# Lecture 4 Backpropagation

CMSC 35246: Deep Learning

Shubhendu Trivedi & Risi Kondor

University of Chicago

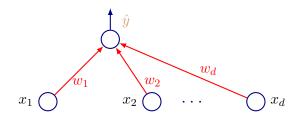
April 5, 2017

- Things we will look at today
  - More Backpropagation

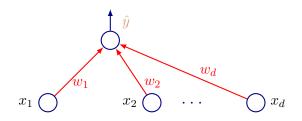
- Things we will look at today
  - More Backpropagation
  - Still more backpropagation

- Things we will look at today
  - More Backpropagation
  - Still more backpropagation
  - Quiz at 4:05 PM

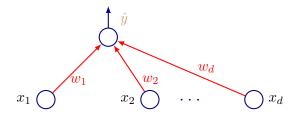
To understand, let us just calculate!



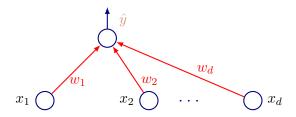
- ullet Consider example  ${f x}$ ; Output for  ${f x}$  is  $\hat{y}$ ; Correct Answer is y
- $\bullet \ \operatorname{Loss} \ L = (y \hat{y})^2$



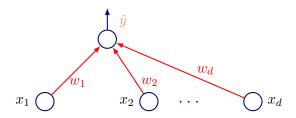
- Consider example x; Output for x is  $\hat{y}$ ; Correct Answer is y
- Loss  $L = (y \hat{y})^2$
- $\hat{y} = \mathbf{x}^T \mathbf{w} = x_1 w_1 + x_2 w_2 + \dots x_d w_d$



ullet Want to update  $w_i$  (forget closed form solution for a bit!)

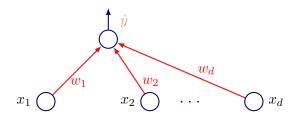


- Want to update  $w_i$  (forget closed form solution for a bit!)
- Update rule:  $w_i := w_i \eta \frac{\partial L}{\partial w_i}$



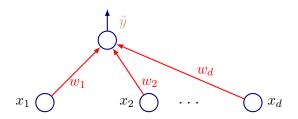
- Want to update  $w_i$  (forget closed form solution for a bit!)
- Update rule:  $w_i := w_i \eta \frac{\partial L}{\partial w_i}$
- Now

$$\frac{\partial L}{\partial w_i} =$$



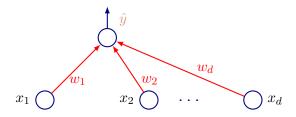
- Want to update  $w_i$  (forget closed form solution for a bit!)
- Update rule:  $w_i := w_i \eta \frac{\partial L}{\partial w_i}$
- Now

$$\frac{\partial L}{\partial w_i} = \frac{\partial (\hat{y} - y)^2}{\partial w_i} =$$

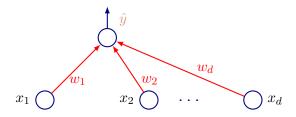


- Want to update  $w_i$  (forget closed form solution for a bit!)
- Update rule:  $w_i := w_i \eta \frac{\partial L}{\partial w_i}$
- Now

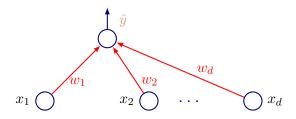
$$\frac{\partial L}{\partial w_i} = \frac{\partial (\hat{y} - y)^2}{\partial w_i} = 2(\hat{y} - y) \frac{\partial (x_1 w_1 + x_2 w_2 + \dots x_d w_d)}{\partial w_i}$$



$$\bullet \ \ \text{We have:} \ \frac{\partial L}{\partial w_i} =$$

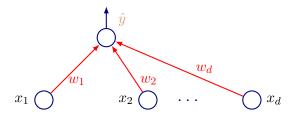


• We have: 
$$\frac{\partial L}{\partial w_i} = 2(\hat{y} - y)x_i$$



- We have:  $\frac{\partial L}{\partial w_i} = 2(\hat{y} y)x_i$
- Update Rule:

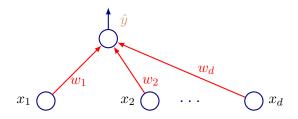
$$w_i := w_i - \eta(\hat{y} - y)x_i = w_i - \eta\delta x_i$$
 where  $\delta = (\hat{y} - y)$ 



- We have:  $\frac{\partial L}{\partial w_i} = 2(\hat{y} y)x_i$
- Update Rule:

$$w_i := w_i - \eta(\hat{y} - y)x_i = w_i - \eta\delta x_i$$
 where  $\delta = (\hat{y} - y)$ 

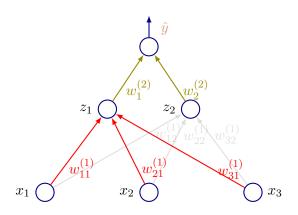
• In vector form:  $\mathbf{w} := \mathbf{w} - \eta \delta \mathbf{x}$ 



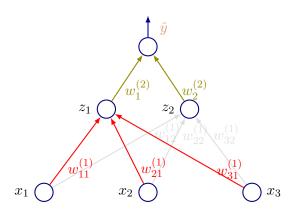
- We have:  $\frac{\partial L}{\partial w_i} = 2(\hat{y} y)x_i$
- Update Rule:

$$w_i := w_i - \eta(\hat{y} - y)x_i = w_i - \eta\delta x_i$$
 where  $\delta = (\hat{y} - y)$ 

- In vector form:  $\mathbf{w} := \mathbf{w} \eta \delta \mathbf{x}$
- Simple enough! Now let's graduate ...

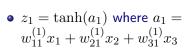


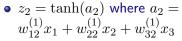
$$\hat{y} = w_1^{(2)} z_1 + w_2^{(2)} z_2$$

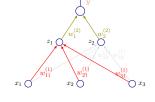


- $\hat{y} = w_1^{(2)} z_1 + w_2^{(2)} z_2$
- $z_1 = \tanh(a_1)$  where  $a_1 = w_{11}^{(1)} x_1 + w_{21}^{(1)} x_2 + w_{31}^{(1)} x_3$  likewise for  $z_2$

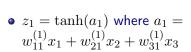
4 🗇 🕨



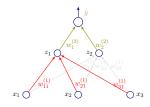




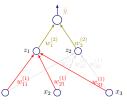
• Output 
$$\hat{y} = w_1^{(2)} z_1 + w_2^{(2)} z_2$$
; Loss  $L = (\hat{y} - y)^2$ 



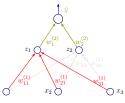
• 
$$z_2 = \tanh(a_2)$$
 where  $a_2 = w_{12}^{(1)} x_1 + w_{22}^{(1)} x_2 + w_{32}^{(1)} x_3$ 



- Output  $\hat{y} = w_1^{(2)} z_1 + w_2^{(2)} z_2$ ; Loss  $L = (\hat{y} y)^2$
- ullet Want to assign credit for the loss L to each weight

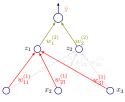


- $\bullet$  Want to find:  $\frac{\partial L}{\partial w_1^{(2)}}$  and  $\frac{\partial L}{\partial w_2^{(2)}}$
- ullet Consider  $w_1^{(2)}$  first



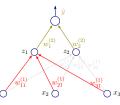
- $\bullet$  Want to find:  $\frac{\partial L}{\partial w_1^{(2)}}$  and  $\frac{\partial L}{\partial w_2^{(2)}}$
- ullet Consider  $w_1^{(2)}$  first

$$\bullet \ \frac{\partial L}{\partial w_1^{(2)}} =$$



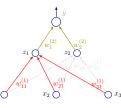
- $\bullet$  Want to find:  $\frac{\partial L}{\partial w_1^{(2)}}$  and  $\frac{\partial L}{\partial w_2^{(2)}}$
- Consider  $w_1^{(2)}$  first

$$\bullet \ \frac{\partial L}{\partial w_1^{(2)}} = \frac{\partial (\hat{y} - y)^2}{\partial w_1^{(2)}} =$$



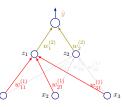
- $\bullet$  Want to find:  $\frac{\partial L}{\partial w_1^{(2)}}$  and  $\frac{\partial L}{\partial w_2^{(2)}}$
- Consider  $w_1^{(2)}$  first

• 
$$\frac{\partial L}{\partial w_1^{(2)}} = \frac{\partial (\hat{y} - y)^2}{\partial w_1^{(2)}} = 2(\hat{y} - y) \frac{\partial (w_1^{(2)} z_1 + w_2^{(2)} z_2)}{\partial w_1^{(2)}} =$$



- $\bullet$  Want to find:  $\frac{\partial L}{\partial w_1^{(2)}}$  and  $\frac{\partial L}{\partial w_2^{(2)}}$
- Consider  $w_1^{(2)}$  first

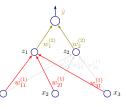
• 
$$\frac{\partial L}{\partial w_1^{(2)}} = \frac{\partial (\hat{y} - y)^2}{\partial w_1^{(2)}} = 2(\hat{y} - y) \frac{\partial (w_1^{(2)} z_1 + w_2^{(2)} z_2)}{\partial w_1^{(2)}} = 2(\hat{y} - y) z_1$$



- $\bullet$  Want to find:  $\frac{\partial L}{\partial w_1^{(2)}}$  and  $\frac{\partial L}{\partial w_2^{(2)}}$
- Consider  $w_1^{(2)}$  first

• 
$$\frac{\partial L}{\partial w_1^{(2)}} = \frac{\partial (\hat{y} - y)^2}{\partial w_1^{(2)}} = 2(\hat{y} - y) \frac{\partial (w_1^{(2)} z_1 + w_2^{(2)} z_2)}{\partial w_1^{(2)}} = 2(\hat{y} - y) z_1$$

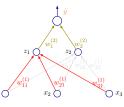
• Familiar from earlier! Update for  $w_1^{(2)}$  would be  $w_1^{(2)} := w_1^{(2)} - \eta \frac{\partial L}{\partial w_i^{(2)}} =$ 



- $\bullet$  Want to find:  $\frac{\partial L}{\partial w_1^{(2)}}$  and  $\frac{\partial L}{\partial w_2^{(2)}}$
- Consider  $w_1^{(2)}$  first

• 
$$\frac{\partial L}{\partial w_1^{(2)}} = \frac{\partial (\hat{y} - y)^2}{\partial w_1^{(2)}} = 2(\hat{y} - y) \frac{\partial (w_1^{(2)} z_1 + w_2^{(2)} z_2)}{\partial w_1^{(2)}} = 2(\hat{y} - y) z_1$$

• Familiar from earlier! Update for  $w_1^{(2)}$  would be  $w_1^{(2)} := w_1^{(2)} - \eta \frac{\partial L}{\partial w_1^{(2)}} = w_1^{(2)} - \eta \delta z_1$  with  $\delta = (\hat{y} - y)$ 

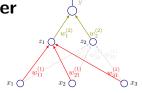


- $\bullet$  Want to find:  $\frac{\partial L}{\partial w_1^{(2)}}$  and  $\frac{\partial L}{\partial w_2^{(2)}}$
- Consider  $w_1^{(2)}$  first

• 
$$\frac{\partial L}{\partial w_1^{(2)}} = \frac{\partial (\hat{y} - y)^2}{\partial w_1^{(2)}} = 2(\hat{y} - y) \frac{\partial (w_1^{(2)} z_1 + w_2^{(2)} z_2)}{\partial w_1^{(2)}} = 2(\hat{y} - y) z_1$$

- Familiar from earlier! Update for  $w_1^{(2)}$  would be  $w_1^{(2)}:=w_1^{(2)}-\eta \frac{\partial L}{\partial w_1^{(2)}}=w_1^{(2)}-\eta \delta z_1$  with  $\delta=(\hat{y}-y)$
- ullet Likewise, for  $w_2^{(2)}$  update would be  $w_2^{(2)} := w_2^{(2)} \eta \delta z_2$

- There are six weights to assign credit for the loss incurred
- Consider  $w_{11}^{(1)}$  for an illustration
- Rest are similar



- er  $w_1^{(2)}$   $w_2^{(2)}$   $w_{11}^{(1)}$   $w_{21}^{(1)}$   $w_{21}^{(1)}$   $x_3$
- There are six weights to assign credit for the loss incurred
- Consider  $w_{11}^{(1)}$  for an illustration
- Rest are similar

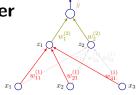
$$\bullet \ \frac{\partial L}{\partial w_{11}^{(1)}} =$$

- er  $w_1^{(2)}$   $w_2^{(2)}$   $w_2^{(2)}$   $w_{11}^{(1)}$   $w_{21}^{(1)}$   $w_{21}^{(1)}$   $w_{21}^{(1)}$   $w_{31}^{(1)}$   $w_{32}^{(1)}$   $w_{33}^{(1)}$
- There are six weights to assign credit for the loss incurred
- Consider  $w_{11}^{(1)}$  for an illustration
- Rest are similar

• 
$$\frac{\partial L}{\partial w_{11}^{(1)}} = \frac{\partial (\hat{y} - y)^2}{\partial w_{11}^{(1)}} =$$

- er  $w_1^{(2)}$   $w_2^{(2)}$   $w_2^{(2)}$   $w_{11}^{(1)}$   $w_{21}^{(1)}$   $w_{21}^{(1$
- There are six weights to assign credit for the loss incurred
- Consider  $w_{11}^{(1)}$  for an illustration
- Rest are similar

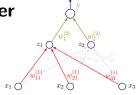
$$\bullet \ \frac{\partial L}{\partial w_{11}^{(1)}} = \frac{\partial (\hat{y} - y)^2}{\partial w_{11}^{(1)}} = 2(\hat{y} - y) \frac{\partial (w_1^{(2)} z_1 + w_2^{(2)} z_2)}{\partial w_{11}^{(21)}}$$



- There are six weights to assign credit for the loss incurred
- Consider  $w_{11}^{(1)}$  for an illustration
- Rest are similar

• 
$$\frac{\partial L}{\partial w_{11}^{(1)}} = \frac{\partial (\hat{y} - y)^2}{\partial w_{11}^{(1)}} = 2(\hat{y} - y) \frac{\partial (w_1^{(2)} z_1 + w_2^{(2)} z_2)}{\partial w_{11}^{(21)}}$$

$$\bullet \ \, \mathsf{Now:} \ \, \frac{\partial (w_1^{(2)}z_1 + w_2^{(2)}z_2)}{\partial w_{11}^{(1)}} =$$



- There are six weights to assign credit for the loss incurred
- Consider  $w_{11}^{(1)}$  for an illustration
- Rest are similar

• 
$$\frac{\partial L}{\partial w_{11}^{(1)}} = \frac{\partial (\hat{y} - y)^2}{\partial w_{11}^{(1)}} = 2(\hat{y} - y) \frac{\partial (w_1^{(2)} z_1 + w_2^{(2)} z_2)}{\partial w_{11}^{(21)}}$$

$$\bullet \ \, \mathsf{Now:} \ \, \frac{\partial (w_1^{(2)}z_1 + w_2^{(2)}z_2)}{\partial w_{11}^{(1)}} = w_1^{(2)} \frac{\partial (\tanh(w_{11}^{(1)}x_1 + w_{21}^{(1)}x_2 + w_{31}^{(1)}x_3))}{\partial w_{11}^{(1)}} + 0$$

- There are six weights to assign credit for the loss incurred
- Consider  $w_{11}^{(1)}$  for an illustration
- Rest are similar

• 
$$\frac{\partial L}{\partial w_{11}^{(1)}} = \frac{\partial (\hat{y} - y)^2}{\partial w_{11}^{(1)}} = 2(\hat{y} - y) \frac{\partial (w_1^{(2)} z_1 + w_2^{(2)} z_2)}{\partial w_{11}^{(21)}}$$

$$\bullet \ \, \text{Now:} \ \, \frac{\partial (w_1^{(2)}z_1 + w_2^{(2)}z_2)}{\partial w_{11}^{(1)}} = w_1^{(2)} \frac{\partial (\tanh(w_{11}^{(1)}x_1 + w_{21}^{(1)}x_2 + w_{31}^{(1)}x_3))}{\partial w_{11}^{(1)}} + 0$$

• Which is:  $w_1^{(2)}(1-\tanh^2(a_1))x_1$ 

- There are six weights to assign credit for the loss incurred
- Consider  $w_{11}^{(1)}$  for an illustration
- Rest are similar

$$\bullet \ \frac{\partial L}{\partial w_{11}^{(1)}} = \frac{\partial (\hat{y} - y)^2}{\partial w_{11}^{(1)}} = 2(\hat{y} - y) \frac{\partial (w_1^{(2)} z_1 + w_2^{(2)} z_2)}{\partial w_{11}^{(21)}}$$

$$\bullet \ \, \text{Now:} \ \, \frac{\partial (w_1^{(2)}z_1 + w_2^{(2)}z_2)}{\partial w_{11}^{(1)}} = w_1^{(2)} \frac{\partial (\tanh(w_{11}^{(1)}x_1 + w_{21}^{(1)}x_2 + w_{31}^{(1)}x_3))}{\partial w_{11}^{(1)}} + 0$$

• Which is:  $w_1^{(2)}(1-\tanh^2(a_1))x_1$  recall  $a_1=?$ 

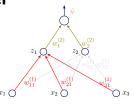
- There are six weights to assign credit for the loss incurred
- Consider  $w_{11}^{(1)}$  for an illustration
- Rest are similar

$$\bullet \ \frac{\partial L}{\partial w_{11}^{(1)}} = \frac{\partial (\hat{y} - y)^2}{\partial w_{11}^{(1)}} = 2(\hat{y} - y) \frac{\partial (w_1^{(2)} z_1 + w_2^{(2)} z_2)}{\partial w_{11}^{(21)}}$$

$$\bullet \ \, \text{Now:} \ \, \frac{\partial (w_1^{(2)}z_1 + w_2^{(2)}z_2)}{\partial w_{11}^{(1)}} = w_1^{(2)} \frac{\partial (\tanh(w_{11}^{(1)}x_1 + w_{21}^{(1)}x_2 + w_{31}^{(1)}x_3))}{\partial w_{11}^{(1)}} + 0$$

- Which is:  $w_1^{(2)}(1-\tanh^2(a_1))x_1$  recall  $a_1=?$
- So we have:  $\frac{\partial L}{\partial w_{11}^{(1)}} = 2(\hat{y} y)w_1^{(2)}(1 \tanh^2(a_1))x_1$

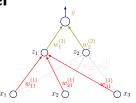
• 
$$\frac{\partial L}{\partial w_{11}^{(1)}} = 2(\hat{y} - y)w_1^{(2)}(1 - \tanh^2(a_1))x_1$$



• Weight update:

$$w_{11}^{(1)} := w_{11}^{(1)} - \eta \frac{\partial L}{\partial w_{11}^{(1)}}$$

• 
$$\frac{\partial L}{\partial w_{11}^{(1)}} = 2(\hat{y} - y)w_1^{(2)}(1 - \tanh^2(a_1))x_1$$

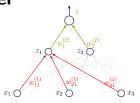


• Weight update:

$$w_{11}^{(1)} := w_{11}^{(1)} - \eta \frac{\partial L}{\partial w_{11}^{(1)}}$$

ullet Likewise, if we were considering  $w_{22}^{(1)}$ , we'd have:

• 
$$\frac{\partial L}{\partial w_{11}^{(1)}} = 2(\hat{y} - y)w_1^{(2)}(1 - \tanh^2(a_1))x_1$$

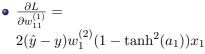


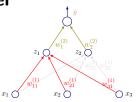
Weight update:

$$w_{11}^{(1)} := w_{11}^{(1)} - \eta \frac{\partial L}{\partial w_{11}^{(1)}}$$

ullet Likewise, if we were considering  $w_{22}^{(1)}$ , we'd have:

• 
$$\frac{\partial L}{\partial w_{22}^{(1)}} = 2(\hat{y} - y)w_2^{(2)}(1 - \tanh^2(a_2))x_2$$





• Weight update:

$$w_{11}^{(1)} := w_{11}^{(1)} - \eta \frac{\partial L}{\partial w_{11}^{(1)}}$$

- Likewise, if we were considering  $w_{22}^{(1)}$ , we'd have:
- $\frac{\partial L}{\partial w_{22}^{(1)}} = 2(\hat{y} y)w_2^{(2)}(1 \tanh^2(a_2))x_2$
- $\bullet \text{ Weight update: } w_{22}^{(1)} := w_{22}^{(1)} \eta \frac{\partial L}{\partial w_{22}^{(1)}}$

ullet Recall, for top layer:  $\frac{\partial L}{\partial w_i^{(2)}} = (\hat{y} - y)z_i = \delta z_i$  (ignoring 2)

- Recall, for top layer:  $\frac{\partial L}{\partial w_i^{(2)}} = (\hat{y} y)z_i = \delta z_i$  (ignoring 2)
- ullet One can think of this as:  $\frac{\partial L}{\partial w_i^{(2)}} = \underbrace{\delta}_{ ext{local error local input}} z_i$

- Recall, for top layer:  $\frac{\partial L}{\partial w_i^{(2)}} = (\hat{y} y)z_i = \delta z_i$  (ignoring 2)
- ullet One can think of this as:  $rac{\partial L}{\partial w_i^{(2)}} = \underbrace{\delta}_{ ext{local error local input}} z_i$
- For next layer we had:  $\frac{\partial L}{\partial w_{ij}^{(1)}} = (\hat{y} y)w_j^{(2)}(1 \tanh^2(a_j))x_i$

- Recall, for top layer:  $\frac{\partial L}{\partial w_i^{(2)}} = (\hat{y} y)z_i = \delta z_i$  (ignoring 2)
- ullet One can think of this as:  $\frac{\partial L}{\partial w_i^{(2)}} = \underbrace{\delta}_{ ext{local error local input}} z_i$
- For next layer we had:  $\frac{\partial L}{\partial w_{ij}^{(1)}} = (\hat{y} y)w_j^{(2)}(1 \tanh^2(a_j))x_i$
- Let  $\delta_j = (\hat{y} y)w_j^{(2)}(1 \tanh^2(a_j)) = \delta w_j^{(2)}(1 \tanh^2(a_j))$

- Recall, for top layer:  $\frac{\partial L}{\partial w_i^{(2)}} = (\hat{y} y)z_i = \delta z_i$  (ignoring 2)
- ullet One can think of this as:  $\frac{\partial L}{\partial w_i^{(2)}} = \underbrace{\delta}_{ ext{local error local input}} z_i$
- For next layer we had:  $\frac{\partial L}{\partial w_{ij}^{(1)}} = (\hat{y} y)w_j^{(2)}(1 \tanh^2(a_j))x_i$
- Let  $\delta_j = (\hat{y} y)w_j^{(2)}(1 \tanh^2(a_j)) = \delta w_j^{(2)}(1 \tanh^2(a_j))$ (Notice that  $\delta_j$  contains the  $\delta$  term (which is the error!))



- ullet Recall, for top layer:  $rac{\partial L}{\partial w_i^{(2)}}=(\hat{y}-y)z_i=\delta z_i$  (ignoring 2)
- ullet One can think of this as:  $\frac{\partial L}{\partial w_i^{(2)}} = \underbrace{\delta}_{ ext{local error local input}} z_i$
- For next layer we had:  $\frac{\partial L}{\partial w_{ij}^{(1)}} = (\hat{y} y)w_j^{(2)}(1 \tanh^2(a_j))x_i$
- Let  $\delta_j = (\hat{y} y)w_j^{(2)}(1 \tanh^2(a_j)) = \delta w_j^{(2)}(1 \tanh^2(a_j))$  (Notice that  $\delta_j$  contains the  $\delta$  term (which is the error!))
- $\bullet \ \ \text{Then:} \ \ \frac{\partial L}{\partial w_{ij}^{(1)}} = \underbrace{\delta_j}_{\text{local error local input}} x_i$

- $\bullet$  Recall, for top layer:  $\frac{\partial L}{\partial w_i^{(2)}} = (\hat{y} y)z_i = \delta z_i$  (ignoring 2)
- ullet One can think of this as:  $rac{\partial L}{\partial w_i^{(2)}} = \underbrace{\delta}_{ ext{local error local input}} z_i$
- For next layer we had:  $\frac{\partial L}{\partial w_{ij}^{(1)}} = (\hat{y} y)w_j^{(2)}(1 \tanh^2(a_j))x_i$
- Let  $\delta_j = (\hat{y} y)w_j^{(2)}(1 \tanh^2(a_j)) = \delta w_j^{(2)}(1 \tanh^2(a_j))$ (Notice that  $\delta_j$  contains the  $\delta$  term (which is the error!))
- Then:  $\frac{\partial L}{\partial w_{ij}^{(1)}} = \underbrace{\delta_j}_{\text{local error local input}} x_i$
- Neat!



• Let's get a cleaner notation to summarize this

- Let's get a cleaner notation to summarize this
- Let  $w_{i \leadsto j}$  be the weight for the connection FROM node i to node j

- Let's get a cleaner notation to summarize this
- ullet Let  $w_{i\leadsto j}$  be the weight for the connection FROM node i to node j
- Then

$$\frac{\partial L}{\partial w_{i \leadsto j}} =$$

- Let's get a cleaner notation to summarize this
- ullet Let  $w_{i \leadsto j}$  be the weight for the connection FROM node i to node j
- Then

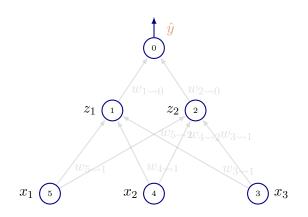
$$\frac{\partial L}{\partial w_{i \leadsto j}} = \delta_j z_i$$

- Let's get a cleaner notation to summarize this
- ullet Let  $w_{i\leadsto j}$  be the weight for the connection FROM node i to node j
- Then

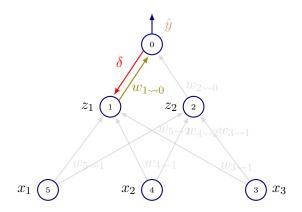
$$\frac{\partial L}{\partial w_{i \leadsto j}} = \delta_j z_i$$

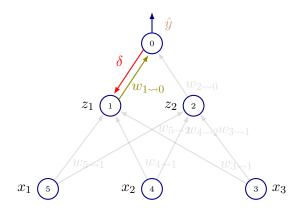
ullet  $\delta_j$  is the local error (going from j backwards) and  $z_i$  is the local input coming from i

### Credit Assignment: A Graphical Revision

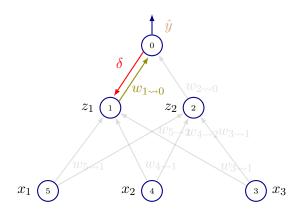


 Let's redraw our toy network with new notation and label nodes



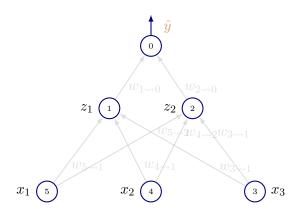


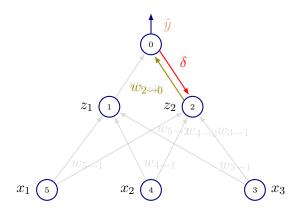
• Local error from 0:  $\delta = (\hat{y} - y)$ , local input from 1:  $z_1$ 



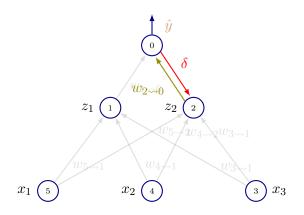
• Local error from 0:  $\delta = (\hat{y} - y)$ , local input from 1:  $z_1$ 

$$\therefore \frac{\partial L}{\partial w_{1 \leadsto 0}} = \delta z_1; \text{ and update } w_{1 \leadsto 0} := w_{1 \leadsto 0} - \eta \delta z_1$$



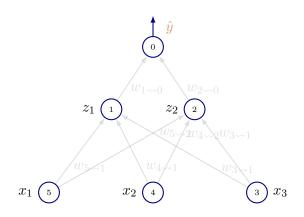


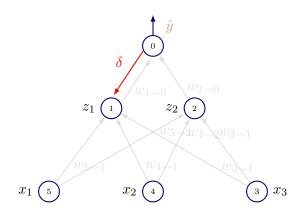
• Local error from 0:  $\delta = (\hat{y} - y)$ , local input from 2:  $z_2$ 

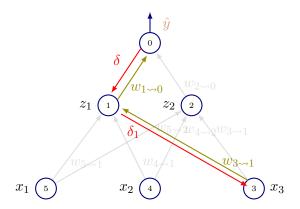


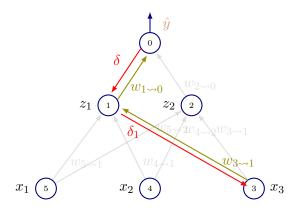
• Local error from 0:  $\delta = (\hat{y} - y)$ , local input from 2:  $z_2$ 

$$\therefore \frac{\partial L}{\partial w_{2\leadsto 0}} = \delta z_2 \text{ and update } w_{2\leadsto 0} := w_{2\leadsto 0} - \eta \delta z_2$$

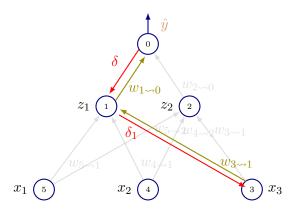






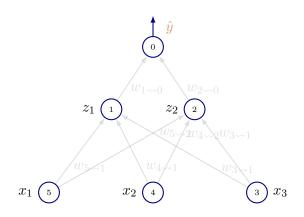


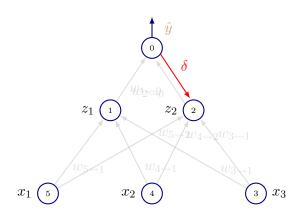
• Local error from 1:  $\delta_1 = (\delta)(w_{1 \sim 0})(1 - \tanh^2(a_1))$ , local input from 3:  $x_3$ 

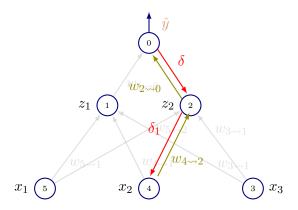


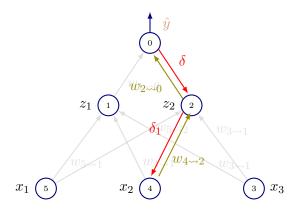
• Local error from 1:  $\delta_1 = (\delta)(w_{1 \leadsto 0})(1 - \tanh^2(a_1))$ , local input from 3:  $x_3$ 

$$\therefore \frac{\partial L}{\partial w_{3 \leadsto 1}} = \delta_1 x_3 \text{ and update } w_{3 \leadsto 1} := w_{3 \leadsto 1} - \eta \delta_1 x_3$$

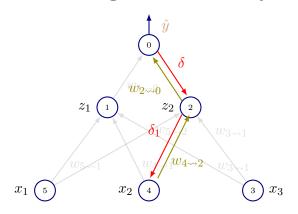








• Local error from 2:  $\delta_2 = (\delta)(w_{2 \leadsto 0})(1 - \tanh^2(a_2))$ , local input from 4:  $x_2$ 



• Local error from 2:  $\delta_2 = (\delta)(w_{2\leadsto 0})(1-\tanh^2(a_2))$ , local input from 4:  $x_2$ 

$$\therefore \frac{\partial L}{\partial w_{4\rightsquigarrow 2}} = \delta_2 x_2 \text{ and update } w_{4\rightsquigarrow 2} := w_{4\rightsquigarrow 2} - \eta \delta_2 x_2$$

#### Let's Vectorize

• Let  $W^{(2)} = \begin{bmatrix} w_{1 \rightarrow 0} \\ w_{2 \rightarrow 0} \end{bmatrix}$  (ignore that  $W^{(2)}$  is a vector and hence more appropriate to use  $\mathbf{w}^{(2)}$ )

#### Let's Vectorize

- Let  $W^{(2)} = \begin{bmatrix} w_{1 \leadsto 0} \\ w_{2 \leadsto 0} \end{bmatrix}$  (ignore that  $W^{(2)}$  is a vector and hence more appropriate to use  $\mathbf{w}^{(2)}$ )
- Let

$$W^{(1)} = \begin{bmatrix} w_{5 \leadsto 1} & w_{5 \leadsto 2} \\ w_{4 \leadsto 1} & w_{4 \leadsto 2} \\ w_{3 \leadsto 1} & w_{3 \leadsto 2} \end{bmatrix}$$

#### Let's Vectorize

- Let  $W^{(2)} = \begin{bmatrix} w_{1\leadsto 0} \\ w_{2\leadsto 0} \end{bmatrix}$  (ignore that  $W^{(2)}$  is a vector and hence more appropriate to use  $\mathbf{w}^{(2)}$ )
- Let

$$W^{(1)} = \begin{bmatrix} w_{5 \leadsto 1} & w_{5 \leadsto 2} \\ w_{4 \leadsto 1} & w_{4 \leadsto 2} \\ w_{3 \leadsto 1} & w_{3 \leadsto 2} \end{bmatrix}$$

Let

$$Z^{(1)} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \text{ and } Z^{(2)} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$

**1** Compute 
$$A^{(1)} = Z^{(1)^T} W^{(1)}$$

- 1 Compute  $A^{(1)} = Z^{(1)^T} W^{(1)}$
- 2 Applying element-wise non-linearity  $Z^{(2)} = \tanh A^{(1)}$

- **1** Compute  $A^{(1)} = Z^{(1)^T} W^{(1)}$
- 2 Applying element-wise non-linearity  $Z^{(2)} = \tanh A^{(1)}$
- 3 Compute Output  $\hat{y} = Z^{(2)^T} W^{(2)}$

- **1** Compute  $A^{(1)} = Z^{(1)^T} W^{(1)}$
- 2 Applying element-wise non-linearity  $Z^{(2)} = \tanh A^{(1)}$
- 3 Compute Output  $\hat{y} = Z^{(2)^T} W^{(2)}$
- 4 Compute Loss on example  $(\hat{y} y)^2$

f 1 Top: Compute  $\delta$ 

- **1** Top: Compute  $\delta$
- 2 Gradient w.r.t  $W^{(2)} = \delta Z^{(2)}$

- **1** Top: Compute  $\delta$
- 2 Gradient w.r.t  $W^{(2)} = \delta Z^{(2)}$
- 3 Compute  $\delta_1 = (W^{(2)^T}\delta) \odot (1 \tanh(A^{(1)})^2)$

- **1** Top: Compute  $\delta$
- 2 Gradient w.r.t  $W^{(2)} = \delta Z^{(2)}$
- 3 Compute  $\delta_1 = (W^{(2)^T}\delta) \odot (1 \tanh(A^{(1)})^2)$ Notes: (a):  $\odot$  is Hadamard product. (b) have written  $W^{(2)^T}\delta$  as  $\delta$  can be a vector when there are multiple outputs

- **1** Top: Compute  $\delta$
- 2 Gradient w.r.t  $W^{(2)} = \delta Z^{(2)}$
- 3 Compute  $\delta_1 = (W^{(2)^T}\delta) \odot (1 \tanh(A^{(1)})^2)$ Notes: (a):  $\odot$  is Hadamard product. (b) have written  $W^{(2)^T}\delta$  as  $\delta$  can be a vector when there are multiple outputs

- **1** Top: Compute  $\delta$
- 2 Gradient w.r.t  $W^{(2)} = \delta Z^{(2)}$
- 3 Compute  $\delta_1 = (W^{(2)^T}\delta) \odot (1 \tanh(A^{(1)})^2)$ Notes: (a):  $\odot$  is Hadamard product. (b) have written  $W^{(2)^T}\delta$  as  $\delta$  can be a vector when there are multiple outputs
- 4 Gradient w.r.t  $W^{(1)} = \delta_1 Z^{(1)}$
- 5 Update  $W^{(2)} := W^{(2)} \eta \delta Z^{(2)}$

- **1** Top: Compute  $\delta$
- 2 Gradient w.r.t  $W^{(2)} = \delta Z^{(2)}$
- 3 Compute  $\delta_1 = (W^{(2)^T}\delta) \odot (1 \tanh(A^{(1)})^2)$ Notes: (a):  $\odot$  is Hadamard product. (b) have written  $W^{(2)^T}\delta$  as  $\delta$  can be a vector when there are multiple outputs
- 4 Gradient w.r.t  $W^{(1)} = \delta_1 Z^{(1)}$
- **5** Update  $W^{(2)} := W^{(2)} \eta \delta Z^{(2)}$
- 6 Update  $W^{(1)} := W^{(1)} \eta \delta_1 Z^{(1)}$

- **1** Top: Compute  $\delta$
- 2 Gradient w.r.t  $W^{(2)} = \delta Z^{(2)}$
- 3 Compute  $\delta_1 = (W^{(2)^T}\delta) \odot (1 \tanh(A^{(1)})^2)$ Notes: (a):  $\odot$  is Hadamard product. (b) have written  $W^{(2)^T}\delta$  as  $\delta$  can be a vector when there are multiple outputs
- 4 Gradient w.r.t  $W^{(1)} = \delta_1 Z^{(1)}$
- **5** Update  $W^{(2)} := W^{(2)} \eta \delta Z^{(2)}$
- 6 Update  $W^{(1)} := W^{(1)} \eta \delta_1 Z^{(1)}$
- 7 All the dimensionalities nicely check out!

 Backpropagation in the context of neural networks is all about assigning credit (or blame!) for error incurred to the weights



- Backpropagation in the context of neural networks is all about assigning credit (or blame!) for error incurred to the weights
  - We follow the path from the output (where we have an error signal) to the edge we want to consider



- Backpropagation in the context of neural networks is all about assigning credit (or blame!) for error incurred to the weights
  - We follow the path from the output (where we have an error signal) to the edge we want to consider
  - We find the  $\delta$ s from the top to the edge concerned by using the chain rule



- Backpropagation in the context of neural networks is all about assigning credit (or blame!) for error incurred to the weights
  - We follow the path from the output (where we have an error signal) to the edge we want to consider
  - We find the  $\delta$ s from the top to the edge concerned by using the chain rule
  - Once we have the partial derivative, we can write the update rule for that weight

• Exercise: What if there are multiple outputs? (look at slide from last class)

- Exercise: What if there are multiple outputs? (look at slide from last class)
- Another exercise: Add bias neurons. What changes?

- Exercise: What if there are multiple outputs? (look at slide from last class)
- Another exercise: Add bias neurons. What changes?
- ullet As we go down the network, notice that we need previous  $\delta s$

- Exercise: What if there are multiple outputs? (look at slide from last class)
- Another exercise: Add bias neurons. What changes?
- ullet As we go down the network, notice that we need previous  $\delta s$
- If we recompute them each time, it can blow up!

- Exercise: What if there are multiple outputs? (look at slide from last class)
- Another exercise: Add bias neurons. What changes?
- ullet As we go down the network, notice that we need previous  $\delta s$
- If we recompute them each time, it can blow up!
- Need to book-keep derivatives as we go down the network and reuse them

# A General View of Backpropagation Some redundancy in upcoming slides, but redundancy can be good!

Backpropagation only refers to the method for computing the gradient

- Backpropagation only refers to the method for computing the gradient
- This is used with another algorithm such as SGD for learning using the gradient

- Backpropagation only refers to the method for computing the gradient
- This is used with another algorithm such as SGD for learning using the gradient
- Next: Computing gradient  $\nabla_x f(x,y)$  for arbitrary f

- Backpropagation only refers to the method for computing the gradient
- This is used with another algorithm such as SGD for learning using the gradient
- Next: Computing gradient  $\nabla_x f(x,y)$  for arbitrary f
- ullet x is the set of variables whose derivatives are desired

- Backpropagation only refers to the method for computing the gradient
- This is used with another algorithm such as SGD for learning using the gradient
- Next: Computing gradient  $\nabla_x f(x,y)$  for arbitrary f
- x is the set of variables whose derivatives are desired
- Often we require the gradient of the cost  $J(\theta)$  with respect to parameters  $\theta$  i.e  $\nabla_{\theta}J(\theta)$

- Backpropagation only refers to the method for computing the gradient
- This is used with another algorithm such as SGD for learning using the gradient
- ullet Next: Computing gradient  $abla_x f(x,y)$  for arbitrary f
- x is the set of variables whose derivatives are desired
- Often we require the gradient of the cost  $J(\theta)$  with respect to parameters  $\theta$  i.e  $\nabla_{\theta}J(\theta)$
- ullet Note: We restrict to case where f has a single output

- Backpropagation only refers to the method for computing the gradient
- This is used with another algorithm such as SGD for learning using the gradient
- Next: Computing gradient  $\nabla_x f(x,y)$  for arbitrary f
- x is the set of variables whose derivatives are desired
- Often we require the gradient of the cost  $J(\theta)$  with respect to parameters  $\theta$  i.e  $\nabla_{\theta}J(\theta)$
- ullet Note: We restrict to case where f has a single output
- First: Move to more precise computational graph language!

• Formalize computation as graphs

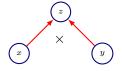
- Formalize computation as graphs
- Nodes indicate variables (scalar, vector, tensor or another variable)

- Formalize computation as graphs
- Nodes indicate variables (scalar, vector, tensor or another variable)
- Operations are simple functions of one or more variables

- Formalize computation as graphs
- Nodes indicate variables (scalar, vector, tensor or another variable)
- Operations are simple functions of one or more variables
- Our graph language comes with a set of allowable operations

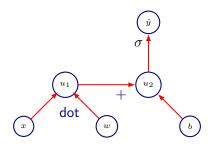
- Formalize computation as graphs
- Nodes indicate variables (scalar, vector, tensor or another variable)
- Operations are simple functions of one or more variables
- Our graph language comes with a set of allowable operations
- Examples:

$$z = xy$$



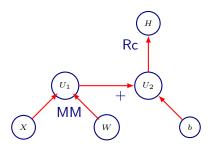
 $\bullet$  Graph uses  $\times$  operation for the computation

## **Logistic Regression**



 $\bullet \ \ \mathsf{Computes} \ \hat{y} = \sigma(\mathbf{x}^T\mathbf{w} + b)$ 

$$H = \max\{0, XW + b\}$$



MM is matrix multiplication and Rc is ReLU activation

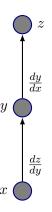
 Backpropagation computes the chain rule, in a manner that is highly efficient

- Backpropagation computes the chain rule, in a manner that is highly efficient
- Let  $f, g : \mathbb{R} \to \mathbb{R}$

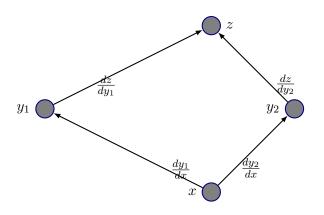
- Backpropagation computes the chain rule, in a manner that is highly efficient
- Let  $f, g : \mathbb{R} \to \mathbb{R}$
- $\bullet \ \, \mathsf{Suppose} \,\, y = g(x) \,\, \mathsf{and} \,\, z = f(y) = f(g(x))$

- Backpropagation computes the chain rule, in a manner that is highly efficient
- Let  $f, q: \mathbb{R} \to \mathbb{R}$
- $\bullet \ \, \mathsf{Suppose} \,\, y = g(x) \,\, \mathsf{and} \,\, z = f(y) = f(g(x))$
- Chain rule:

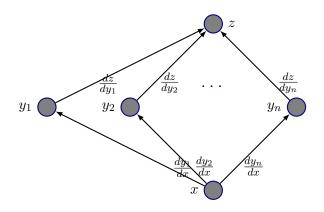
$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$$



Chain rule: 
$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$$



$$\text{Multiple Paths: } \frac{dz}{dx} = \frac{dz}{dy_1} \frac{dy_1}{dx} + \frac{dz}{dy_2} \frac{dy_2}{dx}$$



Multiple Paths: 
$$\frac{dz}{dx} = \sum_{j} \frac{dz}{dy_{j}} \frac{dy_{j}}{dx}$$

ullet Consider  $\mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n$ 

- Consider  $\mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n$
- $\bullet$  Let  $g:\mathbb{R}^m \to \mathbb{R}^n$  and  $f:\mathbb{R}^n \to \mathbb{R}$

- Consider  $\mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n$
- Let  $g:\mathbb{R}^m \to \mathbb{R}^n$  and  $f:\mathbb{R}^n \to \mathbb{R}$
- ullet Suppose  $\mathbf{y}=g(\mathbf{x})$  and  $z=f(\mathbf{y})$ , then

- Consider  $\mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n$
- Let  $g:\mathbb{R}^m \to \mathbb{R}^n$  and  $f:\mathbb{R}^n \to \mathbb{R}$
- Suppose  $\mathbf{y} = g(\mathbf{x})$  and  $z = f(\mathbf{y})$ , then

$$\frac{\partial z}{\partial x_i} = \sum_j \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}$$

- Consider  $\mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n$
- Let  $g: \mathbb{R}^m \to \mathbb{R}^n$  and  $f: \mathbb{R}^n \to \mathbb{R}$
- Suppose  $\mathbf{y} = g(\mathbf{x})$  and  $z = f(\mathbf{y})$ , then

$$\frac{\partial z}{\partial x_i} = \sum_j \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}$$

• In vector notation:

$$\begin{pmatrix} \frac{\partial z}{\partial x_1} \\ \vdots \\ \frac{\partial z}{\partial x_m} \end{pmatrix} = \begin{pmatrix} \sum_j \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_1} \\ \vdots \\ \sum_j \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_m} \end{pmatrix} = \nabla_{\mathbf{x}} z = \begin{pmatrix} \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \end{pmatrix}^T \nabla_{\mathbf{y}} z$$

$$\nabla_{\mathbf{x}} z = \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^T \nabla_{\mathbf{y}} z$$

ullet  $\left( \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \right)$  is the  $n \times m$  Jacobian matrix of g

$$\nabla_{\mathbf{x}} z = \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^T \nabla_{\mathbf{y}} z$$

- ullet  $\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)$  is the  $n \times m$  Jacobian matrix of g
- Gradient of  ${\bf x}$  is a multiplication of a Jacobian matrix  $\left(\frac{\partial {\bf y}}{\partial {\bf x}}\right)$  with a vector i.e. the gradient  $\nabla_{{\bf y}}z$

$$\nabla_{\mathbf{x}} z = \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^T \nabla_{\mathbf{y}} z$$

- ullet  $\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)$  is the  $n \times m$  Jacobian matrix of g
- Gradient of  ${\bf x}$  is a multiplication of a Jacobian matrix  $\left(\frac{\partial {\bf y}}{\partial {\bf x}}\right)$  with a vector i.e. the gradient  $\nabla_{{\bf y}}z$
- Backpropagation consists of applying such Jacobian-gradient products to each operation in the computational graph

$$\nabla_{\mathbf{x}} z = \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^T \nabla_{\mathbf{y}} z$$

- $\bullet$   $\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)$  is the  $n \times m$  Jacobian matrix of g
- Gradient of  ${\bf x}$  is a multiplication of a Jacobian matrix  $\left(\frac{\partial {\bf y}}{\partial {\bf x}}\right)$  with a vector i.e. the gradient  $\nabla_{{\bf v}}z$
- Backpropagation consists of applying such Jacobian-gradient products to each operation in the computational graph
- In general this need not only apply to vectors, but can apply to tensors w.l.o.g

• We can ofcourse also write this in terms of tensors

- We can ofcourse also write this in terms of tensors
- ullet Let the gradient of z with respect to a tensor  ${f X}$  be  $abla_{{f X}}z$

- We can ofcourse also write this in terms of tensors
- ullet Let the gradient of z with respect to a tensor  ${f X}$  be  $abla_{{f X}}z$
- If  $\mathbf{Y} = g(\mathbf{X})$  and  $z = f(\mathbf{Y})$ , then:

$$\nabla_{\mathbf{X}} z = \sum_{j} (\nabla_{\mathbf{X}} Y_j) \frac{\partial z}{\partial Y_j}$$

 Writing an algebraic expression for the gradient of a scalar with respect to any node in the computational graph that produced that scalar is straightforward using the chain-rule

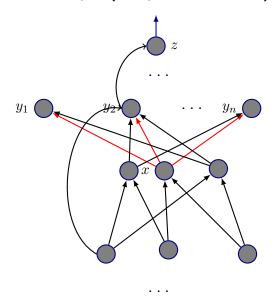
- Writing an algebraic expression for the gradient of a scalar with respect to any node in the computational graph that produced that scalar is straightforward using the chain-rule
- Let for some node x the successors be:  $\{y_1, y_2, \dots y_n\}$

- Writing an algebraic expression for the gradient of a scalar with respect to any node in the computational graph that produced that scalar is straightforward using the chain-rule
- Let for some node x the successors be:  $\{y_1, y_2, \dots y_n\}$
- Node: Computation result

- Writing an algebraic expression for the gradient of a scalar with respect to any node in the computational graph that produced that scalar is straightforward using the chain-rule
- Let for some node x the successors be:  $\{y_1, y_2, \dots y_n\}$
- Node: Computation result
- Edge: Computation dependency

$$\frac{dz}{dx} = \sum_{i=1}^{n} \frac{dz}{dy_i} \frac{dy_i}{dx}$$

## Flow Graph (for previous slide)



• Fpropagation: Visit nodes in the order after a topological sort

- Fpropagation: Visit nodes in the order after a topological sort
- Compute the value of each node given its ancestors

- Fpropagation: Visit nodes in the order after a topological sort
- Compute the value of each node given its ancestors
- Bpropagation: Output gradient = 1
- Now visit nods in reverse order
- Compute gradient with respect to each node using gradient with respect to successors

- Fpropagation: Visit nodes in the order after a topological sort
- Compute the value of each node given its ancestors
- Bpropagation: Output gradient = 1
- Now visit nods in reverse order
- Compute gradient with respect to each node using gradient with respect to successors
- Successors of x in previous slide  $\{y_1, y_2, \dots y_n\}$ :

- Fpropagation: Visit nodes in the order after a topological sort
- Compute the value of each node given its ancestors
- Bpropagation: Output gradient = 1
- Now visit nods in reverse order
- Compute gradient with respect to each node using gradient with respect to successors
- Successors of x in previous slide  $\{y_1, y_2, \dots y_n\}$ :

$$\frac{dz}{dx} = \sum_{i=1}^{n} \frac{dz}{dy_i} \frac{dy_i}{dx}$$

• Computation of the gradient can be automatically inferred from the symbolic expression of fprop

- Computation of the gradient can be automatically inferred from the symbolic expression of fprop
- Every node type needs to know:

- Computation of the gradient can be automatically inferred from the symbolic expression of fprop
- Every node type needs to know:
  - How to compute its output

- Computation of the gradient can be automatically inferred from the symbolic expression of fprop
- Every node type needs to know:
  - How to compute its output
  - How to compute its gradients with respect to its inputs given the gradient w.r.t its outputs

- Computation of the gradient can be automatically inferred from the symbolic expression of fprop
- Every node type needs to know:
  - How to compute its output
  - How to compute its gradients with respect to its inputs given the gradient w.r.t its outputs
- Makes for rapid prototyping

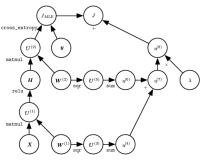


Figure: Goodfellow et al.

ullet To train we want to compute  $abla_{W^{(1)}}J$  and  $abla_{W^{(2)}}J$ 

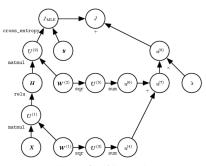


Figure: Goodfellow et al.

- ullet To train we want to compute  $abla_{W^{(1)}}J$  and  $abla_{W^{(2)}}J$
- ullet Two paths lead backwards from J to weights: Through cross entropy and through regularization cost

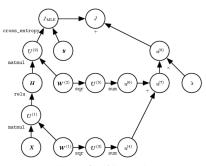


Figure: Goodfellow et al.

- ullet To train we want to compute  $abla_{W^{(1)}}J$  and  $abla_{W^{(2)}}J$
- ullet Two paths lead backwards from J to weights: Through cross entropy and through regularization cost

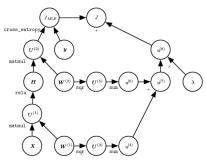


Figure: Goodfellow et al.

- Weight decay cost is relatively simple: Will always contribute  $2\lambda W^{(i)}$  to gradient on  $W^{(i)}$
- Two paths lead backwards from J to weights: Through cross entropy and through regularization cost

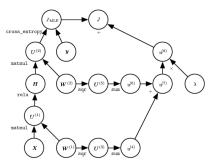


Figure: Goodfellow et al.

- Weight decay cost is relatively simple: Will always contribute  $2\lambda W^{(i)}$  to gradient on  $W^{(i)}$
- Two paths lead backwards from J to weights: Through cross entropy and through regularization cost

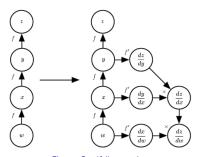


Figure: Goodfellow et al.

 In this approach backpropagation never accesses any numerical values

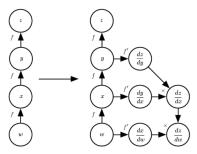


Figure: Goodfellow et al.

- In this approach backpropagation never accesses any numerical values
- Instead it just adds nodes to the graph that describe how to compute derivatives

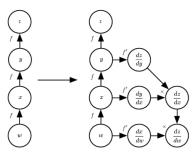


Figure: Goodfellow et al.

- In this approach backpropagation never accesses any numerical values
- Instead it just adds nodes to the graph that describe how to compute derivatives
- A graph evaluation engine will then do the actual computation

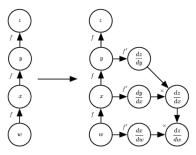


Figure: Goodfellow et al.

- In this approach backpropagation never accesses any numerical values
- Instead it just adds nodes to the graph that describe how to compute derivatives
- A graph evaluation engine will then do the actual computation
- Approach taken by Theano and TensorFlow

### Next time

• Regularization Methods for Deep Neural Networks