

NONLINEAR LOW-DIMENSIONAL REGRESSION

USING AUXILIARY COORDINATES.

Weiran Wang and Miguel Á. Carreira-Perpiñán. EECS, University of California, Merced.

1 Abstract

When doing regression with inputs and outputs that are high-dimensional, it often makes sense to reduce the dimensionality of the inputs before mapping to the outputs. We propose a method where both the dimensionality reduction and the regression mapping can be nonlinear and are estimated jointly. Our key idea is to define an objective function where the low-dimensional coordinates are free parameters, in addition to the dimensionality reduction and the regression mapping. This has the effect of decoupling many groups of parameters from each other, affording a more effective optimization, and to use a good initialization from other methods.

Work funded by NSF CAREER award IIS-0754089.

2 Low-dimensional regression using auxiliary coordinates

Given a training set $\mathbf{X}_{\mathit{D_x} \times \mathit{N}}$ and $\mathbf{Y}_{\mathit{D_y} \times \mathit{N}}$, instead of directly optimizing

$$E_1(\mathbf{F}, \mathbf{g}) = \sum_{n=1}^N \|\mathbf{y}_n - \mathbf{g}(\mathbf{F}(\mathbf{x}_n))\|^2 + \lambda_{\mathbf{g}} R(\mathbf{g}) + \lambda_{\mathbf{F}} R(\mathbf{F})$$

with $\lambda_{\mathbf{F}}, \lambda_{\mathbf{g}} \geq 0$ for dimension reduction mapping \mathbf{F} and regression mapping \mathbf{g} , we let the low-dimensional coordinates $\mathbf{Z}_{D_{\mathbf{z}} \times N} = (\mathbf{z}_1, \dots, \mathbf{z}_N)$ be independent, auxiliary parameters to be optimized over, and unfold the squared error into two terms that decouple given \mathbf{Z} :

$$E_{2}(\mathbf{F}, \mathbf{g}, \mathbf{Z}) = \sum_{n=1}^{N} \|\mathbf{y}_{n} - \mathbf{g}(\mathbf{z}_{n})\|^{2} + \lambda_{\mathbf{g}} R(\mathbf{g}) + \sum_{n=1}^{N} \|\mathbf{z}_{n} - \mathbf{F}(\mathbf{x}_{n})\|^{2} + \lambda_{\mathbf{F}} R(\mathbf{F}).$$

Now, every squared error involves only a shallow mapping, compared to deeper nesting in the function $g \circ F$ that leads to ill-conditioning. We apply the following alternating optimization procedure to solve the problem.

```
Given \mathbf{X}_{D_{\mathbf{x}} \times N}, \mathbf{Y}_{D_{\mathbf{y}} \times N}, and intialization \mathbf{Z}_{D_{\mathbf{z}} \times N}

repeat

1. Optimize over \mathbf{g}: \min_{\mathbf{g}} \sum_{n=1}^{N} \|\mathbf{y}_{n} - \mathbf{g}(\mathbf{z}_{n})\|^{2} + \lambda_{\mathbf{g}} R_{\mathbf{g}}(\mathbf{g})

2. Optimize over \mathbf{F}: \min_{\mathbf{F}} \sum_{n=1}^{N} \|\mathbf{z}_{n} - \mathbf{F}(\mathbf{x}_{n})\|^{2} + \lambda_{\mathbf{F}} R_{\mathbf{F}}(\mathbf{F})

3. Optimize over \mathbf{Z}:

\min_{\mathbf{Z}} \sum_{n=1}^{N} \|\mathbf{y}_{n} - \mathbf{g}(\mathbf{z}_{n})\|^{2} + \sum_{n=1}^{N} \|\mathbf{z}_{n} - \mathbf{F}(\mathbf{x}_{n})\|^{2}

<u>until</u> stop
```


We use shallower functions–linear or RBFs–for ${\bf F}$ and ${\bf g}.$

- Linear g: a direct regression that acts on a lower input dimension D_z , reduces to least squares problem.
- RBFs g: $\mathbf{g}(\mathbf{z}) = \mathbf{W} \Phi(\mathbf{z})$ with $M \leq N$ Gaussian RBFs $\phi_m(\mathbf{z}) = e^{(-\frac{\|(\mathbf{z}-\boldsymbol{\mu}_m)\|^2}{2\sigma^2})}$, and $R(\mathbf{g}) = \|\mathbf{W}\|^2$ is a quadratic regularizer on the weights.
- Centers μ_m are chosen by k-means on Z (once every few iterations, initialized at previous centers)
- -Weights W have a unique solution given by a linear system.
- -Time complexity: $\mathcal{O}(NM(M + D_z))$, linear in training set size.
- Space complexity: $\mathcal{O}(M(D_y + D_z))$.

- For fixed g and F, optimization of the objective function decouples over each $z_n \in \mathbb{R}^{D_z}$.
- We have N independent nonlinear minimizations each on D_z parameters, of the form

 $\min_{\mathbf{z}\in\mathbb{R}^{D_{\mathbf{z}}}} E(\mathbf{z}) = \|\mathbf{y} - \mathbf{g}(\mathbf{z})\|^2 + \|\mathbf{z} - \mathbf{F}(\mathbf{x})\|^2.$

- If g is linear, then z can be solved in closed form by solving a linear system of size D_z .
- If g is nonlinear, we use Gauss-Newton method with line search.
- Cost over all Z: $\mathcal{O}(ND_z^2D_y)$, linear in training set size.
- The distribution of the coordinates Z changes dramatically in the first few iterations, while the error decreases quickly, but after that Z changes little.

Initialization for \mathbf{Z}

- \bullet Unsupervised dimensionality reduction on ${\bf X}$ only.
- Supervised dimension reduction: Reduced Rank Regression, Kernel Slice Inverse Regression, Kernel Dimension Reduction, etc.
- \bullet Spectral methods run on (\mathbf{X},\mathbf{Y}) jointly.

Validation of hyper-parameters

- \bullet Parameters for function ${\bf F}$ and ${\bf g}$ (#RBFs, Gaussian Kernel width).
- Regularization coefficients λ_g and λ_F .
- Dimensionality of z.

They can be determined through evaluating performance of $\mathbf{g}\circ \mathbf{F}$ on a validation set.

O Advantages of low-dimensional regression

- \bullet We jointly optimize over both mappings ${\bf F}$ and ${\bf g},$ unlike one-shot methods.
- Our optimization is much more efficient than using a deep network with nested mappings (pretty good model pretty fast).
- \bullet The low-dimensional regressor has fewer parameters when $D_{\mathbf{z}}$ is small or #RBFs is small.
- \bullet The smooth functions ${\bf F}$ and ${\bf g}$ impose regularization on the regressor and may result in a better generalization performance.

Experimental evaluation

- \bullet We use $g\circ F$ as our regression function for testing, which is the natural "out-of-sample" extension for above optimization.
- Criteria: test error, and the quality of dimension reduction.
- Early stopping for training, usually happens within 100 iterations.

	KPCA	KSIR (60 slices)
Rotated MNIST digits '7'		

RBFs F

 $\mathsf{RBFs}\ \mathrm{g}$

 $\wedge \times$

Notated minior digits

Input: images of digit 7, each has 60 different rotated versions. Output: skeleton version of the digit.

test	Ground Truth	lin G	$RBFs\ \mathrm{G}$	$GP\ \mathrm{G}$	RBFs F lin g	${\sf RBFs}~{ m F}$	test	Ground Truth	lin G	RBFs G	$GP\mathrm{G}$	RBFs F lin g
γ		•••• •••	•••• •••	••••	••••							4
		*** ***	T artere	T.t.	4	the second secon			••••			
		••••	*****						Jan Jana	J. J		J
								\sim	\sim	\sim	\sim	\sim
	••••					••••		$\mathbf{\mathbf{x}}$	لملر		X	X

Sample outputs of different algorithms.

Method	SSE
direct linear	51710
direct RBFs ($1200, 10^{-2}$)	32 495
direct RBFs ($2000, 10^{-2}$)	29525
Gaussian process	29208
KPCA (3) + RBFs (2000, 1)	49782
KSIR (60, 26) + RBFs (20, 10 ⁻⁵)	39421
F RBFs ($2000, 10^{-2}$) + g linear (10^{-3})	29612
F RBFs ($1200, 10^{-2}$)+g RBFs ($75, 10^{-2}$)	27 346

Sum of squared errors (test set), with optimal parameters coded as RBFs (M, λ) , KPCA (Gaussian kernel width), KSIR (number of slices, Gaussian kernel width). Number of iterations for our method: 16 (linear g), 7 (RBFs g).

2 dimensional embeddings obtained by different algorithms.

Serpentine robot forward kinematics

Forward kinematics mapping goes from 12 to 24 dimen-

sions through 4 dimensions.

	RMSE	
	direct regression, linear (0)	2.2827
	direct regression, RBF ($2000, 10^{-6}$)	0.3356
	direct regression, Gaussian process	0.7082
	KPCA (2.5) + RBF (400, 10 ⁻¹⁰)	3.7455
	KSIR (400, 100) + RBF (1000, 10 ⁻⁸)	3.5533
	F RBF (2000, 10 ⁻⁶)+ g RBF (100, 10 ⁻⁹	0.1006

Test error obtained by different algorithms.

Correspondence between our 4 dimensional auxiliary coordinates Z and the ideal one that generates data.

Validation of D_z by our algorithm.

Comparison of run time of our approach and optimizing the nested objective function.