1

Abstract

- Dimensionality reduction (DR) is often used as a preprocessing step in classification, but usually in a filter approach. Best performance would be obtained by optimizing the classification error jointly over a DR mapping F (into latent space \mathbb{R}^{L}) and classifier g in a wrapper approach, but this is a difficult nonconvex problem:

$$
\begin{align*}
& \min _{\mathbf{F}, \mathbf{g}, \xi} \lambda R(\mathbf{F})+\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{n=1}^{N} \xi_{n} \tag{1}\\
& \text { s.t. } \quad\left\{y_{n}\left(\mathbf{w}^{T} \mathbf{F}\left(\mathbf{x}_{n}\right)+b\right) \geq 1-\xi_{n}, \xi_{n} \geq 0\right\}_{n=1}^{N}
\end{align*}
$$

where here we use a linear SVM classifier $\mathbf{g}(\mathbf{F}(\mathbf{x}))=\mathbf{w}^{T} \mathbf{F}(\mathbf{x})+b$. (With K classes, we use the one-vs-all scheme and train K binary linear SVMs, one for each class.)

- Using the method of auxiliary coordinates, we give a simple, efficient algorithm to train a combination of nonlinear DR and a classifier, and apply it to a RBF mapping with a linear SVM.
- The resulting nonlinear low-dimensional classifier achieves classification errors competitive with the state-of-the-art but is fast at training and testing, and allows the user to trade off runtime for classification accuracy easily.
- When trained jointly, the DR mapping takes an extreme role in eliminating variation: it tends to collapse classes in latent space, erasing all manifold structure, and lay out class centroids so they are linearly separable with maximum margin.

3

Role of dimension reduction in classification

- Formulation (1) does not explicitly seek to collapse classes, but this behavior emerges anyway from the assumption of low-dimensional representation, if trained jointly with the classifier.

F linear $\quad \# B F s=10 \quad \# B F s=40 \quad \# B F s=100 \quad \# B F s=2000$

- For K-class problems, the classification performance improves drastically as the latent dimensionality L increases in the beginning, and then stabilizes after some critical L.
-Typically with $L=K-1$ dimensions, the classes form point-like clusters that approximately lie on the vertices of a regular simplex.

2

Optimization: method of auxiliary coordinates

Problem (1) can be significantly simplified with the method of auxiliary variables [1]. This breaks the nested functional dependence $\mathrm{g}(\mathrm{F}(\cdot))$ into simpler shallow mappings $\mathrm{g}(\mathrm{z})$ and $\mathrm{F}(\cdot)$, by introducing an auxiliary vector $\mathbf{z}_{n} \in \mathbb{R}^{L}$ per input pattern and defining the equivalent problem

$$
\begin{align*}
& \min _{\mathbf{F}, \mathbf{s}, \xi, \mathbf{Z}} \lambda R(\mathbf{F})+\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{n=1}^{N} \xi_{n} \tag{2}\\
& \text { s.t. }\left\{y_{n}\left(\mathbf{w}^{T} \mathbf{z}_{n}+b\right) \geq 1-\xi_{n}, \xi_{n} \geq 0, \mathbf{z}_{n}=\mathbf{F}\left(\mathbf{x}_{n}\right)\right\}_{n=1}^{N}
\end{align*}
$$

We solve (2) with the quadratic-penalty method. We optimize the following problem for fixed penalty parameter $\mu>0$ and drive $\mu \rightarrow \infty$:

$$
\begin{align*}
& \min _{\mathbf{F}, \mathbf{g}, \boldsymbol{\xi}, \mathbf{Z}} \lambda R(\mathbf{F})+\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{n=1}^{N} \xi_{n}+\frac{\mu}{2} \sum_{n=1}^{N}\left\|\mathbf{z}_{n}-\mathbb{F}\left(\mathbf{x}_{n}\right)\right\|^{2} \tag{3}\\
& \text { s.t. }\left\{y_{n}\left(\mathbf{w}^{T} \mathbf{z}_{n}+b\right) \geq 1-\xi_{n}, \xi_{n} \geq 0\right\}_{n=1}^{N}
\end{align*}
$$

Alternating optimization for (3): (\mathbf{F}, \mathbf{g}) step is a usual regression and linear SVM classification done independently from each other (reusing existing algorithms); optimizing over \mathbf{Z} decouples on each n and solves

$$
\min _{\mathbf{z}, \xi}\|\mathbf{z}-\mathbf{F}(\mathbf{x})\|^{2}+2 C / \mu \xi \quad \text { s.t. } y\left(\mathbf{w}^{T} \mathbf{z}+b\right) \geq 1-\xi, \quad \xi \geq 0
$$

a convex quadratic program with solution $\mathbf{z}_{\text {opt }}=\mathbf{F}(\mathbf{x})+\gamma y \mathbf{w}$.

4

Experimental results

Binary classification results on the PC/MAC subset of 20 newsgroups.

Method	Error	\# BFs
Nearest Neighbor	5.34	10000
Linear SVM	9.20	-
Gaussian SVM	2.93	13827
LDA (9) + Gaussian SVM	10.67	8740
PCA (10) + Gaussian SVM	7.44	5894
PCA (40) + Gaussian SVM	2.58	12549
Ours (10, 18)	$\mathbf{2 . 9 9}$	$\mathbf{2 5 0 0}$
PCA (40) + Ours (10, 17)	$\mathbf{2 . 6 0}$	$\mathbf{2 5 0 0}$

Test error rates (\%) and number of basis functions used on MNIST.

Embedding of our algorithm on MNIST and speedups obtained with the Matlab Parallel Processing Toolbox.

