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1 Abstract
When doing regression with inputs and outputs that are
high-dimensional, it often makes sense to reduce the di-
mensionality of the inputs before mapping to the outputs.
We propose a method where both the dimensionality re-
duction and the regression mapping can be nonlinear
and are estimated jointly. Our key idea is to define an ob-
jective function where the low-dimensional coordinates
are free parameters, in addition to the dimensionality re-
duction and the regression mapping. This has the ef-
fect of decoupling many groups of parameters from each
other, affording a more effective optimization, and to use
a good initialization from other methods.
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2 Low-dimensional regression using auxiliary coordinates
Given a training set XDx×N and YDy×N , instead of directly op-
timizing

E1(F,g) =
N∑

n=1

‖yn − g(F(xn))‖
2 + λgR(g) + λFR(F)

with λF, λg ≥ 0 for dimension reduction mapping F and re-
gression mapping g, we let the low-dimensional coordinates
ZDz×N = (z1, . . . , zN) be independent, auxiliary parameters to
be optimized over, and unfold the squared error into two terms
that decouple given Z:

E2(F, g,Z) =
∑N

n=1 ‖yn − g(zn)‖
2 + λgR(g)

+
∑N

n=1 ‖zn − F(xn)‖
2 + λFR(F).

Now, every squared error involves only a shallow mapping,
compared to deeper nesting in the function g ◦F that leads to
ill-conditioning. We apply the following alternating optimiza-
tion procedure to solve the problem.

Given XDx×N ,YDy×N , and intialization ZDz×N

repeat
1. Optimize over g : min

g

∑N
n=1 ‖yn − g(zn)‖

2 + λgRg(g)

2. Optimize over F : min
F

∑N
n=1 ‖zn − F(xn)‖

2 + λFRF(F)

3. Optimize over Z :
min
Z

∑N
n=1 ‖yn − g(zn)‖

2 +
∑N

n=1 ‖zn − F(xn)‖
2

until stop

3 Optimization over F and g

We use shallower functions–linear or RBFs–for F and g.

•Linear g: a direct regression that acts on a lower input
dimension Dz, reduces to least squares problem.

•RBFs g: g(z) = WΦ(z) with M ≤ N Gaussian RBFs
φm(z) = e(−

‖(z−µm)‖2)
2σ2 , and R(g) = ‖W‖2 is a quadratic

regularizer on the weights.

– Centers µm are chosen by k-means on Z (once every
few iterations, initialized at previous centers)

– Weights W have a unique solution given by a linear
system.

– Time complexity: O(NM(M +Dz)), linear in training
set size.

– Space complexity: O(M(Dy +Dz)).

4 Optimization over Z

•For fixed g and F, optimization of the objective function
decouples over each zn ∈ R

Dz.

•We have N independent nonlinear minimizations each
on Dz parameters, of the form

minz∈RDz E(z) = ‖y − g(z)‖2 + ‖z− F(x)‖2.

• If g is linear, then z can be solved in closed form by
solving a linear system of size Dz.

• If g is nonlinear, we use Gauss-Newton method with line
search.

•Cost over all Z: O(ND2
zDy), linear in training set size.

•The distribution of the coordinates Z changes dramati-
cally in the first few iterations, while the error decreases
quickly, but after that Z changes little.

5 Initialization and Validation
Initialization for Z

•Unsupervised dimensionality reduction on X only.

•Supervised dimension reduction: Reduced Rank Regression,
Kernel Slice Inverse Regression, Kernel Dimension Reduction,
etc.

•Spectral methods run on (X,Y) jointly.

Validation of hyper-parameters

•Parameters for function F and g (#RBFs, Gaussian Kernel width).

•Regularization coefficients λg and λF.

•Dimensionality of z.

They can be determined through evaluating performance of g ◦F
on a validation set.

6 Advantages of low-dimensional regression

•We jointly optimize over both mappings F and g, unlike one-shot methods.

•Our optimization is much more efficient than using a deep network with nested mappings
(pretty good model pretty fast).

•The low-dimensional regressor has fewer parameters when Dz is small or #RBFs is small.

•The smooth functions F and g impose regularization on the regressor and may result in a
better generalization performance.

7 Experimental evaluation

•We use g ◦ F as our regression function for testing, which is the natural “out-of-sample”
extension for above optimization.

•Criteria: test error, and the quality of dimension reduction.

•Early stopping for training, usually happens within 100 iterations.

Rotated MNIST digits ‘7’
Input: images of digit 7, each has 60 different rotated versions.
Output: skeleton version of the digit.
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Sample outputs of different algorithms.

Method SSE
direct linear 51 710

direct RBFs (1200, 10−2) 32 495
direct RBFs (2000, 10−2) 29 525

Gaussian process 29 208
KPCA (3) + RBFs (2000, 1) 49 782

KSIR (60, 26) + RBFs (20, 10−5) 39 421
F RBFs (2000, 10−2) + g linear (10−3) 29 612
F RBFs (1200, 10−2)+g RBFs (75, 10−2) 27 346

� Sum of squared errors (test set), with
optimal parameters coded as RBFs (M,λ),
KPCA (Gaussian kernel width), KSIR (num-
ber of slices, Gaussian kernel width). Num-
ber of iterations for our method: 16 (linear g),
7 (RBFs g).

KPCA KSIR (60 slices)
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2 dimensional embeddings obtained by different algorithms.

Serpentine robot forward kinematics
Forward kinematics mapping goes from 12 to 24 dimen-
sions through 4 dimensions.
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Method RMSE
direct regression, linear (0) 2.2827

direct regression, RBF (2000, 10−6) 0.3356
direct regression, Gaussian process 0.7082

KPCA (2.5) + RBF (400, 10−10) 3.7455
KSIR (400, 100) + RBF (1000, 10−8) 3.5533
F RBF (2000, 10−6)+g RBF (100, 10−9 0.1006

Test error obtained by different algorithms.
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Correspondence between our 4 dimensional auxiliary coordinates Z and the ideal one that generates data.
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Validation of Dz by our algorithm.
Comparison of run time of our approach and optimiz-
ing the nested objective function.


