Manifold Blurring Mean-Shift Algorithms
for Manifold Learning

o3

Weiran Wang




Introduction to Manifold Learning

< Machine learning algorithms often take as starting point a
high-dimensional dataset, and then learn a model that is useful
to infer information from this data, or from unseen data.

% Manifold Learning / Dimensionality Reduction (DR) algorithms
deal with data set that has manifold structure.

4+ Variations within the data set can be modeled by a few
latent variables.

4+ Small variation in (low dimensional) latent space leads to
small variation in (high dimensional) data space.

4+ Mapping from latent space to data space can be highly
nonlinear.
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Problem setting of DR algorithms

Suppose input data points xi, ..., xy are sampled from RP.
A DR algorithm provides the corresponding low dimensional

representations yy,...,yxy € R¥*(L <« D), and may give
y = F(x), x e RP
x =f(y), y € R
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Problem with the existence of noise

DR algorithms do not work well when the input data set contains
noise and outliers.

% Spectral methods (Isomap, LLE, etc) are quite sensitive to
noise, especially the step of building neighborhood graph.

% Latent Variable Models (e.g. mixtures of probabilistic PCASs) try
to learn a parametric model of the manifold and noise by
maximum likelihood, but are prone to local optima.

Thus it is desirable to develop an algorithm that denoise the data
set, and acts as a preprocessing step for other purposes
(unsupervised learning, supervised learning, etc).
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Related Work: Machine Learning Algorithms

Given some point p € R”, after running DR algorithm, a denoised version
q € RP can be obtained in two ways:

1. First project p to the latent space, and then project its latent representation
back to data space, i.e., q = f(F(p)). Autoencoder, Latent Variable Models,
Dimensionality Reduction by Unsupervised Regression, ...

2. Project p onto the closest point on manifold by minimizing min ||p — f(y)]|.
Principal Curves, Regularized Principal Manifolds, Gaussian Process
Latent Variable Models, ...

However, it is more desirable to denoise data set before DR.

q=F(f(p)

Latent Space Data Space
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Related Work (cont.)

< Manifold Denoising in Machine Learning/Computer Vision
4+ Fukunaga & Hostetler, 1975
4+ Park et al, 2004
4+ Unnikrishnan & Hebert, 2007
4+ Hein & Maier, 2007
% Surface Smoothing in Computer Graphics
4+ Taubin et al, 1996
4+ Desbrun et al, 1999
4+ Levin, 2003
4+ Lange et al, 2005
+ Pauly et al, 2006

% Curve and Surface Reconstruction in Computational Geometry
4+ Dey, 2007

_pG



lterative methods combining two basic steps in each iterate:

predictor averaging step computes one step of GBMS update,
responsible for denoising

corrector projective step computes local PCA and removes the
tangential component of the motion, responsible for preserving
manifold structure
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Mean-Shift algorithm (Fukunaga et al 1975, Cheng 1995)

% Kernel density estimate (constant weights, isotropic Gaussian
Kernel with width o):

< Mode seeking: find stationary points 22> — ( and solve for x,
obtain a fixed point iteration scheme x(™*1) = f(x(7)).

< The motion f(x) — x is called the Mean-Shift vector.
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Gaussian Mean-Shift algorithm (Carreira-Perpifian, 2007)

% Gaussian Mean-Shift (GMS):

N

Go(x — %) .
ZZN ¢

i=1 Zuj=1 Go(x — x;)

% User parameter: o

% GMS clustering:
4 each data point is assigned to the mode it converges to
4 nonparametric, deterministic

% GMS is an Expectation Maximization algorithm (linear
convergence rate in general).
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Blurring Mean-Shift algorithm (Carreira-Perpifian, 2006)

% In each Mean-Shift iteration, every data point actually moves to
a weighted mean of the previous data set, and thus the whole
data set gets updated.

% Robust stopping criteria.
% Convergence rate is cubic for Gaussian kernel.
% Shows denoising effect.
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Manifold Blurring Mean-Shift

% Local clustering with Gaussian blurring mean shift (GBMS): the
blurring mean-shift update with unit step size moves data
points to the kernel average of their neighbors:

Go(Xn, Xim)
Xy X
mn m;ﬂ Zm/GNn GO’ (Xn7 Xm/) m

% Local tangent space estimation with PCA: local PCA gives the
best linear L-dimensional manifold in terms of reconstruction
error (i.e., orthogonal projection on the manifold):

mln Z me (UU" (x,, — ) —I—,u)H2
mEN

For simplicity, we use the same neighborhood for the GBMS step and
PCA step (N,, = A, ) in the experiments.
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Variations of MBMS

MBMST (full graph) and MBMSK (k-nn graph)

MBMS (L, k, o) with full or k-nn graph: given Xy« p
repeat
forn=1,... N
N, < {1,..., N} (full graph) or
k nearest neighbors of x,, (k-nn graph)

8Xn — —X,, + Z’mEN = EGN o (Xn, )((:;)X /)Xm meztne;hlft
X,, < k nearest neighbors of x,,
([,Ln, Un) < PCAL (Xn) estimate L-dim tangent space at x,
aXn < (I — UnUZ)aXn subtract parallel motion
end
X — X —+ 8X move points
until stop
return X

User parameters: L, K, o.
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Variations of MBMS (cont.)

Local Tangent Projection (LTP): MBMSK with o = oo

LTP (L, k) with k-nn graph: given Xy« p
repeat
forn=1,... N
X,, — k nearest neighbors of x,,

(”’n? Un) — PCAL (Xn) estimate L-dim tangent space at xp,
8Xn — (I — UnUz;)([,Ln — Xn) project point onto tangent space
end
X — X —+ 8X move points
until stop
return X

User parameters: L, K.
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Variations of MBMS (cont.)

GBMS: L =0

GBMS (%, o) with full or k-nn graph: given Xy« p
repeat
forn=1,... N
N, < {1,..., N} (full graph) or
k nearest neighbors of x,, (k-nn graph)

aXn — —X,, + szN = EGN o (Xn, )((:;)X /)Xm me:;—;hlft
end
X — X —+ 8X move points
until stop
return X

User parameters: K, o.



Complexity & Stopping Criteria

Complexity of MBMS:

< When using full graph, complexity of each iteration is
O(N*D + N(D + k) min(D, k)#). The first term is for finding
nearest neighbors and for the mean-shift step, and the second
is for local PCAs.

% If one uses the k-nn graph and does not update the neighbors
at each iteration, the cost per iteration becomes linear on V.

Stopping criteria:

< A practical indicator is the histogram over all data points of the
orthogonal variance A\, (the sum of the trailing D — L
eigenvalues of x,,'s local covariance).
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Denoising a noisy spiral with outliers over iterations (K = 10 for local PCA).
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Denoising a complex shape with nonuniform density and noise with MBMSf
using the usual affinity (left subplots, a = 0) and the diffusion-map affinity
normalization (right subplots, o = 1):

Gg(Xi,Xj) .
(D Golxiy x1))*(D_ Go(xar, %))

Gg(xiaxj) —
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ﬂeqUency

ﬂequency

AL/A

Dimensionality reduction with Isomap and LTSA for different iterations of MBMSK
denoising.
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There are a wide range for each parameter in which MBMS works
well.

11X — trueX; ||

1 N
ND Jaim

N D

Behaviour of LTP for different parameters K and L. Error decreases for all
parameter choices.
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Experiment: preprocessing for classifying MNIST
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Experiment: preprocessing for classifying MNIST
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Sample pairs of (original,denoised) images from the training set.
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Experiment: preprocessing for classifying MNIST
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Some misclassified images. Each triplet is (test, original-nearest-neighbor,
denoised-nearest-neighbor) and the corresponding label is above each image,
with errors underlined.
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Top 3 plots: 5—fold cross-validation error (%)
curves with a nearest-neighbor classifier on
training set using MBMSk; L = 9, £ = 140,
o = 695 is selected as final values.

Bottom left plot: denoising and classification
of the MNIST test set, by training on the en-
tire training set and also on smaller subsets of
it. Algorithms (L, k, o), MBMSk (9, 140, 695),
LTP (9,140,), GBMS (0,140,600), and
PCA (L = 41).
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Theorems of MBMS

R/
0’0

The MBMS algorithms are covariant under rigid motions.

% If the GBMS step uses a k-nearest-neighbour graph and bandwidth

L X 4

o > 0, and the local PCA step uses k' > k neighbours and a
dimension L > k, then input data set remains unchanged under
MBMS iterations.

Let x ~ NV (u, ) with ¥ = UAU’. Then the sequence of random
vectors resulting from successively applying the MBMS update with a
full graph, bandwidth o > 0, K = oo and assuming a manifold of
dimension L converges to A (u, X) where ¥ = UAUT | and \; = \y
ford=1,...,Land \y =0ford= L +1,..., D, with cubic order
independently for each direction. That is, MBMS removes the
variance along the D — L minor axes.
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Conclusion

¢

> Very effective at denoising in a handful of iterations

L)

R/
0’0

Able to handle extreme outliers
Nonparametric and deterministic
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&

» Causing very small shrinkage or distortion

@,

&

L)

L)

» Possible applications in other area: denoising 3D point sets
with 1D or 2D structure, obtained by laser scanning in Robotics
and Computer Graphics and Computer Aided Design
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Thank You!
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