MANIFOLD BLURRING MEAN SHIFT ALGORITHMS FOR MANIFOLD DENOISING
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dimensionality reduction; and for nearest-neighbor classification of MNIST digits, with consistent and Gy (xp, Xm) o exp ( — 5(||xn — xm|| /o)?). This step produces denoising. 71l S —5 600
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e k. the number of nearest neighbors that estimates the local tangent space. It typically grows sublinearly with V. st UTU = T with Upw 1. W1, Whose solution is p = B {x} and U = the leading L eigenvec- : = ? 00 _23000
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: with Isomap and LTSA for different iterations of MBMSk denmsmg (10—nearest- nelghbor graph,
with full graph or k-nn graph: given X ., v Denoising a spiral with outliers over iterations (r = 0 is the original dataset). Each box is the square [—30,30)%, | L = 2, k =30, 0 = 5). 7 = 0 Is the original Swiss roll dataset (V.= 4000 points) lifted to 100 dimensions with additive
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A practical indicator of whether we have achieved significant denoising while preventing shrinkage is the histogram with k-nn graph: given Xy n 3 H .S 4 ‘? 4 - 6 fj 6 &} {Lj
over all data points of the orthogonal variance A |, (the sum of the trailing &£ — L eigenvalues of x,,’s local covariance). repeat
Its mean decreases drastically in the first few iterations, while the mean of the histogram of the tangential variance )‘H forn=1,...,N
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Some misclassified images. Each triplet is (test,original-nearest-neighbor,denoised-nearest-neighbor) and the correspond-
Ing label is above each image, with errors underlined. After denoising there are fewer errors, some of which are arguably
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performance and only needs L and k. Preprocessing with MBMS improves the quality of algorithms for manifold until stop

learning and classification that are sensitive to noise or outliers. We expect MBMS to help in other settings with noisy return X The coniusion matrices (before denaising, after denoising, before minus after). Each row shows

data of intrinsic low dimensionality, such as density estimation, regression or semi-supervised learning.

S Y ™ ™ _ _ Left 3 plots: 5—fold cross-validation error (%) curves with a nearest-neighbor classifier on the entire MNIST training dataset (60k points,
the probability (in percentage) of recognizing each digit to all digits. On the left two matrices, white  h;5 each fold trains on 48k and tests on 12k) using MBMSk: we selected L = 9, k = 140, o = 695 as final values. Right plot: denoising

means zero error (perfect classification) and red means positive error. On the right matrix, white 54 ¢jassification of the MNIST test set (10k points), by training on the entire training set (rightmost value) and also on smaller subsets
Work supported by NSF CAREER award 115-0754089. means no change (same error before and after denoising), green means denoising reduced the o it (errorbars over 10 random subsets). Algorithms (L, %, o), all using a k-nn graph: MBMSK (9, 140, 695), LTP (9, 140, 00), GBMS

error, and red means denoising increased the error. (0,140, 600), and PCA (L = 41).




