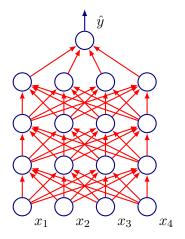
Lecture 7 Convolutional Neural Networks

CMSC 35246: Deep Learning

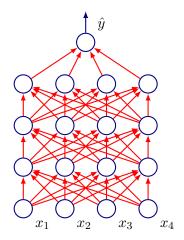
Shubhendu Trivedi &
Risi Kondor

University of Chicago

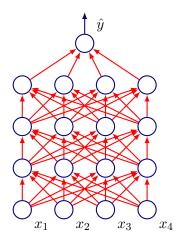
April 17, 2017



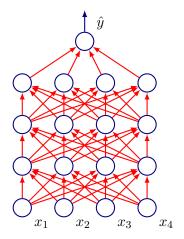
• A series of matrix multiplications:



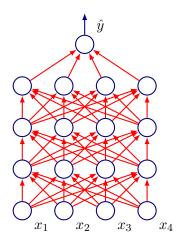
- A series of matrix multiplications:
- \bullet $\mathbf{x} \mapsto$



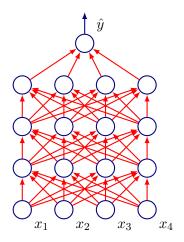
- A series of matrix multiplications:
- $\mathbf{x} \mapsto W_1^T \mathbf{x} \mapsto \mathbf{h}_1 = f(W_1^T \mathbf{x}) \mapsto$



- A series of matrix multiplications:
- $\mathbf{x} \mapsto W_1^T \mathbf{x} \mapsto \mathbf{h}_1 = f(W_1^T \mathbf{x}) \mapsto W_2^T \mathbf{h}_1 \mapsto \mathbf{h}_2 = f(W_2^T \mathbf{h}_1) \mapsto$



- A series of matrix multiplications:
- $\mathbf{x} \mapsto W_1^T \mathbf{x} \mapsto \mathbf{h}_1 = f(W_1^T \mathbf{x}) \mapsto W_2^T \mathbf{h}_1 \mapsto \mathbf{h}_2 = f(W_2^T \mathbf{h}_1) \mapsto W_3^T \mathbf{h}_2 \mapsto \mathbf{h}_3 = f(W_3^T \mathbf{h}_3) \mapsto$



- A series of matrix multiplications:
- $\mathbf{x} \mapsto W_1^T \mathbf{x} \mapsto \mathbf{h}_1 = f(W_1^T \mathbf{x}) \mapsto W_2^T \mathbf{h}_1 \mapsto \mathbf{h}_2 = f(W_2^T \mathbf{h}_1) \mapsto W_3^T \mathbf{h}_2 \mapsto \mathbf{h}_3 = f(W_3^T \mathbf{h}_3) \mapsto W_4^T \mathbf{h}_3 = \hat{y}$

 Neural Networks that use convolution in place of general matrix multiplication in atleast one layer

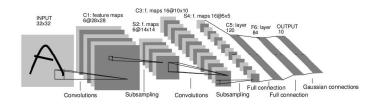
- Neural Networks that use convolution in place of general matrix multiplication in atleast one layer
- Next:

- Neural Networks that use convolution in place of general matrix multiplication in atleast one layer
- Next:
 - What is convolution?

- Neural Networks that use convolution in place of general matrix multiplication in atleast one layer
- Next:
 - What is convolution?
 - What is pooling?

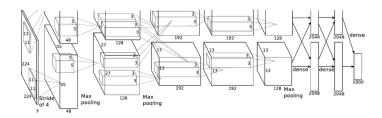
- Neural Networks that use convolution in place of general matrix multiplication in atleast one layer
- Next:
 - What is convolution?
 - What is pooling?
 - What is the motivation for such architectures (remember LeNet?)

LeNet-5 (LeCun, 1998)



 The original Convolutional Neural Network model goes back to 1989 (LeCun)

AlexNet (Krizhevsky, Sutskever, Hinton 2012)



 \bullet ImageNet 2012 15.4% error rate

Convolutional Neural Networks

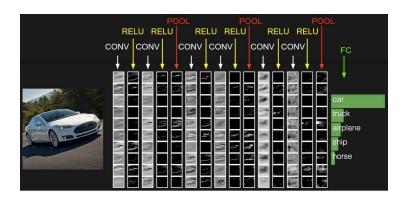
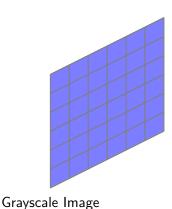


Figure: Andrej Karpathy

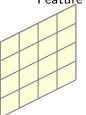
Now let's deconstruct them...



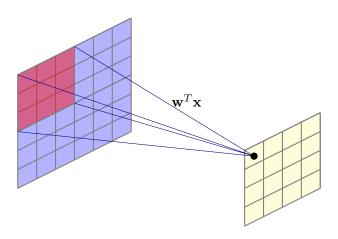
Kernel

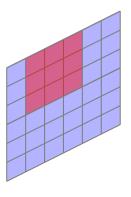
w_7	w_8	w_9
w_4	w_5	w_6
w_1	w_2	w_3

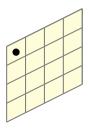
Feature Map

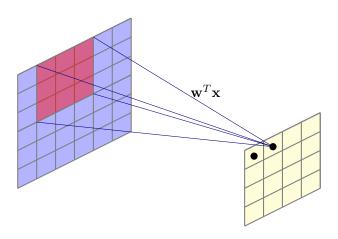


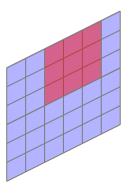
• Convolve image with kernel having weights **w** (learned by backpropagation)

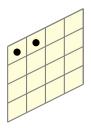


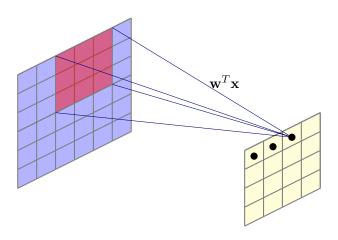


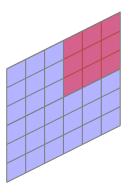


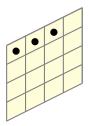


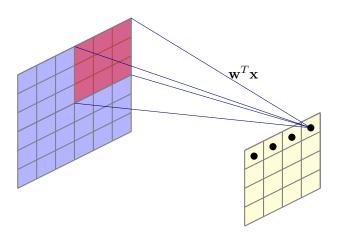


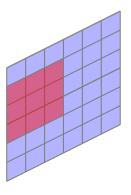


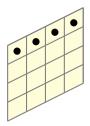


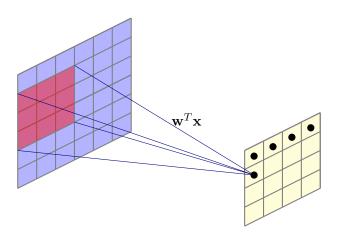


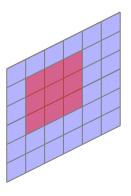


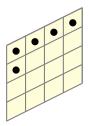


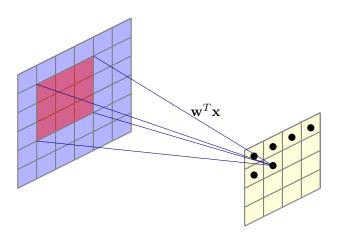


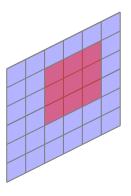


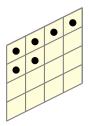


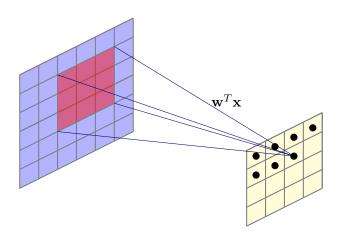


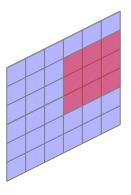


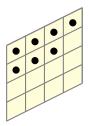


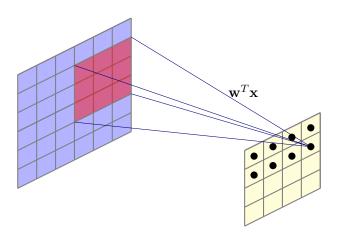


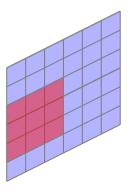


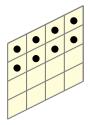


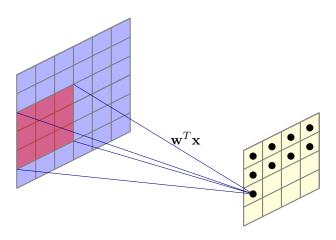


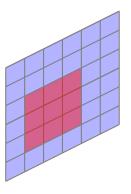


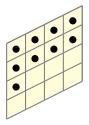


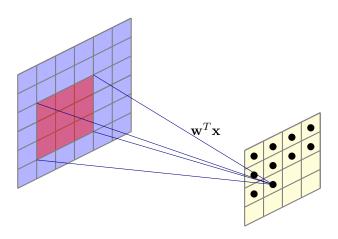


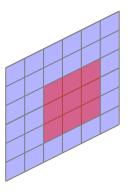


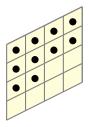


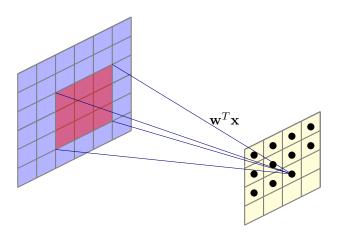


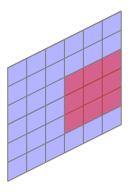


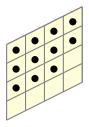


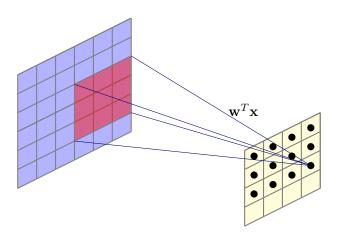


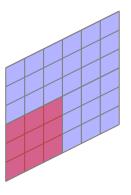


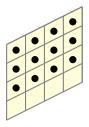


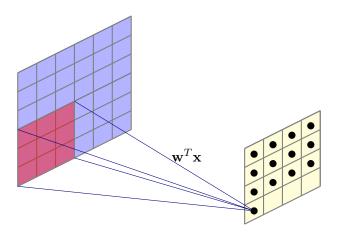


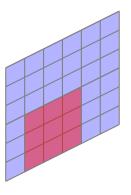


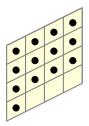


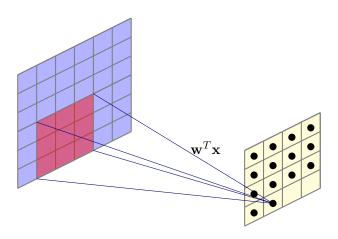


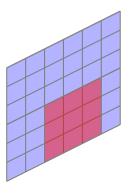


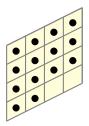


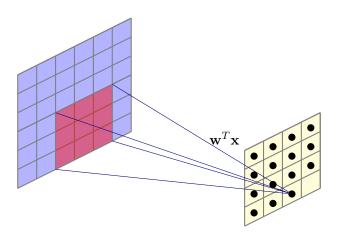


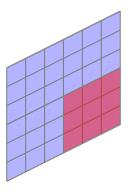


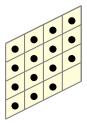


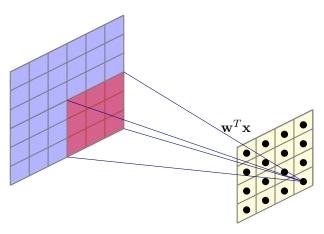












• What is the number of parameters?

• We used stride of 1, kernel with receptive field of size 3 by 3

- We used stride of 1, kernel with receptive field of size 3 by 3
- Output size:

$$\frac{N-K}{S}+1$$

- We used stride of 1, kernel with receptive field of size 3 by 3
- Output size:

$$\frac{N-K}{S}+1$$

• In previous example: N=6, K=3, S=1, Output size =4

- We used stride of 1, kernel with receptive field of size 3 by 3
- Output size:

$$\frac{N-K}{S}+1$$

- In previous example: N=6, K=3, S=1, Output size =4
- For N=8, K=3, S=1, output size is 6

Zero Padding

• Often, we want the output of a convolution to have the same size as the input. Solution: Zero padding.

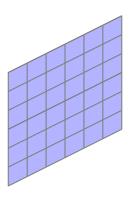
Zero Padding

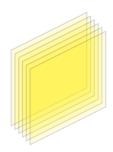
- Often, we want the output of a convolution to have the same size as the input. Solution: Zero padding.
- In our previous example:

0	0	0	0	0	0	0	0
0							0
0							0
0							0
0							0
0							0
0							0
0	0	0	0	0	0	0	0

• Common to see convolution layers with stride of 1, filters of size K, and zero padding with $\frac{K-1}{2}$ to preserve size

Learn Multiple Filters





Learn Multiple Filters

• If we use 100 filters, we get 100 feature maps

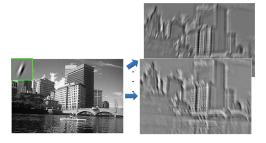


Figure: I. Kokkinos

In General

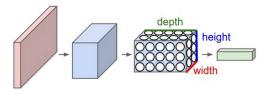
• We have only considered a 2-D image as a running example

In General

- We have only considered a 2-D image as a running example
- But we could operate on volumes (e.g. RGB Images would be depth 3 input, filter would have same depth)

In General

- We have only considered a 2-D image as a running example
- But we could operate on volumes (e.g. RGB Images would be depth 3 input, filter would have same depth)



• For convolutional layer:

- For convolutional layer:
 - Suppose input is of size $W_1 \times H_1 \times D_1$

- For convolutional layer:
 - Suppose input is of size $W_1 \times H_1 \times D_1$
 - ullet Filter size is K and stride S

- For convolutional layer:
 - Suppose input is of size $W_1 \times H_1 \times D_1$
 - ullet Filter size is K and stride S
 - ullet We obtain another volume of dimensions $W_2 imes H_2 imes D_2$

- For convolutional layer:
 - Suppose input is of size $W_1 \times H_1 \times D_1$
 - ullet Filter size is K and stride S
 - We obtain another volume of dimensions $W_2 \times H_2 \times D_2$
 - As before:

$$W_2 = \frac{W_1 - K}{S} + 1$$
 and $H_2 = \frac{H_1 - K}{S} + 1$

- For convolutional layer:
 - Suppose input is of size $W_1 \times H_1 \times D_1$
 - ullet Filter size is K and stride S
 - We obtain another volume of dimensions $W_2 \times H_2 \times D_2$
 - As before:

$$W_2 = \frac{W_1 - K}{S} + 1$$
 and $H_2 = \frac{H_1 - K}{S} + 1$

• Depths will be equal

Example volume: $28 \times 28 \times 3$ (RGB Image)

Example volume: $28 \times 28 \times 3$ (RGB Image) $100 \ 3 \times 3$ filters, stride 1

Example volume: $28 \times 28 \times 3$ (RGB Image)

100 3×3 filters, stride 1

What is the zero padding needed to preserve size?

Example volume: $28 \times 28 \times 3$ (RGB Image) $100~3 \times 3$ filters, stride 1 What is the zero padding needed to preserve size? Number of parameters in this layer?

Example volume: $28 \times 28 \times 3$ (RGB Image)

 $100 \ 3 \times 3$ filters, stride 1

What is the zero padding needed to preserve size?

Number of parameters in this layer?

For every filter: $3 \times 3 \times 3 + 1 = 28$ parameters

```
Example volume: 28 \times 28 \times 3 (RGB Image)
```

100 3×3 filters, stride 1

What is the zero padding needed to preserve size?

Number of parameters in this layer?

For every filter: $3 \times 3 \times 3 + 1 = 28$ parameters

Total parameters: $100 \times 28 = 2800$

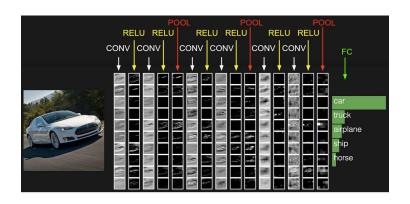
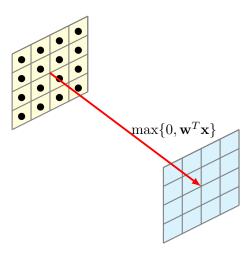


Figure: Andrej Karpathy

Non-Linearity



• After obtaining feature map, apply an elementwise non-linearity to obtain a transformed feature map (same size)

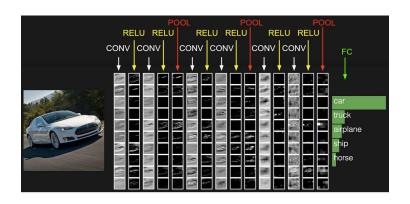
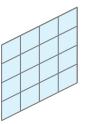
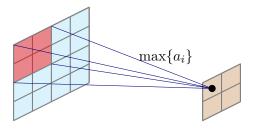
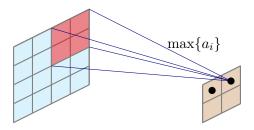
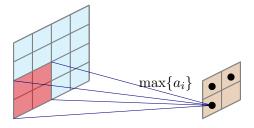


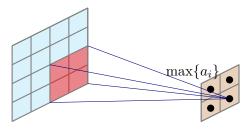
Figure: Andrej Karpathy





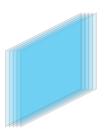






Other options: Average pooling, L2-norm pooling, random pooling

 We have multiple feature maps, and get an equal number of subsampled maps



- We have multiple feature maps, and get an equal number of subsampled maps
- This changes if cross channel pooling is done

So what's left: Fully Connected Layers

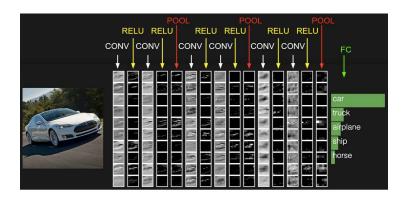
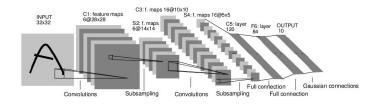


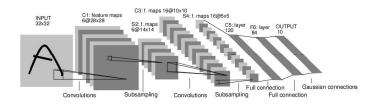
Figure: Andrej Karpathy

LeNet-5



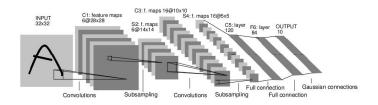
ullet Filters are of size 5 imes 5, stride 1

LeNet-5

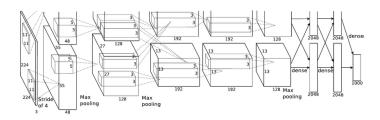


- ullet Filters are of size 5×5 , stride 1
- ullet Pooling is 2×2 , with stride 2

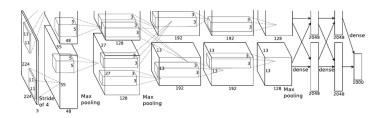
LeNet-5



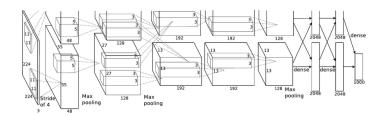
- ullet Filters are of size 5 imes 5, stride 1
- Pooling is 2×2 , with stride 2
- How many parameters?



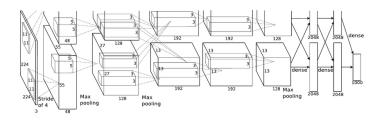
- Input image: 227 X 227 X 3
- ullet First convolutional layer: 96 filters with K=11 applied with stride = 4
- \bullet Width and height of output: $\frac{227-11}{4}+1=55$



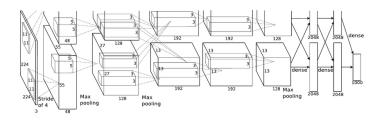
• Number of parameters in first layer?



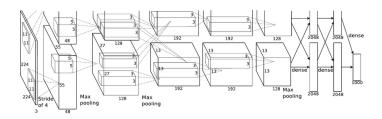
- Number of parameters in first layer?
- 11 X 11 X 3 X 96 = 34848



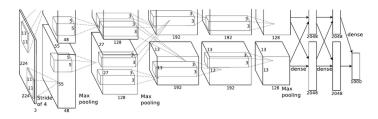
Next layer: Pooling with 3 X 3 filters, stride of 2



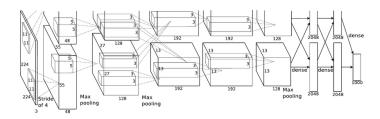
- Next layer: Pooling with 3 X 3 filters, stride of 2
- Size of output volume: 27



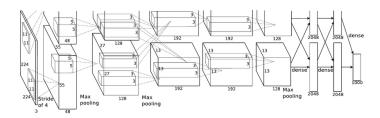
- Next layer: Pooling with 3 X 3 filters, stride of 2
- Size of output volume: 27
- Number of parameters?



• Popularized the use of ReLUs



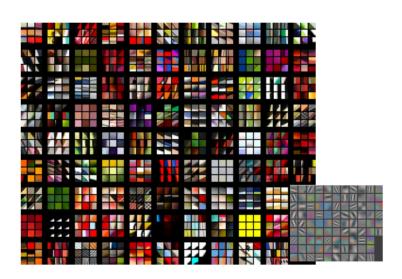
- Popularized the use of ReLUs
- Used heavy data augmentation (flipped images, random crops of size 227 by 227)



- Popularized the use of ReLUs
- Used heavy data augmentation (flipped images, random crops of size 227 by 227)
- Parameters: Dropout rate 0.5, Batch size = 128, Weight decay term: 0.0005, Momentum term $\alpha = 0.9$, learning rate $\eta = 0.01$, manually reduced by factor of ten on monitoring validation loss.

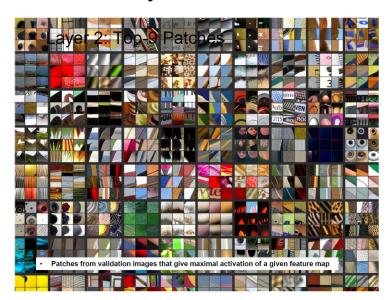
Short Digression: How do the features look like?

Layer 1 filters

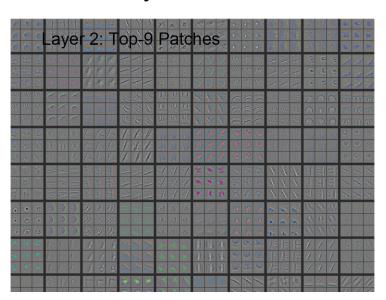


This and the next few illustrations are from Rob Fergus

Layer 2 Patches

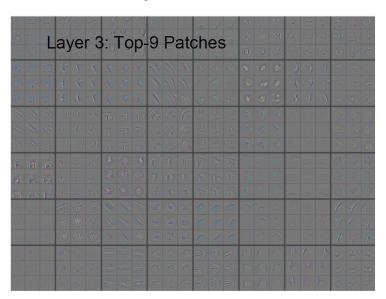


Layer 2 Patches



Layer 3 Patches

Layer 3 Patches

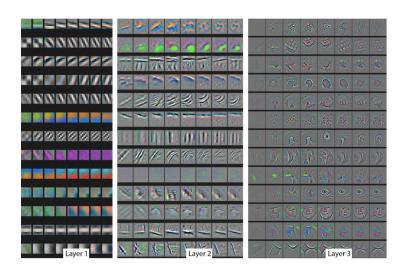


Layer 4 Patches

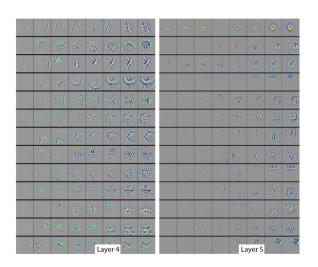
Layer 4 Patches



Evolution of Filters



Evolution of Filters



Back to Architectures

ImageNet 2013

 Was won by a network similar to AlexNet (Matthew Zeiler and Rob Fergus)

ImageNet 2013

- Was won by a network similar to AlexNet (Matthew Zeiler and Rob Fergus)
- Changed the first convolutional layer from 11 X 11 with stride of 4, to 7 X 7 with stride of 2

ImageNet 2013

- Was won by a network similar to AlexNet (Matthew Zeiler and Rob Fergus)
- Changed the first convolutional layer from 11 X 11 with stride of 4, to 7 X 7 with stride of 2
- AlexNet used 384, 384 and 256 layers in the next three convolutional layers, ZF used 512, 1024, 512

ImageNet 2013

- Was won by a network similar to AlexNet (Matthew Zeiler and Rob Fergus)
- Changed the first convolutional layer from 11 X 11 with stride of 4, to 7 X 7 with stride of 2
- AlexNet used 384, 384 and 256 layers in the next three convolutional layers, ZF used 512, 1024, 512
- ImageNet 2013: 14.8 % (reduced from 15.4 %) (top 5 errors)

			onfiguration			
A	A-LRN	В	C	D	E	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
			24 RGB imag			
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
			pool			
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
			pool			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
			conv1-256	conv3-256	conv3-256	
					conv3-256	
			pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
			pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
			pool			
			4096			
			4096			
			1000			
		soft	-max			

• Best model: Column D.

• Error: 7.3 % (top five error)

- Total number of parameters: 138 Million (calculate!)
- Memory (Karpathy): 24 Million X 4 bytes ≈ 93 MB per image

- Total number of parameters: 138 Million (calculate!)
- Memory (Karpathy): 24 Million X 4 bytes ≈ 93 MB per image
- For backward pass the memory usage is doubled per image

- Total number of parameters: 138 Million (calculate!)
- Memory (Karpathy): 24 Million X 4 bytes ≈ 93 MB per image
- For backward pass the memory usage is doubled per image
- Observations:
 - Early convolutional layers take most memory

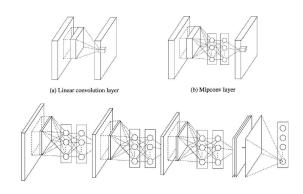
- Total number of parameters: 138 Million (calculate!)
- Memory (Karpathy): 24 Million X 4 bytes ≈ 93 MB per image
- For backward pass the memory usage is doubled per image
- Observations:
 - Early convolutional layers take most memory
 - Most parameters are in the fully connected layers

Going Deeper

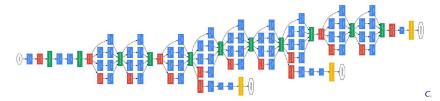


Figure: Kaiming He, MSR

Network in Network



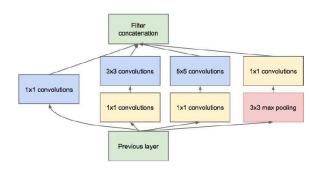
M. Lin, Q. Chen, S. Yan, Network in Network, ICLR 2014



Szegedy et al, Going Deeper With Convolutions, CVPR 2015

• Error: 6.7 % (top five error)

The Inception Module



- Parallel paths with different receptive field sizes capture sparse patterns of correlation in stack of feature maps
- Also include auxiliary classifiers for ease of training
- Also note 1 by 1 convolutions

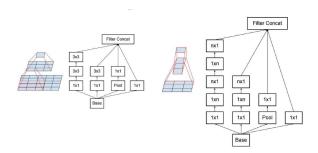
type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

C. Szegedy et al, Going Deeper With Convolutions, CVPR 2015

• Has 5 Million or 12X fewer parameters than AlexNet

- Has 5 Million or 12X fewer parameters than AlexNet
- Gets rid of fully connected layers

Inception v2, v3



C. Szegedy et al, Rethinking the Inception Architecture for Computer Vision, CVPR 2016

- Use Batch Normalization during training to reduce dependence on auxiliary classifiers
- More aggressive factorization of filters

Why do CNNs make sense? (Brain Stuff next time)

• Convolution leverages four ideas that can help ML systems:

- Convolution leverages four ideas that can help ML systems:
 - Sparse interactions

- Convolution leverages four ideas that can help ML systems:
 - Sparse interactions
 - Parameter sharing

- Convolution leverages four ideas that can help ML systems:
 - Sparse interactions
 - Parameter sharing
 - Equivariant representations

- Convolution leverages four ideas that can help ML systems:
 - Sparse interactions
 - Parameter sharing
 - Equivariant representations
 - Ability to work with inputs of variable size

- Convolution leverages four ideas that can help ML systems:
 - Sparse interactions
 - Parameter sharing
 - Equivariant representations
 - Ability to work with inputs of variable size

Sparse Interactions

• Plain Vanilla NN $(y \in \mathbb{R}^n, x \in \mathbb{R}^m)$: Need matrix multiplication $y = \mathbf{W}x$ to compute activations for each layer (every output interacts with every input)

- Convolution leverages four ideas that can help ML systems:
 - Sparse interactions
 - Parameter sharing
 - Equivariant representations
 - Ability to work with inputs of variable size

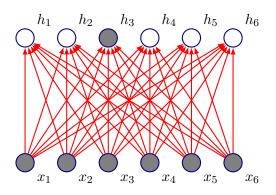
Sparse Interactions

- Plain Vanilla NN $(y \in \mathbb{R}^n, x \in \mathbb{R}^m)$: Need matrix multiplication $y = \mathbf{W}x$ to compute activations for each layer (every output interacts with every input)
- Convolutional networks have sparse interactions by making kernel smaller than input

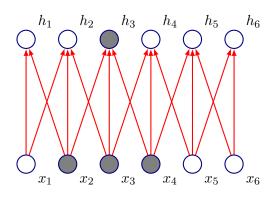
- Convolution leverages four ideas that can help ML systems:
 - Sparse interactions
 - Parameter sharing
 - Equivariant representations
 - Ability to work with inputs of variable size

Sparse Interactions

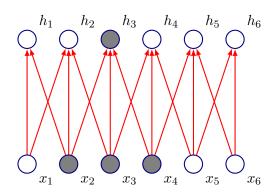
- Plain Vanilla NN $(y \in \mathbb{R}^n, x \in \mathbb{R}^m)$: Need matrix multiplication $y = \mathbf{W}x$ to compute activations for each layer (every output interacts with every input)
- Convolutional networks have sparse interactions by making kernel smaller than input
- \implies need to store fewer parameters, computing output needs fewer operations $(O(m \times n)$ versus $O(k \times n))$



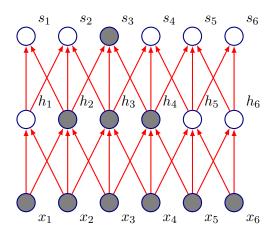
• Fully connected network: h_3 is computed by full matrix multiplication with no sparse connectivity



• Kernel of size 3, moved with stride of 1



- Kernel of size 3, moved with stride of 1
- h_3 only depends on x_2, x_3, x_4



• Connections in CNNs are sparse, but units in deeper layers are connected to all of the input (larger receptive field sizes)

 Plain vanilla NN: Each element of W is used exactly once to compute output of a layer

- Plain vanilla NN: Each element of W is used exactly once to compute output of a layer
- In convolutional networks, parameters are *tied*: weight applied to one input is tied to value of a weight applied elsewhere

- Plain vanilla NN: Each element of W is used exactly once to compute output of a layer
- In convolutional networks, parameters are *tied*: weight applied to one input is tied to value of a weight applied elsewhere
- Same kernel is used throughout the image, so instead learning a parameter for each location, only a set of parameters is learnt

- Plain vanilla NN: Each element of W is used exactly once to compute output of a layer
- In convolutional networks, parameters are *tied*: weight applied to one input is tied to value of a weight applied elsewhere
- Same kernel is used throughout the image, so instead learning a parameter for each location, only a set of parameters is learnt
- ullet Forward propagation remains unchanged $O(k \times n)$

- Plain vanilla NN: Each element of W is used exactly once to compute output of a layer
- In convolutional networks, parameters are *tied*: weight applied to one input is tied to value of a weight applied elsewhere
- Same kernel is used throughout the image, so instead learning a parameter for each location, only a set of parameters is learnt
- ullet Forward propagation remains unchanged $O(k \times n)$
- ullet Storage improves dramatically as $k \ll m, n$

• Let's first formally define convolution:

• Let's first formally define convolution:

$$s(t) = (x * w)(t) = \int x(a)w(t - a)da$$

ullet In Convolutional Network terminology x is referred to as input, w as the kernel and s as the feature map

• Let's first formally define convolution:

$$s(t) = (x * w)(t) = \int x(a)w(t - a)da$$

- ullet In Convolutional Network terminology x is referred to as input, w as the kernel and s as the feature map
- Discrete Convolution:

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$

• Let's first formally define convolution:

$$s(t) = (x * w)(t) = \int x(a)w(t - a)da$$

- ullet In Convolutional Network terminology x is referred to as input, w as the kernel and s as the feature map
- Discrete Convolution:

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n) K(i-m,j-n)$$

Convolution is commutative, thus:

• Let's first formally define convolution:

$$s(t) = (x * w)(t) = \int x(a)w(t - a)da$$

- ullet In Convolutional Network terminology x is referred to as input, w as the kernel and s as the feature map
- Discrete Convolution:

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$

Convolution is commutative, thus:

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(i-m,j-n)K(m,n)$$

 The latter is usually more straightforward to implement in ML libraries (less variation in range of valid values of m and n)

- The latter is usually more straightforward to implement in ML libraries (less variation in range of valid values of m and n)
- Neither are usually used in practice in Neural Networks

- The latter is usually more straightforward to implement in ML libraries (less variation in range of valid values of m and n)
- Neither are usually used in practice in Neural Networks
- Libraries implement *Cross Correlation*, same as convolution, but without flipping the kernel

- The latter is usually more straightforward to implement in ML libraries (less variation in range of valid values of m and n)
- Neither are usually used in practice in Neural Networks
- Libraries implement *Cross Correlation*, same as convolution, but without flipping the kernel

$$S(i,j) = (I*K)(i,j) = \sum_m \sum_n I(i+m,j+n)K(m,n)$$

• Equivariance: f is equivariant to g if $f(g(\mathbf{x})) = g(f(\mathbf{x}))$

- Equivariance: f is equivariant to g if $f(g(\mathbf{x})) = g(f(\mathbf{x}))$
- The form of parameter sharing used by CNNs causes each layer to be equivariant to translation

- Equivariance: f is equivariant to g if $f(g(\mathbf{x})) = g(f(\mathbf{x}))$
- The form of parameter sharing used by CNNs causes each layer to be equivariant to translation
- ullet That is, if g is any function that translates the input, the convolution function is equivariant to g

 Implication: While processing time series data, convolution produces a timeline that shows when different features appeared (if an event is shifted in time in the input, the same representation will appear in the output)

- Implication: While processing time series data, convolution produces a timeline that shows when different features appeared (if an event is shifted in time in the input, the same representation will appear in the output)
- Images: If we move an object in the image, its representation will move the same amount in the output

- Implication: While processing time series data, convolution produces a timeline that shows when different features appeared (if an event is shifted in time in the input, the same representation will appear in the output)
- Images: If we move an object in the image, its representation will move the same amount in the output
- This property is useful when we know some local function is useful everywhere (e.g. edge detectors)

- Implication: While processing time series data, convolution produces a timeline that shows when different features appeared (if an event is shifted in time in the input, the same representation will appear in the output)
- Images: If we move an object in the image, its representation will move the same amount in the output
- This property is useful when we know some local function is useful everywhere (e.g. edge detectors)
- Convolution is not equivariant to other operations such as change in scale or rotation

Pooling: Motivation

 Pooling helps the representation become slightly *invariant* to small translations of the input

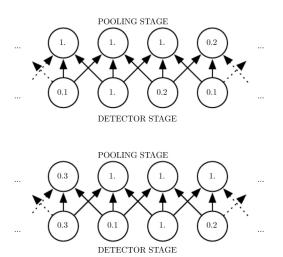
Pooling: Motivation

- Pooling helps the representation become slightly *invariant* to small translations of the input
- Reminder: Invariance: $f(g(\mathbf{x})) = f(\mathbf{x})$

Pooling: Motivation

- Pooling helps the representation become slightly invariant to small translations of the input
- Reminder: Invariance: $f(g(\mathbf{x})) = f(\mathbf{x})$
- If input is translated by small amount: values of most pooled outputs don't change

Pooling: Invariance



 Invariance to local translation can be useful if we care more about whether a certain feature is present rather than exactly where it is

- Invariance to local translation can be useful if we care more about whether a certain feature is present rather than exactly where it is
- Pooling over spatial regions produces invariance to translation, what if we pool over separately parameterized convolutions?

- Invariance to local translation can be useful if we care more about whether a certain feature is present rather than exactly where it is
- Pooling over spatial regions produces invariance to translation, what if we pool over separately parameterized convolutions?
- Features can learn which transformations to become invariant to (Example: Maxout Networks, Goodfellow et al 2013)

- Invariance to local translation can be useful if we care more about whether a certain feature is present rather than exactly where it is
- Pooling over spatial regions produces invariance to translation, what if we pool over separately parameterized convolutions?
- Features can learn which transformations to become invariant to (Example: Maxout Networks, Goodfellow et al 2013)
- One more advantage: Since pooling is used for downsampling, it can be used to handle inputs of varying sizes

Next time

- More Architectures
- Variants on the CNN idea
- More motivation
- Group Equivariance
- Equivariance to Rotation

Quiz!