Can treat $y_{i}-p\left(y_{i} \mid \mathbf{x}_{i}\right)=y_{i}-\sigma\left(\theta_{0}+\theta^{T} \mathbf{x}_{i}\right)$ as the prediction error

Finding Maxima

- No closed form solution for the Maximum Likelihood for this model!

Finding Maxima

- No closed form solution for the Maximum Likelihood for this model!
- But $\log p(Y \mid X ; \mathbf{x})$ is jointly concave in all components of θ

Finding Maxima

- No closed form solution for the Maximum Likelihood for this mode!!
- But $\log p(Y \mid X ; \mathbf{x})$ is jointly concave in all components of θ
- Or, equivalently, the error is convex

Finding Maxima

- No closed form solution for the Maximum Likelihood for this mode!!
- But $\log p(Y \mid X ; \mathbf{x})$ is jointly concave in all components of θ
- Or, equivalently, the error is convex
- Gradient Descent/ascent (descent on $-\log p(y \mid \mathbf{x} ; \theta)$, log loss)

Gradient Descent Solution

- Objective is the average log-loss

Gradient Descent Solution

- Objective is the average log-loss

$$
-\frac{1}{N} \sum_{i=1}^{N} \log p\left(y_{i} \mid \mathbf{x}_{i} ; \theta\right)
$$

Gradient Descent Solution

- Objective is the average log-loss

$$
-\frac{1}{N} \sum_{i=1}^{N} \log p\left(y_{i} \mid \mathbf{x}_{i} ; \theta\right)
$$

- Gradient update:

$$
\theta^{(t+1)}:=\theta^{t}+\frac{\eta_{t}}{N} \frac{\partial}{\partial \theta} \sum_{i} \log p\left(y_{i} \mid \mathbf{x}_{i} ; \theta^{(t)}\right)
$$

Gradient Descent Solution

- Objective is the average log-loss

$$
-\frac{1}{N} \sum_{i=1}^{N} \log p\left(y_{i} \mid \mathbf{x}_{i} ; \theta\right)
$$

- Gradient update:

$$
\theta^{(t+1)}:=\theta^{t}+\frac{\eta_{t}}{N} \frac{\partial}{\partial \theta} \sum_{i} \log p\left(y_{i} \mid \mathbf{x}_{i} ; \theta^{(t)}\right)
$$

- Gradient on one example:

$$
\frac{\partial}{\partial \theta} \log p\left(y_{i} \mid \mathbf{x}_{i} ; \theta\right)=\left(y_{i}-\sigma\left(\theta^{T} \mathbf{x}_{i}\right)\right) \mathbf{x}_{i}
$$

Gradient Descent Solution

- Objective is the average log-loss

$$
-\frac{1}{N} \sum_{i=1}^{N} \log p\left(y_{i} \mid \mathbf{x}_{i} ; \theta\right)
$$

- Gradient update:

$$
\theta^{(t+1)}:=\theta^{t}+\frac{\eta_{t}}{N} \frac{\partial}{\partial \theta} \sum_{i} \log p\left(y_{i} \mid \mathbf{x}_{i} ; \theta^{(t)}\right)
$$

- Gradient on one example:

$$
\frac{\partial}{\partial \theta} \log p\left(y_{i} \mid \mathbf{x}_{i} ; \theta\right)=\left(y_{i}-\sigma\left(\theta^{T} \mathbf{x}_{i}\right)\right) \mathbf{x}_{i}
$$

- Above is batch gradient descent

Feedforward Networks

Introduction

- Goal: Approximate some unknown ideal function $f^{*}: \mathcal{X} \rightarrow \mathcal{Y}$

Introduction

- Goal: Approximate some unknown ideal function $f^{*}: \mathcal{X} \rightarrow \mathcal{Y}$
- Ideal classifier: $y=f^{*}(\mathbf{x})$ with \mathbf{x} and category y

Introduction

- Goal: Approximate some unknown ideal function $f^{*}: \mathcal{X} \rightarrow \mathcal{Y}$
- Ideal classifier: $y=f^{*}(\mathbf{x})$ with \mathbf{x} and category y
- Feedforward Network: Define parametric mapping $y=f(\mathbf{x}, \theta)$

Introduction

- Goal: Approximate some unknown ideal function $f^{*}: \mathcal{X} \rightarrow \mathcal{Y}$
- Ideal classifier: $y=f^{*}(\mathbf{x})$ with \mathbf{x} and category y
- Feedforward Network: Define parametric mapping $y=f(\mathbf{x}, \theta)$
- Learn parameters θ to get a good approximation to f^{*} from available sample

Introduction

- Goal: Approximate some unknown ideal function $f^{*}: \mathcal{X} \rightarrow \mathcal{Y}$
- Ideal classifier: $y=f^{*}(\mathbf{x})$ with \mathbf{x} and category y
- Feedforward Network: Define parametric mapping $y=f(\mathbf{x}, \theta)$
- Learn parameters θ to get a good approximation to f^{*} from available sample
- Naming: Information flow in function evaluation begins at input, flows through intermediate computations (that define the function), to produce the category

Introduction

- Goal: Approximate some unknown ideal function $f^{*}: \mathcal{X} \rightarrow \mathcal{Y}$
- Ideal classifier: $y=f^{*}(\mathbf{x})$ with \mathbf{x} and category y
- Feedforward Network: Define parametric mapping $y=f(\mathbf{x}, \theta)$
- Learn parameters θ to get a good approximation to f^{*} from available sample
- Naming: Information flow in function evaluation begins at input, flows through intermediate computations (that define the function), to produce the category
- No feedback connections (Recurrent Networks!)

Introduction

- Function f is a composition of many different functions

Introduction

- Function f is a composition of many different functions
- e.g. $f(\mathbf{x})=f^{(3)}\left(f^{(2)}\left(f^{(1)}(\mathbf{x})\right)\right)$

Introduction

- Function f is a composition of many different functions
- e.g. $f(\mathbf{x})=f^{(3)}\left(f^{(2)}\left(f^{(1)}(\mathbf{x})\right)\right)$

Introduction

- Function composition can be described by a directed acyclic graph (hence feedforward networks)

Introduction

- Function composition can be described by a directed acyclic graph (hence feedforward networks)
- $f^{(1)}$ is the first layer, f^{2} the second layer and so on.

Introduction

- Function composition can be described by a directed acyclic graph (hence feedforward networks)
- $f^{(1)}$ is the first layer, f^{2} the second layer and so on.
- Depth is the maximum i in the function composition chain

Introduction

- Function composition can be described by a directed acyclic graph (hence feedforward networks)
- $f^{(1)}$ is the first layer, f^{2} the second layer and so on.
- Depth is the maximum i in the function composition chain
- Final layer is called the output layer

Introduction

- Training: Optimize θ to drive $f(\mathbf{x} ; \theta)$ closer to $f^{*}(\mathbf{x})$

Introduction

- Training: Optimize θ to drive $f(\mathbf{x} ; \theta)$ closer to $f^{*}(\mathbf{x})$
- Training Data: f^{*} evaluated at different \mathbf{x} instances (i.e. expected outputs)

Introduction

- Training: Optimize θ to drive $f(\mathbf{x} ; \theta)$ closer to $f^{*}(\mathbf{x})$
- Training Data: f^{*} evaluated at different \mathbf{x} instances (i.e. expected outputs)
- Only specifies the output of the output layers

Introduction

- Training: Optimize θ to drive $f(\mathbf{x} ; \theta)$ closer to $f^{*}(\mathbf{x})$
- Training Data: f^{*} evaluated at different \mathbf{x} instances (i.e. expected outputs)
- Only specifies the output of the output layers
- Output of intermediate layers is not specified by \mathcal{D}, hence the nomenclature hidden layers

Introduction

- Training: Optimize θ to drive $f(\mathbf{x} ; \theta)$ closer to $f^{*}(\mathbf{x})$
- Training Data: f^{*} evaluated at different \mathbf{x} instances (i.e. expected outputs)
- Only specifies the output of the output layers
- Output of intermediate layers is not specified by \mathcal{D}, hence the nomenclature hidden layers
- Neural: Choices of $f^{(i)}$'s and layered organization, loosely inspired by neuroscience (first lecture)

Back to Linear Models

- +ve: Optimization is convex or closed form!

Back to Linear Models

- +ve: Optimization is convex or closed form!
- -ve: Model can't understand interaction between input variables!

Back to Linear Models

- +ve: Optimization is convex or closed form!
- -ve: Model can't understand interaction between input variables!
- Extension: Do nonlinear transformation $\mathbf{x} \rightarrow \phi(\mathbf{x})$; apply linear model to $\phi(\mathbf{x})$

Back to Linear Models

- +ve: Optimization is convex or closed form!
- -ve: Model can't understand interaction between input variables!
- Extension: Do nonlinear transformation $\mathbf{x} \rightarrow \phi(\mathbf{x})$; apply linear model to $\phi(\mathbf{x})$
- ϕ gives features or a representation for \mathbf{x}

Back to Linear Models

- +ve: Optimization is convex or closed form!
- -ve: Model can't understand interaction between input variables!
- Extension: Do nonlinear transformation $\mathbf{x} \rightarrow \phi(\mathbf{x})$; apply linear model to $\phi(\mathbf{x})$
- ϕ gives features or a representation for \mathbf{x}
- How do we choose ϕ ?

Choosing ϕ

- Option 1: Use a generic ϕ

Choosing ϕ

- Option 1: Use a generic ϕ
- Example: Infinite dimensional ϕ implicitly used by kernel machines with RBF kernel

Choosing ϕ

- Option 1: Use a generic ϕ
- Example: Infinite dimensional ϕ implicitly used by kernel machines with RBF kernel
- Positive: Enough capacity to fit training data

Choosing ϕ

- Option 1: Use a generic ϕ
- Example: Infinite dimensional ϕ implicitly used by kernel machines with RBF kernel
- Positive: Enough capacity to fit training data
- Negative: Poor generalization for highly varying f^{*}

Choosing ϕ

- Option 1: Use a generic ϕ
- Example: Infinite dimensional ϕ implicitly used by kernel machines with RBF kernel
- Positive: Enough capacity to fit training data
- Negative: Poor generalization for highly varying f^{*}
- Prior used: Function is locally smooth.

Choosing ϕ

- Option 2: Engineer ϕ for problem

Choosing ϕ

- Option 2: Engineer ϕ for problem
- Still convex!

Choosing ϕ

- Option 3: Learn ϕ from data
- Gives up on convexity
- Combines good points of first two approaches: ϕ can be highly generic and the engineering effort can go into architecture

Figure: Honglak Lee

Design Decisions

- Need to choose optimizer, cost function and form of output

Design Decisions

- Need to choose optimizer, cost function and form of output
- Choosing activation functions

Design Decisions

- Need to choose optimizer, cost function and form of output
- Choosing activation functions
- Architecture design (number of layers etc)

Back to XOR

XOR

Exclusive-OR gate

A	B	Output
0	0	0
0	1	1
1	0	1
1	1	0

- Let XOR be the target function $f^{*}(\mathbf{x})$ that we want to learn

XOR

Exclusive-OR gate

A	B	Output
0	0	0
0	1	1
1	0	1
1	1	0

- Let XOR be the target function $f^{*}(\mathbf{x})$ that we want to learn
- We will adapt parameters θ for $f(\mathbf{x} ; \theta)$ to try and represent f^{*}

XOR

Exclusive-OR gate

A	B	Output
0	0	0
0	1	1
1	0	1
1	1	0

- Let XOR be the target function $f^{*}(\mathbf{x})$ that we want to learn
- We will adapt parameters θ for $f(\mathbf{x} ; \theta)$ to try and represent f^{*}
- Our Data:

$$
(X, Y)=\left\{\left([0,0]^{T}, 0\right),\left([0,1]^{T}, 1\right),\left([1,0]^{T}, 1\right),\left([1,1]^{T}, 0\right)\right\}
$$

XOR

- Our Data:

$$
(X, Y)=\left\{\left([0,0]^{T}, 0\right),\left([0,1]^{T}, 1\right),\left([1,0]^{T}, 1\right),\left([1,1]^{T}, 0\right)\right\}
$$

XOR

- Our Data:

$$
(X, Y)=\left\{\left([0,0]^{T}, 0\right),\left([0,1]^{T}, 1\right),\left([1,0]^{T}, 1\right),\left([1,1]^{T}, 0\right)\right\}
$$

- Not concerned with generalization, only want to fit this data

XOR

- Our Data:

$$
(X, Y)=\left\{\left([0,0]^{T}, 0\right),\left([0,1]^{T}, 1\right),\left([1,0]^{T}, 1\right),\left([1,1]^{T}, 0\right)\right\}
$$

- Not concerned with generalization, only want to fit this data
- For simplicity consider the squared loss function

XOR

- Our Data:

$$
(X, Y)=\left\{\left([0,0]^{T}, 0\right),\left([0,1]^{T}, 1\right),\left([1,0]^{T}, 1\right),\left([1,1]^{T}, 0\right)\right\}
$$

- Not concerned with generalization, only want to fit this data
- For simplicity consider the squared loss function

$$
J(\theta)=\frac{1}{4} \sum_{x \in X}\left(f^{*}(\mathbf{x})-f(\mathbf{x} ; \theta)\right)^{2}
$$

XOR

- Our Data: $(X, Y)=\left\{\left([0,0]^{T}, 0\right),\left([0,1]^{T}, 1\right),\left([1,0]^{T}, 1\right),\left([1,1]^{T}, 0\right)\right\}$
- Not concerned with generalization, only want to fit this data
- For simplicity consider the squared loss function

$$
J(\theta)=\frac{1}{4} \sum_{x \in X}\left(f^{*}(\mathbf{x})-f(\mathbf{x} ; \theta)\right)^{2}
$$

- Need to choose a form for $f(\mathbf{x} ; \theta)$: Consider a linear model with θ being w and b

XOR

- Our Data: $(X, Y)=\left\{\left([0,0]^{T}, 0\right),\left([0,1]^{T}, 1\right),\left([1,0]^{T}, 1\right),\left([1,1]^{T}, 0\right)\right\}$
- Not concerned with generalization, only want to fit this data
- For simplicity consider the squared loss function

$$
J(\theta)=\frac{1}{4} \sum_{x \in X}\left(f^{*}(\mathbf{x})-f(\mathbf{x} ; \theta)\right)^{2}
$$

- Need to choose a form for $f(\mathbf{x} ; \theta)$: Consider a linear model with θ being \mathbf{w} and b
- Our model $f(\mathbf{x} ; \mathbf{w}, b)=\mathbf{x}^{T} \mathbf{w}+b$

Linear Model

- Recall previous lecture: Normal equations give $\mathbf{w}=0$ and $b=\frac{1}{2}$

Linear Model

- Recall previous lecture: Normal equations give $\mathbf{w}=0$ and $b=\frac{1}{2}$
- A linear model is not able to represent XOR, outputs 0.5 everywhere

Linear Model

- Recall previous lecture: Normal equations give $\mathbf{w}=0$ and $b=\frac{1}{2}$
- A linear model is not able to represent XOR, outputs 0.5 everywhere

Figure: Goodfellow et al.

Solving XOR

- How can we solve the XOR problem?

Solving XOR

- How can we solve the XOR problem?
- Idea: Learn a different feature space in which a linear model will work

Solving XOR

- Define a feedforward network with a vector of hidden units \mathbf{h} computed by $f^{(1)}(\mathbf{x} ; W, c)$

Solving XOR

- Define a feedforward network with a vector of hidden units \mathbf{h} computed by $f^{(1)}(\mathbf{x} ; W, c)$
- Use hidden unit values as input for a second layer i.e. to compute output $y=f^{(2)}(\mathbf{h} ; \mathbf{w}, b)$

Solving XOR

- Define a feedforward network with a vector of hidden units \mathbf{h} computed by $f^{(1)}(\mathbf{x} ; W, c)$
- Use hidden unit values as input for a second layer i.e. to compute output $y=f^{(2)}(\mathbf{h} ; \mathbf{w}, b)$
- Complete model: $f(\mathbf{x} ; W, \mathbf{c}, \mathbf{w}, b)=f^{(2)}\left(f^{(1)}(\mathbf{x})\right)$

Solving XOR

- Define a feedforward network with a vector of hidden units \mathbf{h} computed by $f^{(1)}(\mathbf{x} ; W, c)$
- Use hidden unit values as input for a second layer i.e. to compute output $y=f^{(2)}(\mathbf{h} ; \mathbf{w}, b)$
- Complete model: $f(\mathbf{x} ; W, \mathbf{c}, \mathbf{w}, b)=f^{(2)}\left(f^{(1)}(\mathbf{x})\right)$
- What should be $f^{(1)}$? Can it be linear?

Solving XOR

- Let us consider a non-linear activation $g(z)=\max \{0, z\}$

Solving XOR

- Let us consider a non-linear activation $g(z)=\max \{0, z\}$
- Our complete network model:

$$
f(\mathbf{x} ; W, \mathbf{c}, \mathbf{w}, b)=\mathbf{w}^{T} \max \left\{0, W^{T} \mathbf{x}+\mathbf{c}\right\}+b
$$

Solving XOR

- Let us consider a non-linear activation $g(z)=\max \{0, z\}$
- Our complete network model:

$$
f(\mathbf{x} ; W, \mathbf{c}, \mathbf{w}, b)=\mathbf{w}^{T} \max \left\{0, W^{T} \mathbf{x}+\mathbf{c}\right\}+b
$$

- Note: The activation above is applied element-wise

A Solution

- Let

$$
W=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \mathbf{c}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{w}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right], b=0
$$

A Solution

- Let

$$
W=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \mathbf{c}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{w}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right], b=0
$$

- Our design matrix is:

$$
X=\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right]
$$

A Solution

- Compute the first layer output, by first calculating $X W$

$$
X W=\left[\begin{array}{ll}
0 & 0 \\
1 & 1 \\
1 & 1 \\
2 & 2
\end{array}\right]
$$

A Solution

- Compute the first layer output, by first calculating $X W$

$$
X W=\left[\begin{array}{ll}
0 & 0 \\
1 & 1 \\
1 & 1 \\
2 & 2
\end{array}\right]
$$

- Find $X W+\mathbf{c}$

A Solution

- Compute the first layer output, by first calculating $X W$

$$
X W=\left[\begin{array}{ll}
0 & 0 \\
1 & 1 \\
1 & 1 \\
2 & 2
\end{array}\right]
$$

- Find $X W+\mathbf{c}$

$$
X W+\mathbf{c}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
1 & 0 \\
2 & 1
\end{array}\right]
$$

A Solution

- Compute the first layer output, by first calculating $X W$

$$
X W=\left[\begin{array}{ll}
0 & 0 \\
1 & 1 \\
1 & 1 \\
2 & 2
\end{array}\right]
$$

- Find $X W+\mathbf{c}$

$$
X W+\mathbf{c}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
1 & 0 \\
2 & 1
\end{array}\right]
$$

- Note: Ignore the type mismatch

A Solution

- Next step: Rectify output

$$
\max \{0, X W+\mathbf{c}\}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 0 \\
2 & 1
\end{array}\right]
$$

A Solution

- Next step: Rectify output

$$
\max \{0, X W+\mathbf{c}\}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 0 \\
2 & 1
\end{array}\right]
$$

- Finally compute $\mathbf{w}^{T} \max \{0, X W+\mathbf{c}\}+b$

A Solution

- Next step: Rectify output

$$
\max \{0, X W+\mathbf{c}\}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 0 \\
2 & 1
\end{array}\right]
$$

- Finally compute $\mathbf{w}^{T} \max \{0, X W+\mathbf{c}\}+b$
$\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]$
- Able to correctly classify every example in the set
- Able to correctly classify every example in the set
- This is a hand coded; demonstrative example, hence clean
- Able to correctly classify every example in the set
- This is a hand coded; demonstrative example, hence clean
- For more complicated functions, we will proceed by using gradient based learning

An Aside:

separating hyperplane

An Aside:

convex polygon region

An Aside:

composition of polygons:

convex regions

- Designing and Training a Neural Network is not much different from training any other Machine Learning model with gradient descent
- Designing and Training a Neural Network is not much different from training any other Machine Learning model with gradient descent
- Largest difference: Most interesting loss functions become non-convex
- Designing and Training a Neural Network is not much different from training any other Machine Learning model with gradient descent
- Largest difference: Most interesting loss functions become non-convex
- Unlike in convex optimization, no convergence guarantees
- Designing and Training a Neural Network is not much different from training any other Machine Learning model with gradient descent
- Largest difference: Most interesting loss functions become non-convex
- Unlike in convex optimization, no convergence guarantees
- To apply gradient descent: Need to specify cost function, and output representation

Cost Functions

Cost Functions

- Choice similar to parameteric models from earlier: Define a distribution $p(\mathbf{y} \mid \mathbf{x} ; \theta)$ and use principle of maximum likelihood

Cost Functions

- Choice similar to parameteric models from earlier: Define a distribution $p(\mathbf{y} \mid \mathbf{x} ; \theta)$ and use principle of maximum likelihood
- We can just use cross entropy between training data and the model's predictions as the cost function:

Cost Functions

- Choice similar to parameteric models from earlier: Define a distribution $p(\mathbf{y} \mid \mathbf{x} ; \theta)$ and use principle of maximum likelihood
- We can just use cross entropy between training data and the model's predictions as the cost function:

$$
J(\theta)=\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \hat{p}_{\text {data }}} \log p_{\text {model }}(\mathbf{y} \mid \mathbf{x})
$$

Cost Functions

- Choice similar to parameteric models from earlier: Define a distribution $p(\mathbf{y} \mid \mathbf{x} ; \theta)$ and use principle of maximum likelihood
- We can just use cross entropy between training data and the model's predictions as the cost function:

$$
J(\theta)=\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \hat{p}_{\text {data }}} \log p_{\text {model }}(\mathbf{y} \mid \mathbf{x})
$$

- Specific form changes depending on form of $\log p_{\text {model }}$

Cost Functions

- Choice similar to parameteric models from earlier: Define a distribution $p(\mathbf{y} \mid \mathbf{x} ; \theta)$ and use principle of maximum likelihood
- We can just use cross entropy between training data and the model's predictions as the cost function:

$$
J(\theta)=\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \hat{p}_{\text {data }}} \log p_{\text {model }}(\mathbf{y} \mid \mathbf{x})
$$

- Specific form changes depending on form of $\log p_{\text {model }}$
- Example: If $p_{\text {model }}(\mathbf{y} \mid \mathbf{x})=\mathcal{N}(\mathbf{y} ; f(\mathbf{x} ; \theta), I)$, then we recover:

Cost Functions

- Choice similar to parameteric models from earlier: Define a distribution $p(\mathbf{y} \mid \mathbf{x} ; \theta)$ and use principle of maximum likelihood
- We can just use cross entropy between training data and the model's predictions as the cost function:

$$
J(\theta)=\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \hat{p}_{\text {data }}} \log p_{\text {model }}(\mathbf{y} \mid \mathbf{x})
$$

- Specific form changes depending on form of $\log p_{\text {model }}$
- Example: If $p_{\text {model }}(\mathbf{y} \mid \mathbf{x})=\mathcal{N}(\mathbf{y} ; f(\mathbf{x} ; \theta), I)$, then we recover:

$$
J(\theta)=\frac{1}{2} \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \hat{p}_{\text {data }}}\|\mathbf{y}-f(\mathbf{x} ; \theta)\|^{2}+\text { Constant }
$$

Cost Functions

- Advantage: Need to specify $p(\mathbf{y} \mid \mathbf{x})$, and automatically get a cost function $\log p(\mathbf{y} \mid \mathbf{x})$

Cost Functions

- Advantage: Need to specify $p(\mathbf{y} \mid \mathbf{x})$, and automatically get a cost function $\log p(\mathbf{y} \mid \mathbf{x})$
- Choice of output units is very important for choice of cost function

Output Units

Linear Units

- Given features h, a layer of linear output units gives:

$$
\hat{y}=W^{T} h+b
$$

Linear Units

- Given features h, a layer of linear output units gives:

$$
\hat{y}=W^{T} h+b
$$

- Often used to produce the mean of a conditional Gaussian distribution:

$$
p(\mathbf{y} \mid \mathbf{x})=\mathcal{N}(\mathbf{y} ; \hat{\mathbf{y}}, I)
$$

Linear Units

- Given features h, a layer of linear output units gives:

$$
\hat{y}=W^{T} h+b
$$

- Often used to produce the mean of a conditional Gaussian distribution:

$$
p(\mathbf{y} \mid \mathbf{x})=\mathcal{N}(\mathbf{y} ; \hat{\mathbf{y}}, I)
$$

- Maximizing log-likelihood \Longrightarrow minimizing squared error

Sigmoid Units

- Task: Predict a binary variable y

Sigmoid Units

- Task: Predict a binary variable y
- Use a sigmoid unit:

$$
\hat{y}=\sigma\left(\mathbf{w}^{T} \mathbf{h}+b\right)
$$

Sigmoid Units

- Task: Predict a binary variable y
- Use a sigmoid unit:

$$
\hat{y}=\sigma\left(\mathbf{w}^{T} \mathbf{h}+b\right)
$$

- Cost:

$$
J(\theta)=-\log p(y \mid \mathbf{x})=-\log \sigma\left((2 y-1)\left(\mathbf{w}^{T} \mathbf{h}+b\right)\right)
$$

Sigmoid Units

- Task: Predict a binary variable y
- Use a sigmoid unit:

$$
\hat{y}=\sigma\left(\mathbf{w}^{T} \mathbf{h}+b\right)
$$

- Cost:

$$
J(\theta)=-\log p(y \mid \mathbf{x})=-\log \sigma\left((2 y-1)\left(\mathbf{w}^{T} \mathbf{h}+b\right)\right)
$$

- Positive: Only saturates when model already has right answer i.e. when $y=1$ and $\left(\mathbf{w}^{T} \mathbf{h}+b\right)$ is very positive and vice versa

Sigmoid Units

- Task: Predict a binary variable y
- Use a sigmoid unit:

$$
\hat{y}=\sigma\left(\mathbf{w}^{T} \mathbf{h}+b\right)
$$

- Cost:

$$
J(\theta)=-\log p(y \mid \mathbf{x})=-\log \sigma\left((2 y-1)\left(\mathbf{w}^{T} \mathbf{h}+b\right)\right)
$$

- Positive: Only saturates when model already has right answer i.e. when $y=1$ and $\left(\mathbf{w}^{T} \mathbf{h}+b\right)$ is very positive and vice versa
- When $\left(\mathbf{w}^{T} \mathbf{h}+b\right)$ has wrong sign, a good gradient is returned

Softmax Units

- Need to produce a vector $\hat{\mathbf{y}}$ with $\hat{y}_{i}=p(y=i \mid \mathbf{x})$

Softmax Units

- Need to produce a vector $\hat{\mathbf{y}}$ with $\hat{y}_{i}=p(y=i \mid \mathbf{x})$
- Linear layer first produces unnormalized log probabilities: $\mathbf{z}=W^{T} \mathbf{h}+\mathbf{b}$

Softmax Units

- Need to produce a vector $\hat{\mathbf{y}}$ with $\hat{y}_{i}=p(y=i \mid \mathbf{x})$
- Linear layer first produces unnormalized log probabilities:
$\mathbf{z}=W^{T} \mathbf{h}+\mathbf{b}$
- Softmax:

$$
\operatorname{softmax}(\mathbf{z})_{i}=\frac{\exp \left(z_{i}\right)}{\sum_{j} \exp \left(z_{j}\right)}
$$

Softmax Units

- Need to produce a vector $\hat{\mathbf{y}}$ with $\hat{y}_{i}=p(y=i \mid \mathbf{x})$
- Linear layer first produces unnormalized log probabilities:
$\mathbf{z}=W^{T} \mathbf{h}+\mathbf{b}$
- Softmax:

$$
\operatorname{softmax}(\mathbf{z})_{i}=\frac{\exp \left(z_{i}\right)}{\sum_{j} \exp \left(z_{j}\right)}
$$

- Log of the softmax (since we wish to maximize $p(y=i ; \mathbf{z})$):

$$
\log \operatorname{softmax}(\mathbf{z})_{i}=z_{i}-\log \sum_{j} \exp \left(z_{j}\right)
$$

Benefits

$$
\log \operatorname{softmax}(\mathbf{z})_{i}=z_{i}-\log \sum_{j} \exp \left(z_{j}\right)
$$

Benefits

$$
\log \operatorname{softmax}(\mathbf{z})_{i}=z_{i}-\log \sum_{j} \exp \left(z_{j}\right)
$$

- z_{i} term never saturates, making learning easier

Benefits

$$
\log \operatorname{softmax}(\mathbf{z})_{i}=z_{i}-\log \sum_{j} \exp \left(z_{j}\right)
$$

- z_{i} term never saturates, making learning easier
- Maximizing log-likelihood encourages z_{i} to be pushed up, while encouraging all \mathbf{z} to be pushed down (Softmax encourages competition)

Benefits

$$
\log \operatorname{softmax}(\mathbf{z})_{i}=z_{i}-\log \sum_{j} \exp \left(z_{j}\right)
$$

- z_{i} term never saturates, making learning easier
- Maximizing log-likelihood encourages z_{i} to be pushed up, while encouraging all \mathbf{z} to be pushed down (Softmax encourages competition)
- More intuition: Think of $\log \sum_{j} \exp \left(z_{j}\right) \approx \max _{j} z_{j}$ (why?)

Benefits

$$
\log \operatorname{softmax}(\mathbf{z})_{i}=z_{i}-\log \sum_{j} \exp \left(z_{j}\right)
$$

- z_{i} term never saturates, making learning easier
- Maximizing log-likelihood encourages z_{i} to be pushed up, while encouraging all \mathbf{z} to be pushed down (Softmax encourages competition)
- More intuition: Think of $\log \sum_{j} \exp \left(z_{j}\right) \approx \max _{j} z_{j}$ (why?)
- \log-likelihood cost function $\left(\sim z_{i}-\max _{j} z_{j}\right)$ strongly penalizes the most active incorrect prediction

Benefits

$$
\log \operatorname{softmax}(\mathbf{z})_{i}=z_{i}-\log \sum_{j} \exp \left(z_{j}\right)
$$

- z_{i} term never saturates, making learning easier
- Maximizing log-likelihood encourages z_{i} to be pushed up, while encouraging all \mathbf{z} to be pushed down (Softmax encourages competition)
- More intuition: Think of $\log \sum_{j} \exp \left(z_{j}\right) \approx \max _{j} z_{j}$ (why?)
- log-likelihood cost function $\left(\sim z_{i}-\max _{j} z_{j}\right)$ strongly penalizes the most active incorrect prediction
- If model already has correct answer then $\log \sum_{j} \exp \left(z_{j}\right) \approx \max _{j} z_{j}$ and z_{i} will roughly cancel out

Benefits

$$
\log \operatorname{softmax}(\mathbf{z})_{i}=z_{i}-\log \sum_{j} \exp \left(z_{j}\right)
$$

- z_{i} term never saturates, making learning easier
- Maximizing log-likelihood encourages z_{i} to be pushed up, while encouraging all \mathbf{z} to be pushed down (Softmax encourages competition)
- More intuition: Think of $\log \sum_{j} \exp \left(z_{j}\right) \approx \max _{j} z_{j}$ (why?)
- \log-likelihood cost function $\left(\sim z_{i}-\max _{j} z_{j}\right)$ strongly penalizes the most active incorrect prediction
- If model already has correct answer then $\log \sum_{j} \exp \left(z_{j}\right) \approx \max _{j} z_{j}$ and z_{i} will roughly cancel out
- Progress of learning is dominated by incorrectly classified examples

Hidden Units

Hidden Units

- Accept input \mathbf{x}

Hidden Units

- Accept input $\mathbf{x} \rightarrow$ compute affine transformation $\mathbf{z}=W^{T} \mathbf{x}+\mathbf{b}$

Hidden Units

- Accept input $\mathbf{x} \rightarrow$ compute affine transformation $\mathbf{z}=W^{T} \mathbf{x}+\mathbf{b} \rightarrow$ apply elementwise non-linear function $g(z)$

Hidden Units

- Accept input $\mathbf{x} \rightarrow$ compute affine transformation $\mathbf{z}=W^{T} \mathbf{x}+\mathbf{b} \rightarrow$ apply elementwise non-linear function $g(z)$ \rightarrow obtain output $g(\mathbf{z})$

Hidden Units

- Accept input $\mathbf{x} \rightarrow$ compute affine transformation $\mathbf{z}=W^{T} \mathbf{x}+\mathbf{b} \rightarrow$ apply elementwise non-linear function $g(z)$ \rightarrow obtain output $g(\mathbf{z})$
- Choices for g ?

Hidden Units

- Accept input $\mathbf{x} \rightarrow$ compute affine transformation $\mathbf{z}=W^{T} \mathbf{x}+\mathbf{b} \rightarrow$ apply elementwise non-linear function $g(z)$ \rightarrow obtain output $g(\mathbf{z})$
- Choices for g ?
- Design of Hidden units is an active area of research

Rectified Linear Units

- Activation function: $g(z)=\max \{0, z\}$ with $z \in \mathbb{R}$

Rectified Linear Units

The Rectified Linear Activation Function

- Activation function: $g(z)=\max \{0, z\}$ with $z \in \mathbb{R}$
- On top of a affine transformation $\max \{0, W \mathbf{x}+\mathbf{b}\}$

Rectified Linear Units

The Rectified Linear Activation Function

- Activation function: $g(z)=\max \{0, z\}$ with $z \in \mathbb{R}$
- On top of a affine transformation $\max \{0, W \mathbf{x}+\mathbf{b}\}$
- Two layer network: First layer $\max \left\{0, W_{1}^{T} \mathbf{x}+\mathbf{b}_{1}\right\}$

Rectified Linear Units

The Rectified Linear Activation Function

- Activation function: $g(z)=\max \{0, z\}$ with $z \in \mathbb{R}$
- On top of a affine transformation $\max \{0, W \mathbf{x}+\mathbf{b}\}$
- Two layer network: First layer $\max \left\{0, W_{1}^{T} \mathbf{x}+\mathbf{b}_{1}\right\}$
- Second layer: $W_{2}^{T} \max \left\{0, W_{1}^{T} \mathbf{x}+\mathbf{b}_{1}\right\}+\mathbf{b}_{2}$

Rectified Linear Units

- Similar to linear units. Easy to optimize!

Rectified Linear Units

- Similar to linear units. Easy to optimize!
- Give large and consistent gradients when active

Rectified Linear Units

- Similar to linear units. Easy to optimize!
- Give large and consistent gradients when active
- Good practice: Initialize \mathbf{b} to a small positive value (e.g. 0.1)

Rectified Linear Units

- Similar to linear units. Easy to optimize!
- Give large and consistent gradients when active
- Good practice: Initialize \mathbf{b} to a small positive value (e.g. 0.1)
- Ensures units are initially active for most inputs and derivatives can pass through

Rectified Linear Units

The Rectified Linear Activation Function

- Not everywhere differentiable. Is this a problem?

Rectified Linear Units

The Rectified Linear Activation Function

- Not everywhere differentiable. Is this a problem?
- In practice not a problem. Return one sided derivatives at $z=0$

Rectified Linear Units

The Rectified Linear Activation Function

- Not everywhere differentiable. Is this a problem?
- In practice not a problem. Return one sided derivatives at $z=0$
- Gradient based optimization is subject to numerical error anyway

Rectified Linear Units

- Positives:

Rectified Linear Units

The Rectified Linear Activation Function

- Positives:
- Gives large and consistent gradients (does not saturate) when active

Rectified Linear Units

The Rectified Linear Activation Function

- Positives:
- Gives large and consistent gradients (does not saturate) when active
- Efficient to optimize, converges much faster than sigmoid or tanh

Rectified Linear Units

The Rectified Linear Activation Function

- Positives:
- Gives large and consistent gradients (does not saturate) when active
- Efficient to optimize, converges much faster than sigmoid or tanh
- Negatives:

Rectified Linear Units

The Rectified Linear Activation Function

- Positives:
- Gives large and consistent gradients (does not saturate) when active
- Efficient to optimize, converges much faster than sigmoid or tanh
- Negatives:
- Non zero centered output

Rectified Linear Units

The Rectified Linear Activation Function

- Positives:
- Gives large and consistent gradients (does not saturate) when active
- Efficient to optimize, converges much faster than sigmoid or tanh
- Negatives:
- Non zero centered output
- Units "die" i.e. when inactive they will never update

Generalized Rectified Linear Units

- Get a non-zero slope when $z_{i}<0$

Generalized Rectified Linear Units

- Get a non-zero slope when $z_{i}<0$
- $g(z, a)_{i}=\max \left\{0, z_{i}\right\}+a_{i} \min \left\{0, z_{i}\right\}$

Generalized Rectified Linear Units

- Get a non-zero slope when $z_{i}<0$
- $g(z, a)_{i}=\max \left\{0, z_{i}\right\}+a_{i} \min \left\{0, z_{i}\right\}$
- Absolute value rectification: (Jarret et al, 2009)

$$
a_{i}=1 \text { gives } g(z)=|z|
$$

Generalized Rectified Linear Units

- Get a non-zero slope when $z_{i}<0$
- $g(z, a)_{i}=\max \left\{0, z_{i}\right\}+a_{i} \min \left\{0, z_{i}\right\}$
- Absolute value rectification: (Jarret et al, 2009) $a_{i}=1$ gives $g(z)=|z|$
- Leaky ReLU: (Maas et al., 2013) Fix a_{i} to a small value e.g. 0.01

Generalized Rectified Linear Units

- Get a non-zero slope when $z_{i}<0$
- $g(z, a)_{i}=\max \left\{0, z_{i}\right\}+a_{i} \min \left\{0, z_{i}\right\}$
- Absolute value rectification: (Jarret et al, 2009) $a_{i}=1$ gives $g(z)=|z|$
- Leaky ReLU: (Maas et al., 2013) Fix a_{i} to a small value e.g. 0.01
- Parametric ReLU: (He et al., 2015) Learn a_{i}

Generalized Rectified Linear Units

- Get a non-zero slope when $z_{i}<0$
- $g(z, a)_{i}=\max \left\{0, z_{i}\right\}+a_{i} \min \left\{0, z_{i}\right\}$
- Absolute value rectification: (Jarret et al, 2009) $a_{i}=1$ gives $g(z)=|z|$
- Leaky ReLU: (Maas et al., 2013) Fix a_{i} to a small value e.g. 0.01
- Parametric ReLU: (He et al., 2015) Learn a_{i}
- Randomized ReLU: (Xu et al., 2015) Sample a_{i} from a fixed range during training, fix during testing

Generalized Rectified Linear Units

- Get a non-zero slope when $z_{i}<0$
- $g(z, a)_{i}=\max \left\{0, z_{i}\right\}+a_{i} \min \left\{0, z_{i}\right\}$
- Absolute value rectification: (Jarret et al, 2009) $a_{i}=1$ gives $g(z)=|z|$
- Leaky ReLU: (Maas et al., 2013) Fix a_{i} to a small value e.g. 0.01
- Parametric ReLU: (He et al., 2015) Learn a_{i}
- Randomized ReLU: (Xu et al., 2015) Sample a_{i} from a fixed range during training, fix during testing
-

Generalized Rectified Linear Units

Figure: Xu et al. "Empirical Evaluation of Rectified Activations in Convolutional Network"

Exponential Linear Units (ELUs)

$$
g(z)=\left\{\begin{array}{l}
z \text { if } z>0 \\
\alpha(\exp z-1) \text { if } z \leq 0
\end{array}\right.
$$

Exponential Linear Units (ELUs)

$$
g(z)=\left\{\begin{array}{l}
z \text { if } z>0 \\
\alpha(\exp z-1) \text { if } z \leq 0
\end{array}\right.
$$

- All the benefits of ReLU + does not get killed

Exponential Linear Units (ELUs)

$$
g(z)=\left\{\begin{array}{l}
z \text { if } z>0 \\
\alpha(\exp z-1) \text { if } z \leq 0
\end{array}\right.
$$

- All the benefits of ReLU + does not get killed
- Problem: Need to exponentiate

Exponential Linear Units (ELUs)

$$
g(z)=\left\{\begin{array}{l}
z \text { if } z>0 \\
\alpha(\exp z-1) \text { if } z \leq 0
\end{array}\right.
$$

- All the benefits of ReLU + does not get killed
- Problem: Need to exponentiate

Figure: Clevert et al. "Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)", 2016

Maxout Units

- Generalizes ReLUs further but does not fit into the (dot product \rightarrow nonlinearity) mold

Maxout Units

- Generalizes ReLUs further but does not fit into the (dot product \rightarrow nonlinearity) mold
- Instead of applying an element-wise function $g(z)$, divide vector \mathbf{z} into k groups (more parameters!)

Maxout Units

- Generalizes ReLUs further but does not fit into the (dot product \rightarrow nonlinearity) mold
- Instead of applying an element-wise function $g(z)$, divide vector \mathbf{z} into k groups (more parameters!)
- Output maximum element of one of k groups $g(\mathbf{z})_{i}=\max _{j \in \mathbb{G}^{(i)}} z_{j}$

Maxout Units

- Generalizes ReLUs further but does not fit into the (dot product \rightarrow nonlinearity) mold
- Instead of applying an element-wise function $g(z)$, divide vector \mathbf{z} into k groups (more parameters!)
- Output maximum element of one of k groups $g(\mathbf{z})_{i}=\max _{j \in \mathbb{G}^{(i)}} z_{j}$
- $g(\mathbf{z})_{i}=\max \left\{w_{1}^{T} \mathbf{x}+b_{1}, \ldots, w_{k}^{T} \mathbf{x}+b_{k}\right\}$
- A maxout unit makes a piecewise linear approximation (with k pieces) to an arbitrary convex function

Maxout Units

- Generalizes ReLUs further but does not fit into the (dot product \rightarrow nonlinearity) mold
- Instead of applying an element-wise function $g(z)$, divide vector \mathbf{z} into k groups (more parameters!)
- Output maximum element of one of k groups $g(\mathbf{z})_{i}=\max _{j \in \mathbb{G}^{(i)}} z_{j}$
- $g(\mathbf{z})_{i}=\max \left\{w_{1}^{T} \mathbf{x}+b_{1}, \ldots, w_{k}^{T} \mathbf{x}+b_{k}\right\}$
- A maxout unit makes a piecewise linear approximation (with k pieces) to an arbitrary convex function
- Can be thought of as learning the activation function itself

Maxout Units

- Generalizes ReLUs further but does not fit into the (dot product \rightarrow nonlinearity) mold
- Instead of applying an element-wise function $g(z)$, divide vector \mathbf{z} into k groups (more parameters!)
- Output maximum element of one of k groups $g(\mathbf{z})_{i}=\max _{j \in \mathbb{G}^{(i)}} z_{j}$
- $g(\mathbf{z})_{i}=\max \left\{w_{1}^{T} \mathbf{x}+b_{1}, \ldots, w_{k}^{T} \mathbf{x}+b_{k}\right\}$
- A maxout unit makes a piecewise linear approximation (with k pieces) to an arbitrary convex function
- Can be thought of as learning the activation function itself
- With $k=2$ we CAN recover absolute value rectification, or ReLU or PReLU

Maxout Units

- Generalizes ReLUs further but does not fit into the (dot product \rightarrow nonlinearity) mold
- Instead of applying an element-wise function $g(z)$, divide vector \mathbf{z} into k groups (more parameters!)
- Output maximum element of one of k groups $g(\mathbf{z})_{i}=\max _{j \in \mathbb{G}^{(i)}} z_{j}$
- $g(\mathbf{z})_{i}=\max \left\{w_{1}^{T} \mathbf{x}+b_{1}, \ldots, w_{k}^{T} \mathbf{x}+b_{k}\right\}$
- A maxout unit makes a piecewise linear approximation (with k pieces) to an arbitrary convex function
- Can be thought of as learning the activation function itself
- With $k=2$ we CAN recover absolute value rectification, or ReLU or PReLU
- Each unit parameterized by k weight vectors instead of 1 , needs stronger regularization

Sigmoid Units

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

Sigmoid Units

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

- Squashing type non-linearity: pushes outputs to range $[0,1]$

Sigmoid Units

Sigmoid Units

- Problem: Saturate across most of their domain, strongly sensitive only when z is closer to zero

Sigmoid Units

- Problem: Saturate across most of their domain, strongly sensitive only when z is closer to zero
- Saturation makes gradient based learning difficult

Tanh Units

- Related to sigmoid: $g(z)=\tanh (z)=2 \sigma(2 z)-1$

Tanh Units

- Related to sigmoid: $g(z)=\tanh (z)=2 \sigma(2 z)-1$
- Positives: Squashes output to range $[-1,1]$, outputs are zero-centered

Tanh Units

- Related to sigmoid: $g(z)=\tanh (z)=2 \sigma(2 z)-1$
- Positives: Squashes output to range $[-1,1]$, outputs are zero-centered
- Negative: Also saturates

Tanh Units

- Related to sigmoid: $g(z)=\tanh (z)=2 \sigma(2 z)-1$
- Positives: Squashes output to range $[-1,1]$, outputs are zero-centered
- Negative: Also saturates
- Still better than sigmoid as $\hat{y}=\mathbf{w}^{T} \tanh \left(U^{T} \tanh \left(V^{T} \mathbf{x}\right)\right)$ resembles $\hat{y}=\mathbf{w}^{T} U^{T} V^{T} \mathbf{x}$ when activations are small

Other Units

- Radial Basis Functions: $g(z)_{i}=\exp \left(\frac{1}{\sigma_{i}^{2}}\left\|W_{:, i} \mathbf{x}\right\|^{2}\right)$

Other Units

- Radial Basis Functions: $g(z)_{i}=\exp \left(\frac{1}{\sigma_{i}^{2}}\left\|W_{:, i} \mathbf{x}\right\|^{2}\right)$
- Function is more active as \mathbf{x} approaches a template $W_{:, i}$. Also saturates and is hard to train

Other Units

- Radial Basis Functions: $g(z)_{i}=\exp \left(\frac{1}{\sigma_{i}^{2}}\left\|W_{:, i} \mathbf{x}\right\|^{2}\right)$
- Function is more active as \mathbf{x} approaches a template $W_{:, i}$. Also saturates and is hard to train
- Softplus: $g(z)=\log \left(1+e^{z}\right)$. Smooth version of rectifier (Dugas et al., 2001), although differentiable everywhere, empirically performs worse than rectifiers

Other Units

- Radial Basis Functions: $g(z)_{i}=\exp \left(\frac{1}{\sigma_{i}^{2}}\left\|W_{:, i} \mathbf{x}\right\|^{2}\right)$
- Function is more active as \mathbf{x} approaches a template $W_{:, i}$. Also saturates and is hard to train
- Softplus: $g(z)=\log \left(1+e^{z}\right)$. Smooth version of rectifier (Dugas et al., 2001), although differentiable everywhere, empirically performs worse than rectifiers
- Hard Tanh: $g(z)=\max (-1, \min (1, z))$, like the rectifier, but bounded (Collobert, 2004)

Summary

- In Feedforward Networks don't use Sigmoid

Summary

- In Feedforward Networks don't use Sigmoid
- When a sigmoidal function must be used, use tanh

Summary

- In Feedforward Networks don't use Sigmoid
- When a sigmoidal function must be used, use tanh
- Use ReLU by default, but be careful with learning rates

Summary

- In Feedforward Networks don't use Sigmoid
- When a sigmoidal function must be used, use tanh
- Use ReLU by default, but be careful with learning rates
- Try other generalized ReLUs and Maxout for possible improvement

Universality and Depth

Architecture Design

- First layer: $\mathbf{h}^{(1)}=g^{(1)}\left(W^{(1)^{T}} \mathbf{x}+\mathbf{b}^{(1)}\right)$
- Second layer: $\mathbf{h}^{(2)}=g^{(2)}\left(W^{(2)^{T}} \mathbf{h}^{(1)}+\mathbf{b}^{(2)}\right)$
- How do we decide depth, width?
- In theory how many layers suffice?

Universality

- Theoretical result [Cybenko, 1989]: 2-layer net with linear output with some squashing non-linearity in hidden units can approximate any continuous function over compact domain to arbitrary accuracy (given enough hidden units!)

Universality

- Theoretical result [Cybenko, 1989]: 2-layer net with linear output with some squashing non-linearity in hidden units can approximate any continuous function over compact domain to arbitrary accuracy (given enough hidden units!)
- Implication: Regardless of function we are trying to learn, we know a large MLP can represent this function

Universality

- Theoretical result [Cybenko, 1989]: 2-layer net with linear output with some squashing non-linearity in hidden units can approximate any continuous function over compact domain to arbitrary accuracy (given enough hidden units!)
- Implication: Regardless of function we are trying to learn, we know a large MLP can represent this function
- But not guaranteed that our training algorithm will be able to learn that function

Universality

- Theoretical result [Cybenko, 1989]: 2-layer net with linear output with some squashing non-linearity in hidden units can approximate any continuous function over compact domain to arbitrary accuracy (given enough hidden units!)
- Implication: Regardless of function we are trying to learn, we know a large MLP can represent this function
- But not guaranteed that our training algorithm will be able to learn that function
- Gives no guidance on how large the network will be (exponential size in worst case)

Universality

- Theoretical result [Cybenko, 1989]: 2-layer net with linear output with some squashing non-linearity in hidden units can approximate any continuous function over compact domain to arbitrary accuracy (given enough hidden units!)
- Implication: Regardless of function we are trying to learn, we know a large MLP can represent this function
- But not guaranteed that our training algorithm will be able to learn that function
- Gives no guidance on how large the network will be (exponential size in worst case)
- Talked of some suggestive results earlier:

One more result:

- (Montufar et al., 2014) Number of linear regions carved out by a deep rectifier network with d inputs, depth l and n units per hidden layer is:

$$
O\left(\binom{n}{d}^{d(l-1)} n^{d}\right)
$$

One more result:

- (Montufar et al., 2014) Number of linear regions carved out by a deep rectifier network with d inputs, depth l and n units per hidden layer is:

$$
O\left(\binom{n}{d}^{d(l-1)} n^{d}\right)
$$

- Exponential in depth!
- They showed functions representable with a deep rectifier network can require an exponential number of hidden units with a shallow network

Figure 2: (a) Space folding of 2-D Euclidean space along the two axes. (b) An illustration of how the top-level partitioning (on the right) is replicated to the original input space (left). (c) Identification of regions across the layers of a deep model.

Figure 3: Space folding of 2-D space in a non-trivial way. Note how the folding can potentially identify symmetries in the boundary that it needs to learn.

Figure: Montufar et al., 2014

Advantages of Depth

Figure: Goodfellow et al., 2014

Advantages of Depth

- Control experiments show that other increases to model size don't yield the same effect

Figure: Goodfellow et al., 2014

Backpropagation: Introduction

How do we learn weights?

- First Idea: Randomly perturb one weight, see if it improves performance, save the change

How do we learn weights?

- First Idea: Randomly perturb one weight, see if it improves performance, save the change
- Very inefficient: Need to do many passes over a sample set for just one weight change

How do we learn weights?

- First Idea: Randomly perturb one weight, see if it improves performance, save the change
- Very inefficient: Need to do many passes over a sample set for just one weight change
- What does this remind you of?

How do we learn weights?

- Another Idea: Perturb all the weights in parallel, and correlate the performance gain with weight changes

How do we learn weights?

- Another Idea: Perturb all the weights in parallel, and correlate the performance gain with weight changes
- Very hard to implement

How do we learn weights?

- Another Idea: Perturb all the weights in parallel, and correlate the performance gain with weight changes
- Very hard to implement
- Yet another idea: Only perturb activations (since they are fewer). Still very inefficient.

Backpropagation

Backpropagation

- Feedforward Propagation: Accept input x, pass through intermediate stages and obtain output \hat{y}

Backpropagation

- Feedforward Propagation: Accept input x, pass through intermediate stages and obtain output \hat{y}
- During Training: Use \hat{y} to compute a scalar cost $J(\theta)$

Backpropagation

Back-propagate
error signal to
get derivatives
for learning

- Feedforward Propagation: Accept input x, pass through intermediate stages and obtain output \hat{y}
- During Training: Use \hat{y} to compute a scalar cost $J(\theta)$
- Backpropagation allows information to flow backwards from cost to compute the gradient
Figure: G. E. Hinton

Backpropagation

- From the training data we don't know what the hidden units should do

Backpropagation

- From the training data we don't know what the hidden units should do
- But, we can compute how fast the error changes as we change a hidden activity

Backpropagation

- From the training data we don't know what the hidden units should do
- But, we can compute how fast the error changes as we change a hidden activity
- Use error derivatives w.r.t hidden activities

Backpropagation

- From the training data we don't know what the hidden units should do
- But, we can compute how fast the error changes as we change a hidden activity
- Use error derivatives w.r.t hidden activities
- Each hidden unit can affect many output units and have separate effects on error - combine these effects

Backpropagation

- From the training data we don't know what the hidden units should do
- But, we can compute how fast the error changes as we change a hidden activity
- Use error derivatives w.r.t hidden activities
- Each hidden unit can affect many output units and have separate effects on error - combine these effects
- Can compute error derivatives for hidden units efficiently (and once we have error derivatives for hidden activities, easy to get error derivatives for weights going in)

Slide: G. E. Hinton

Review: neural networks

- Feedforward operation, from input \mathbf{x} to output \hat{y} :

$$
\hat{y}(\mathbf{x} ; \mathbf{w})=f\left(\sum_{j=1}^{m} w_{j}^{(2)} h\left(\sum_{i=1}^{d} w_{i j}^{(1)} x_{i}+w_{0 j}^{(1)}\right)+w_{0}^{(2)}\right)
$$

Slide adapted from TTIC 31020, Gregory Shakhnarovich

Training the network

- Error of the network on a training set:

$$
L(X ; \mathbf{w})=\sum_{i=1}^{N} \frac{1}{2}\left(y_{i}-\hat{y}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)^{2}
$$

Training the network

- Error of the network on a training set:

$$
L(X ; \mathbf{w})=\sum_{i=1}^{N} \frac{1}{2}\left(y_{i}-\hat{y}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)^{2}
$$

- Generally, no closed-form solution; resort to gradient descent

Training the network

- Error of the network on a training set:

$$
L(X ; \mathbf{w})=\sum_{i=1}^{N} \frac{1}{2}\left(y_{i}-\hat{y}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)^{2}
$$

- Generally, no closed-form solution; resort to gradient descent
- Need to evaluate derivative of L on a single example

Training the network

- Error of the network on a training set:

$$
L(X ; \mathbf{w})=\sum_{i=1}^{N} \frac{1}{2}\left(y_{i}-\hat{y}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)^{2}
$$

- Generally, no closed-form solution; resort to gradient descent
- Need to evaluate derivative of L on a single example
- Let's start with a simple linear model $\hat{y}=\sum_{j} w_{j} x_{i j}$:

$$
\frac{\partial L\left(\mathbf{x}_{i}\right)}{\partial w_{j}}=\underbrace{\left(\hat{y}_{i}-y_{i}\right)}_{\text {error }} x_{i j} .
$$

Backpropagation

- General unit activation in a multilayer network:

$$
z_{t}=h\left(\sum_{j} w_{j t} z_{j}\right)
$$

- Forward propagation: calculate for each unit $a_{t}=\sum_{j} w_{j t} z_{j}$

Backpropagation

- General unit activation in a multilayer network:

$$
z_{t}=h\left(\sum_{j} w_{j t} z_{j}\right)
$$

- Forward propagation: calculate for each unit $a_{t}=\sum_{j} w_{j t} z_{j}$
- The loss L depends on $w_{j t}$ only through a_{t} :

Backpropagation

- General unit activation in a multilayer network:

$$
z_{t}=h\left(\sum_{j} w_{j t} z_{j}\right)
$$

- Forward propagation: calculate for each unit $a_{t}=\sum_{j} w_{j t} z_{j}$
- The loss L depends on $w_{j t}$ only through a_{t} :

$$
\frac{\partial L}{\partial w_{j t}}=\frac{\partial L}{\partial a_{t}} \frac{\partial a_{t}}{\partial w_{j t}}=\frac{\partial L}{\partial a_{t}} z_{j}
$$

Slide adapted from TTIC 31020, Gregory Shakhnarovich

Backpropagation

$$
\frac{\partial L}{\partial w_{j t}}=\frac{\partial L}{\partial a_{t}} z_{j} \quad \frac{\partial L}{\partial w_{j t}}=\underbrace{\frac{\partial L}{\partial a_{t}}}_{\delta_{t}} z_{j}
$$

Backpropagation

$$
\frac{\partial L}{\partial w_{j t}}=\frac{\partial L}{\partial a_{t}} z_{j} \quad \frac{\partial L}{\partial w_{j t}}=\underbrace{\frac{\partial L}{\partial a_{t}}}_{\delta_{t}} z_{j}
$$

- Output unit with linear activation: $\delta_{t}=\hat{y}-y$

Backpropagation

$$
\frac{\partial L}{\partial w_{j t}}=\frac{\partial L}{\partial a_{t}} z_{j} \quad \frac{\partial L}{\partial w_{j t}}=\underbrace{\frac{\partial L}{\partial a_{t}}}_{\delta_{t}} z_{j}
$$

- Output unit with linear activation: $\delta_{t}=\hat{y}-y$
- Hidden unit $z_{t}=h\left(a_{t}\right)$ which sends inputs to units S :

Backpropagation

$$
\frac{\partial L}{\partial w_{j t}}=\frac{\partial L}{\partial a_{t}} z_{j} \quad \frac{\partial L}{\partial w_{j t}}=\underbrace{\frac{\partial L}{\partial a_{t}}}_{\delta_{t}} z_{j}
$$

- Output unit with linear activation: $\delta_{t}=\hat{y}-y$
- Hidden unit $z_{t}=h\left(a_{t}\right)$ which sends inputs to units S :

$$
\begin{aligned}
\delta_{t} & =\sum_{s \in S} \frac{\partial L}{\partial a_{s}} \frac{\partial a_{s}}{\partial a_{t}} \\
& =h^{\prime}\left(a_{t}\right) \sum_{s \in S} w_{t s} \delta_{s}
\end{aligned}
$$

Slide adapted from TTIC 31020, Gregory Shakhnarovich

Backpropagation: example

- Output: $f(a)=a$
- Hidden:

$$
\begin{gathered}
h(a)=\tanh (a)=\frac{e^{a}-e^{-a}}{e^{a}+e^{-a}} \\
h^{\prime}(a)=1-h(a)^{2}
\end{gathered}
$$

- Given example \mathbf{x}, feed-forward inputs:

$$
\text { input to hidden: } a_{j}=\sum_{i=0}^{d} w_{i j}^{(1)} x_{i}
$$

Backpropagation: example

- Output: $f(a)=a$
- Hidden:

$$
\begin{gathered}
h(a)=\tanh (a)=\frac{e^{a}-e^{-a}}{e^{a}+e^{-a}} \\
h^{\prime}(a)=1-h(a)^{2}
\end{gathered}
$$

- Given example \mathbf{x}, feed-forward inputs:

$$
\text { input to hidden: } a_{j}=\sum_{i=0}^{d} w_{i j}^{(1)} x_{i}
$$

hidden output: $z_{j}=\tanh \left(a_{j}\right)$,

Backpropagation: example

- Output: $f(a)=a$
- Hidden:

$$
\begin{gathered}
h(a)=\tanh (a)=\frac{e^{a}-e^{-a}}{e^{a}+e^{-a}} \\
h^{\prime}(a)=1-h(a)^{2}
\end{gathered}
$$

- Given example \mathbf{x}, feed-forward inputs:

$$
\begin{aligned}
\text { input to hidden: } a_{j} & =\sum_{i=0}^{d} w_{i j}^{(1)} x_{i}, \\
\text { hidden output: } z_{j} & =\tanh \left(a_{j}\right), \\
\text { net output: } \hat{y} & =a=\sum_{j=0}^{m} w_{j}^{(2)} z_{j} .
\end{aligned}
$$

Backpropagation: example

$$
a_{j}=\sum_{i=0}^{d} w_{i j}^{(1)} x_{i}, \quad z_{j}=\tanh \left(a_{j}\right), \quad \hat{y}=a=\sum_{j=0}^{m} w_{j}^{(2)} z_{j} .
$$

- Error on example $\mathbf{x}: L=\frac{1}{2}(y-\hat{y})^{2}$.

Backpropagation: example

$$
a_{j}=\sum_{i=0}^{d} w_{i j}^{(1)} x_{i}, \quad z_{j}=\tanh \left(a_{j}\right), \quad \hat{y}=a=\sum_{j=0}^{m} w_{j}^{(2)} z_{j} .
$$

- Error on example x: $L=\frac{1}{2}(y-\hat{y})^{2}$.
- Output unit: $\delta=\frac{\partial L}{\partial a}=y-\hat{y}$.

Backpropagation: example

$$
a_{j}=\sum_{i=0}^{d} w_{i j}^{(1)} x_{i}, \quad z_{j}=\tanh \left(a_{j}\right), \quad \hat{y}=a=\sum_{j=0}^{m} w_{j}^{(2)} z_{j} .
$$

- Error on example $\mathbf{x}: L=\frac{1}{2}(y-\hat{y})^{2}$.
- Output unit: $\delta=\frac{\partial L}{\partial a}=y-\hat{y}$.
- Next, compute δ s for the hidden units:

$$
\delta_{j}=\left(1-z_{j}\right)^{2} w_{j}^{(2)} \delta
$$

Backpropagation: example

$$
a_{j}=\sum_{i=0}^{d} w_{i j}^{(1)} x_{i}, \quad z_{j}=\tanh \left(a_{j}\right), \quad \hat{y}=a=\sum_{j=0}^{m} w_{j}^{(2)} z_{j} .
$$

- Error on example $\mathbf{x}: L=\frac{1}{2}(y-\hat{y})^{2}$.
- Output unit: $\delta=\frac{\partial L}{\partial a}=y-\hat{y}$.
- Next, compute δ s for the hidden units:

$$
\delta_{j}=\left(1-z_{j}\right)^{2} w_{j}^{(2)} \delta
$$

- Derivatives w.r.t. weights:

$$
\frac{\partial L}{\partial w_{i j}^{(1)}}=\delta_{j} x_{i}, \quad \frac{\partial L}{\partial w_{j}^{(2)}}=\delta z_{j} .
$$

Backpropagation: example

$$
a_{j}=\sum_{i=0}^{d} w_{i j}^{(1)} x_{i}, \quad z_{j}=\tanh \left(a_{j}\right), \quad \hat{y}=a=\sum_{j=0}^{m} w_{j}^{(2)} z_{j} .
$$

- Error on example $\mathbf{x}: L=\frac{1}{2}(y-\hat{y})^{2}$.
- Output unit: $\delta=\frac{\partial L}{\partial a}=y-\hat{y}$.
- Next, compute δ s for the hidden units:

$$
\delta_{j}=\left(1-z_{j}\right)^{2} w_{j}^{(2)} \delta
$$

- Derivatives w.r.t. weights:

$$
\frac{\partial L}{\partial w_{i j}^{(1)}}=\delta_{j} x_{i}, \quad \frac{\partial L}{\partial w_{j}^{(2)}}=\delta z_{j} .
$$

- Update weights: $w_{j} \leftarrow w_{j}-\eta \delta z_{j}$ and $w_{i j}^{(1)} \leftarrow w_{i j}^{(1)}-\eta \delta_{j} x_{i} . \eta$ is called the weight decay

Multidimensional output

- Loss on example (\mathbf{x}, \mathbf{y}):

$$
\frac{1}{2} \sum_{k=1}^{K}\left(y_{k}-\hat{y}_{k}\right)^{2}
$$

- Now, for each output unit $\delta_{k}=y_{k}-\hat{y}_{k}$;
- For hidden unit j,

$$
\delta_{j}=\left(1-z_{j}\right)^{2} \sum_{k=1}^{K} w_{j k}^{(2)} \delta_{k}
$$

Next time

- More Backpropagation

Next time

- More Backpropagation
- Start with Regularization in Neural Networks

Next time

- More Backpropagation
- Start with Regularization in Neural Networks
- Quiz

