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Multi-view feature learning

Training data consists of samples of a D-dimensional random vector
that has some natural split into two sub-vectors:

[

x

y

]

, x ∈ R
Dx, y ∈ R

Dy , Dx +Dy = D.∗

∗We assume feature dimensions have zero mean for notational simplicity.

Natural views: audio+video, audio+articulation, text in different languages ...

Abstract/synthetic: word+context words, different parts of a parse tree ...

Task: extracting useful features/subspaces in the presence of
multiple views which contain complementary information.

Motivations: noise suppression, soft supervision, cross-view
retrieval/generation ...



Canonical correlation analysis (CCA) [Hotelling 1936]

Given: data set of N paired vectors {(x1,y1), . . . , (xN ,yN )},
which are samples of random vectors x ∈ R

Dx , y ∈ R
Dy .

Find: direction vectors (u,v) that maximize the correlation

(u,v) = argmax
u,v

corr(u⊤x,v⊤y)

= argmax
u,v

u⊤Σxyv
√

(u⊤Σxxu)(v⊤Σyyv)

where Σxy =
∑N

i=1 xiy
⊤
i , Σxx =

∑N
i=1 xix

⊤
i , Σyy =

∑N
i=1 yiy

⊤
i .

Subsequent direction vectors maximize the same correlation,
subject to being uncorrelated with previous directions.



Canonical correlation analysis (CCA)

Extracting L-dimensional projections U ∈ R
Dx×L, V ∈ R

Dy×L

max
U,V

tr
(

U⊤ΣxyV
)

s.t. U⊤ΣxxU = V⊤ΣyyV = I.

Closed-form solution obtained by SVD of Σ̃xy = Σ
−1/2
xx ΣxyΣ

−1/2
yy .
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Alternative formulation

Let X = [x1, . . . ,xN ], Y = [y1, . . . ,yN ]. Then CCA equivalently solves

min
U,V

1

2

∥

∥

∥
U⊤X−V⊤Y

∥

∥

∥

2

F
=

1

2

N
∑

i=1

∥

∥

∥
U⊤xi −V⊤yi

∥

∥

∥

2

s.t. (U⊤X)(X⊤U) = (V⊤Y)(Y⊤V) = I.
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s.t. (U⊤X)(X⊤U) = (V⊤Y)(Y⊤V) = I.

But CCA can only find linear subspaces ...



Deep CCA [Andrew, Arora, Bilmes and Livescu 2013]

Transform the input of each view nonlinearly with deep neural
networks (DNNs), such that the canonical correlation (measured
by CCA) between the outputs is maximized.

replacemen

View 1

V
ie
w

2

U V

f g

x y

Final projection: f̃(x) = U⊤f(x), g̃(y) = V⊤g(y).

A parametric nonlinear extension of CCA → better scaling to
large data than the kernel extension of CCA [Lai & Fyfe 2000,

Akaho 2001, Melzer et al. 2001, Bach & Jordan 2002].



Deep CCA: objective and gradient

Objective over DNN weights (Wf ,Wg) and CCA projections (U,V)

max
Wf ,Wg,U,V

tr
(

U⊤FG⊤V
)

s.t. U⊤FF⊤U = V⊤GG⊤V = I,

where F = f(X) = [f(x1), . . . , f(xN )] and G = g(Y) = [g(y1), . . . ,g(yN )].
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Gradient computation [Andrew, Arora, Bilmes and Livescu 2013]

Let Σfg = FG⊤, Σff = FF⊤, Σgg = GG⊤, and Σ̃fg = Σ
−1/2
ff ΣfgΣ

−1/2
gg =

ŨΛṼ⊤ be its SVD. Then

∂
∑

l σl(Σ̃fg)

∂F
= 2∆ffF+∆fgG,

where ∆ff = −
1

2
Σ

−1/2
ff ŨΛŨ⊤Σ

−1/2
ff , ∆fg = Σ

−1/2
ff ŨṼ⊤Σ−1/2

gg .

Gradients with respect to (Wf ,Wg) are computed via back-propagation.



Stochastic optimization of deep CCA

max
Wf ,Wg,U,V

tr
(

U⊤FG⊤V
)

s.t. U⊤FF⊤U = V⊤GG⊤V = I,

Objective is not expectation of loss over samples due to the
constraints. More difficult than PCA/PLS [Arora, Cotter, Livescu and

Srebro 2012].

Exact gradient computation requires feeding-forward all data
through the DNNs.

Back-propagation requires large memory for large DNNs, can not
be run on GPUs.
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Objective is not expectation of loss over samples due to the
constraints. More difficult than PCA/PLS [Arora, Cotter, Livescu and

Srebro 2012].

Exact gradient computation requires feeding-forward all data
through the DNNs.

Back-propagation requires large memory for large DNNs, can not
be run on GPUs.

Question: can we do stochastic optimization for deep CCA?



Approach I : Large minibatches (STOL)

Use a minibatch of n samples to estimate Σ̂
(n)
fg = Σ̂

−1/2
ff Σ̂fgΣ̂

−1/2
gg

and the gradient. Works well for n large enough [Wang, Arora,

Livescu and Bilmes 2015].
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Does not work for small n because E

[

Σ̂
(n)
fg

]

6= Σ̃fg, due to the

nonlinearities in computing Σ̃fg (matrix inversion, multiplication).

Therefore, the gradient estimated on a minibatch is not unbiased
estimate of the true gradient.



Alternating least squares for CCA

Alternating least squares [Golub & Zha 1995]: run orthogonal iterations
to obtain singular vectors (Ũ, Ṽ) of Σ̃fg.

Input: Data matrices X, Y. Initial Ũ0 ∈ R
dx×L s.t. Ũ⊤

0
Ũ0 = I.

A0 ← Ũ⊤
0
Σ

−
1

2

ff X

for t = 1, 2, . . . , T do

Bt ← At−1Y
⊤
(

YY⊤
)−1

Y % Least squares regression Y → At−1

Bt ←
(

BtB
⊤
t

)−
1

2 Bt % Orthogonalize Bt

At ← BtX
⊤
(

XX⊤
)−1

X % Least squares regression X → Bt

At ←
(

AtA
⊤
t

)−
1

2 At % Orthogonalize At

end for

Output: AT → Ũ⊤X, BT → Ṽ⊤Y are CCA projections as T →∞.

This procedure converges linearly under mild conditions.

[Lu & Foster 2014] used a similar procedure for linear CCA with high
dimensional sparse inputs.



Approach II : Nolinear orthogonal iterations (NOI)

Choose a minibatch b of n samples at each step, and
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Adaptively estimate covariance matrix for orthogonalization

Σg̃g̃ ← ρΣg̃g̃ + (1− ρ)
N

n

∑

i∈b

g̃(yi)g̃(yi)
⊤

Time constant ρ ∈ [0, 1). Update form is similar to that of
momentum and widely used in subspace tracking.
Saving Σg̃g̃ ∈ R

L×L costs little memory as L is usually small.
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Replace exact linear regression with nonlinear least squares and
take a gradient descent step on the minibatch

min
W

f̃

1

n

∑

i∈b

∥

∥

∥

∥

f̃(xi)−Σ
−

1

2

g̃g̃ g̃(yi)

∥

∥

∥

∥

2

Ordinary DNN regression problem. No involved gradient.
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Each step feeds-forward and back-propagates only n samples!
[Ma, Lu and Foster 2015] proposed a similar algorithm AppGrad for CCA
with ρ ≡ 0.



Experiments: Datasets

Compare three optimizers on two real-world datasets

Limited-memory BFGS run with full-batch gradient
Stochastic optimization with large minibatches (STOL)
Nonlinear Orthogonal Iterations (NOI)

Hyper-parameters (time constant ρ, minibatch size n, learning rate
η) are tuned by grid search.

STOL/NOI run for a maximum number of 50 epochs.

Statistics of two real-world datasets.

dataset training/tuning/test L DNN architectures

JW11 30K/11K/9K 112
273-1800-1800-112
112-1200-1200-112

MNIST 50K/10K/10K 50
392-800-800-50
392-800-800-50



Experiments: Effect of minibatch size n

JW11 MNIST
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NOI works well with various small minibatch sizes.

NOI gives steep improvement in the first few passes over the data.



Experiments: Effect of time constant ρ

JW11 MNIST
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NOI works well for a wide range of ρ.

Beneficial to use large ρ to incorporate the previous estimate of
covariance for small n.



Experiments: Pure stochastic optimization
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AppGrad [Ma, Lu and Foster 2015] used n ∼ O(L) with ρ = 0.

Pure stochastic optimization n = 1 works well with large ρ.
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We have developed NOI for training deep CCA with small
minibatches, alleviating the memory cost.

NOI performs competitively to previous batch and stochastic
optimizers.
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Conclusions

We have developed NOI for training deep CCA with small
minibatches, alleviating the memory cost.

NOI performs competitively to previous batch and stochastic
optimizers.

Future directions:

Gradients of nonlinear least squares problems in NOI are not
unbiased estimate of gradient of deep CCA objective.
Need to better understand the convergence properties of NOI.

Thank you!
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