Mean-shift Algorithms for Manifold Denoising, Matrix Completion and Clustering

Weiran Wang

wwang5@ucmerced.edu

EECS Department, UC Merced

Manifold Learning

High dimensional dataset with manifold structure.

- Variations within the dataset can be modeled by a few latent variables.
- Small variation in latent space leads to small variation in data space.
- Local neighborhood of each data point can be approximated by a tangent space.

Small variations in translation, rotation, scaling and different writing styles change the image appearance slightly, and do not change the identity.

Mean-shift update

Given a set of data points $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_N] \subset \mathbb{R}^D$.

Maximizes kernel density estimate (mode finding)

$$p(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N} G\left(\left\| \frac{\mathbf{x} - \mathbf{x}_n}{\sigma} \right\|^2 \right), \qquad \qquad G(t) = e^{-t/2}.$$

Applies the mean-shift update (fixed point iteration) iteratively

$$p(n|\mathbf{x}) = \frac{G\left(\left\|\frac{\mathbf{x}-\mathbf{x}_n}{\sigma}\right\|^2\right)}{\sum_{n'=1}^N G\left(\left\|\frac{\mathbf{x}-\mathbf{x}_n}{\sigma}\right\|^2\right)}, \qquad \mathbf{x} \leftarrow \mathbf{f}(\mathbf{x}) = \sum_{n=1}^N p(n|\mathbf{x})\mathbf{x}_n$$

Gradient ascent. Linear convergence rate.

Mean-shift update

Paths followed by GMS for various starting points.

Mean-shift clustering

- * Gaussian Mean-shift (GMS): points that converge to the same mode/centroid define a cluster. Number of clusters depends on σ .
- Gaussian Burring Mean-shift (GBMS): update dataset after each mean-shift step, has much faster (cubic) convergence rate and strong (isotropic) denoising effect.

- Manifold Blurring Mean-shift (MBMS) algorithm for manifold denoising
- MBMS for matrix completion
- K-modes algorithm for clustering
- Laplacian K-modes algorithm for clustering

Motivation

We develop an algorithm that denoises the dataset, and acts as a preprocessing step for unsupervised/supervised learning.

Manifold Blurring Mean-Shift

Predictor averaging step: local clustering with GBMS, moves data point to the kernel average of its neighbors

$$\mathbf{x}_{n} \leftarrow \sum_{m \in \mathcal{N}_{n}} \frac{G(\|(\mathbf{x}_{n} - \mathbf{x}_{m})/\sigma\|^{2})}{\sum_{m' \in \mathcal{N}_{n}} G(\|(\mathbf{x}_{n} - \mathbf{x}_{m'})/\sigma\|^{2})} \mathbf{x}_{m}$$

Corrector projective step: estimate local tangent space with PCA, gives the best linear L-dimensional manifold in terms of reconstruction error (orthogonal projection on the manifold)

$$\min_{\boldsymbol{\mu},\mathbf{U}}\sum_{m\in\mathcal{N}_n'}\left\|\mathbf{x}_m-(\mathbf{U}\mathbf{U}^T(\mathbf{x}_m-\boldsymbol{\mu})+\boldsymbol{\mu})\right\|^2$$

Solution User parameters: σ , K, L.

Practicalities

- Variations of MBMS:
 - MBMSf/MBMSk: use full/knn graph in predictor step.
 - ♦ Local Tangent Projection (LTP): MBMSk with $\sigma = \infty$.
 - GBMS: L = 0, no corrector step.
- User parameters can be determined by cross-validation for supervised problem.
- Stopping criteria: orthogonal variance λ_{\perp} (sum of the trailing D L eigenvalues of \mathbf{x}_n 's local covariance) is small.

Experiment: noisy spiral

Denoising a noisy spiral with outliers over iterations.

Experiment: preprocessing for spectral methods

Experiment: preprocessing for classifying MNIST

We denoise images of each digit separately using MBMSk.

Sample pairs of (original, denoised) images from the training set.

Experiment: preprocessing for classifying MNIST

Classify test set using denoised training set and Nearest Neighbor.

Some misclassified images. Each triplet is (test, original-nearest-neighbor, denoised-nearest-neighbor) and the corresponding label is above each image, with errors highlighted.

Experiment: preprocessing for classifying MNIST

Top 3 plots: 5–fold cross-validation error (%) curves with a nearest-neighbor classifier on training set using MBMSk.

Bottom left plot: denoising and classification of the MNIST test set, by training on the entire training set and smaller subsets.

Conclusion

- Very effective at denoising in a handful of iterations.
- Nonparametric and deterministic.
- Causing very small shrinkage or distortion.
- Able to handle large noise and extreme outliers.

- Manifold Blurring Mean-shift (MBMS) algorithm for manifold denoising
- MBMS for matrix completion
- K-modes algorithm for clustering
- Laplacian K-modes algorithm for clustering

Problem Setting

- Given a set of data points $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_N] \subset \mathbb{R}^D$, where each point may contain missing entries.
 - ◆ $\mathbf{X}^{\mathcal{M}}$ and $\mathbf{X}^{\mathcal{P}}$ indicate the selection of missing or present entries \mathbf{X} , where $\mathcal{P} \subset \mathcal{U}$, $\mathcal{M} = \mathcal{U} \mathcal{P}$ and $\mathcal{U} = \{(d, n) : d = 1, ..., D, n = 1, ..., N\}$.

• Indices \mathcal{P} and values $\overline{\mathbf{X}}^{\mathcal{P}}$ of the present entries are the data of the problem.

An ill-posed problem. Very important in industrial applications.

5	1	?	2	3	?	?
?	2	?	4	1	?	1
?	?	?	5	?	3	2
4	?	?	1	2	?	4
2	3	5	?	?	?	?
?	4	2	?	5	1	3
?	?	3	?	1	2	2

Motivation

Popular approaches for matrix completion

- ♦ Low-rank: $\min_{\mathbf{X}} \|\mathbf{X}\|_*$ s.t. $\mathbf{X}_{\mathcal{P}} = \overline{\mathbf{X}}_{\mathcal{P}}$
- Matrix factorization (probabilistic and nonlinear extensions): $\min_{\mathbf{L},\mathbf{R}} \sum_{(i,j)\in\mathcal{P}} (\mathbf{X}_{ij} - \mathbf{L}_i \mathbf{R}_j^T)^2 + \lambda (\|\mathbf{L}\|_{\mathsf{Fro}}^2 + \|\mathbf{R}\|_{\mathsf{Fro}}^2).$
- Globally low-rank assumption is too restrictive for nonlinear manifold. We use locally low-rank assumption instead.

MBMS for matrix completion

GBMS maximizes the following objective function by taking parallel steps of the mean-shift form for each point:

$$E(\mathbf{X}) = \frac{1}{N} \sum_{n,m=1}^{N} G\left(\left\| \frac{\mathbf{x}_n - \mathbf{x}_m}{\sigma} \right\|^2 \right)$$

- ♦ Apply GBMS to matrix completion by adding the constraints given by the present values $X_{\mathcal{P}} = \overline{X}_{\mathcal{P}}$.
- $\label{eq:constraint} \& We iteratively carry out a GBMS denoising step on \mathbf{X} and refill $\mathbf{X}_{\mathcal{P}}$ to the present values; equivalent to a gradient projection algorithm. \\$
- MBMS can be applied instead to prevent shrinkage.
- Hyperparameters and number of iterations can be cross-validated on held out present entries.

Synthetic example

Denoising effect of different algorithms on 100D swissroll.

Experiment: Mocap

Sample reconstructions when 85% percent data is missing. *Row 1*: initialization. *Row 2*: init+GBMS. *Row 3*: init+MBMS. Color indicates different initialization: original data, nIPCA, SVP, Gaussian.

Experiment: Mocap

% of missing data

Results on Mocap dataset. Mean of errors (RSSE) of 5 runs obtained by different algorithms for varying percentage of missing values.

Experiment: MNIST digit 7

 $6\,265$ greyscale images of size 28×28 , 50% entries missing.

Methods	RSSE	mean	stdev
nIPCA	7.77	26.1	42.6
SVP	6.99	21.8	39.3
+ GBMS (400,140,0,1)	6.54	18.8	37.7
+ MBMS (500,140,9,5)	6.03	17.0	34.9

Reconstruction errors of different algorithms at their optimal parameters.

Experiment: MNIST digit 7

Selected reconstructions of MNIST block-occluded digits '7'.

Conclusion

- We propose new denoising paradigm for matrix completion, which generalizes the commonly used assumption of low rank.
- MBMS-based algorithm bridges the gap between pure denoising (GBMS) and local low rank.
- Denoising works due to the fundamental fact that a missing value can be predicted by averaging nearby present values, a common approach in recommender systems.

- Manifold Blurring Mean-shift (MBMS) algorithm for manifold denoising
- MBMS for matrix completion
- K-modes algorithm for clustering
- Laplacian K-modes algorithm for clustering

Motivation

- \clubsuit Given a dataset $\mathbf{x}_1, \ldots, \mathbf{x}_N \in \mathbb{R}^D$, centroids-based clustering
 - partition data points into groups,
 - estimate a representative $\mathbf{c}_k \in \mathbb{R}^D$ of each cluster k.
- \clubsuit Popular algorithms of this type: *K*-means, mean-shift, *K*-medoids.
- No K-modes algorithm exists. Mode \Rightarrow high density \Rightarrow representativeness.

K-means algorithm

Optimizes over assignment ${\bf Z}$ and centroids ${\bf C}$

$$\min_{\mathbf{Z},\mathbf{C}} \quad \sum_{k=1}^{K} \sum_{n=1}^{N} z_{nk} \|\mathbf{x}_{n} - \mathbf{c}_{k}\|^{2}$$
s.t. $z_{nk} \in \{0,1\}, \sum_{k=1}^{K} z_{nk} = 1, \text{ for } n = 1, \dots, N.$

- Efficient algorithm alternates Z-step (computes assignment) and C-step (computes mean).
- Can only produce convex clusters (Voronoi tessellation).
- Cluster mean may not be valid pattern.
- Sensitive to noise and outliers.

K-modes: objective function

$$\max_{\mathbf{Z},\mathbf{C}} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} G\left(\left\| \frac{\mathbf{x}_n - \mathbf{c}_k}{\sigma} \right\|^2 \right)$$

s.t. $z_{nk} \in \{0, 1\}, \quad \sum_{k=1}^{K} z_{nk} = 1, \text{ for } n = 1, \dots, N,$

- Sum of KDE but separately for each cluster.
- Combines the notions of assignment and density estimation.
- * Two limit cases: "K-medoids" when $\sigma \to 0$, K-means when $\sigma \to \infty$.
- Alternating optimization with guaranteed convergence
 - \diamond Z-step: decouples over points, same assignment rule as *K*-means.
 - C-step: decouples over clusters, mode-finding within each cluster.

K-modes: homotopy algorithm

Start with $\sigma = \infty$ (*K*-means), gradually decrease σ while running *J* iterations of the fixed- σ *K*-modes algorithm for each value of σ , until reach a target value σ^* .

- \clubsuit A deterministic algorithm given local optimum found by *K*-means.
- ♦ Follows an optimum path $(\mathbf{Z}(\sigma), \mathbf{C}(\sigma))$ for $\sigma \in [\sigma^*, \infty)$.
- * Homotopy techniques tends to find better optima than starting directly at the target value σ^* .
- * Representative, valid centroids are obtained for a wide range of intermediate σ values.

K-modes: homotopy algorithm

 $\sigma = \infty$

rightarrow K = 2. No value of σ results in two modes that separate the (nonconvex) moons.

Experiment: misspecification of *K*

3 natural clusters, but use K = 2.

Experiment: handwritten digit images

K-means result ($K = 10, \sigma = \infty$)

- Centroids are average of different classes.
- Neighborhoods are not homogeneous/pure.

Experiment: handwritten digit images

K-modes result ($K = 10, \sigma = 1$) $rac{10}{3}$

- Centroids are very representative.
- Neighborhoods are homogeneous/pure.

Experiment: handwritten digit images

Mean-shift result ($\sigma = 1.8369$)

In high dimensions, many modes have very few associated points.

Summary

- K-modes is more robust than K-means and GMS to outliers and parameter misspecification.
- * *K*-modes will return exactly *K* modes (one per cluster) no matter the value of σ , and whether the dataset KDE has more or fewer than *K* modes.
- Centroids are representative, valid patterns.

- Manifold Blurring Mean-shift (MBMS) algorithm for manifold denoising
- MBMS for matrix completion
- K-modes algorithm for clustering
- Laplacian K-modes algorithm for clustering

Motivation

Limitation of K-modes assignment: can only find convex clusters.

In addition to representative centroids and density estimate, we want more flexible assignment.

Laplacian smoothing

Key to separate clusters with manifold structure: nearby data points should have similar assignment.

- 1. Relax the assignment to be continuous, but constrain them to probabilities.
- 2. Build a graph on the dataset, let w_{mn} be the weight between x_m and x_n .
- 3. Add Laplacian smoothing term $\frac{\lambda}{2} \sum_{m=1}^{N} \sum_{n=1}^{N} w_{mn} \|\mathbf{z}_m \mathbf{z}_n\|^2$.

Laplacian *K*-modes: objective function

$$\min_{\mathbf{Z},\mathbf{C}} \quad \frac{\lambda}{2} \sum_{m=1}^{N} \sum_{n=1}^{N} w_{mn} \|\mathbf{z}_m - \mathbf{z}_n\|^2 - \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} G\left(\left\|\frac{\mathbf{x}_n - \mathbf{c}_k}{\sigma}\right\|^2\right)$$
s.t.
$$\sum_k z_{nk} = 1, \text{ for } n = 1, \dots, N,$$

$$z_{nk} \ge 0, \text{ for } n = 1, \dots, N, \ k = 1, \dots, K.$$

Obtain hard assignment by choosing largest assignment probability.

- Alternating optimization
 - C-step: decouples over clusters, mode-finding within each cluster.
 - ✤ Z-step: convex quadratic program, solved with gradient projection.
- Homotopy in (σ, λ) can be done similarly as in *K*-modes.

Effect of Laplacian smoothing

 \clubsuit K=5. K-modes assignment rule can never separate the spirals.

Out-of-sample problem

Optimize assignment z of new point x given Z and C from training.
 The out-of-sample problem is equivalently

$$\begin{split} \min_{\mathbf{z}} & \frac{1}{2} \| \mathbf{z} - \bar{\mathbf{z}} - \gamma \mathbf{q} \|^2, \\ \text{s.t.} & \mathbf{z}^\top \mathbf{1}_K = 1, \quad \mathbf{z} \geq 0 \end{split}$$

where \bar{z} is the weighted mean of training assignments, q is soft distance to centroids.

- Projection of $\bar{z} + \gamma q$ onto the probability simplex.
- It is a mixture of two assignment rules and a nonlinear mapping.

Out-of-sample problem

Laplacian K-modes

Out-of-sample

 $\Leftrightarrow K = 2$. Homotopy in σ for Laplacian *K*-modes.

Clustering analysis

Statistics of datasets.

dataset	size (N)	dimensionality (D)	# of classes (K)	
MNIST (digit image)	2000	768	10	
COIL20 (object image)	1440	1024	20	
TDT2 (document)	9394	36771	30	

Clustering accuracy (%).

dataset	K-means	K-modes	GMS	NCut	GNMF	DCD	Lap. K-modes
MNIST	58.2	59.2	15.9	65.5	66.2	69.4	70.5
COIL-20	66.5	67.2	27.2	79.0	75.3	71.5	81.0 (81.5)
TDT2	68.9	70.0	N/A	88.4	88.6	55.1	91.4

Normalized Mutual Information (%).

dataset	K-means	K-modes	GMS	NCut	GNMF	DCD	Lap. K-modes
MNIST	53.3	53.6	6.51	66.9	64.9	65.6	68.8
COIL-20	75.3	75.9	38.9	88.0	87.5	77.6	87.3 <mark>(88.0</mark>)
TDT2	75.3	75.8	N/A	83.7	83.7	68.6	88.8

Clustering analysis

Centroids found by different algorithms on MNIST.

Clustering analysis

Centroids found by different algorithms on COIL-20.

Summary

Comparison of different clustering algorithms.

	<i>K</i> -means	<i>K</i> -medoide	Mean-shift	Spectral	<i>K</i> -modes	Laplacian
	M-means		Mean-Shint	clustering		K-modes
Centroids	likely invalid	"valid"	"valid"	N/A	valid	valid
Nonconvex clusters	no	depends	yes	yes	no	yes
Density	no	no	yes	no	yes	yes
Assignment	hard	hard	hard	hard	hard	soft
Cost/iteration	KND	KN^2D	N^2D	$N^2 \sim N^3$	KND	KND

Conclusion

- We develop mean-shift algorithms to analyze dataset with low degrees of freedom.
- Future directions:
 - Theoretical analysis
 - Speedup training and testing
 - Incorporating more domain knowledge

Papers

- Miguel A. Carreira-Perpinan and Weiran Wang. A simple assignment model with Laplacian smoothing. Unpublished manuscript.
- Weiran Wang and Miguel A. Carreira-Perpinan. The role of dimensionality reduction in classification.
 Unpublished manuscript.
- Weiran Wang and Miguel A. Carreira-Perpinan. The Laplacian K-modes algorithm for clustering.
 Unpublished manuscript.
- Miguel A. Carreira-Perpinan and Weiran Wang. The K-modes algorithm for clustering. Unpublished manuscript, Apr. 23, 2013, arXiv:1304.6478 [cs.LG].
- Miguel A. Carreira-Perpinan and Weiran Wang. Distributed optimization of deeply nested systems. Unpublished manuscript, Dec. 24, 2012, arXiv:1212.5921 [cs.LG].
- Weiran Wang and Miguel A. Carreira-Perpinan. Nonlinear low-dimensional regression using auxiliary coordinates. AISTATS 2012.
- Weiran Wang, Miguel A. Carreira-Perpinan and Zhengdong Lu. A denoising view of matrix completion. NIPS 2011.
- Weiran Wang and Miguel A. Carreira-Perpinan. Manifold blurring mean shift algorithms for manifold denoising. CVPR 2010.

MBMS Experiment: complex shape

Denoising a complex shape with nonuniform density and noise with MBMSf using different affinity (left: normal, middle: diffusion maps, right: entropic affinity).

MBMS Experiment: Robustness to parameters choice

For swissroll dataset, there is a wide range for each parameter in which MBMS works well.

Behavior of LTP for different parameters K and L. Error decreases for all parameter choices.

K-modes Experiment: heavy tailed distribution

4 = 2. Separating mixture of a Gaussian component and a power-law component.

Laplacian *K*-modes: alternating optimization

- C-step: decouples over different cluster. For cluster k, solve $\max_{c_k} \sum_{\{n:z_{nk}>0\}} z_{nk} G(\left\|\frac{\mathbf{x}_n \mathbf{c}_k}{\sigma}\right\|^2)$ with mean-shift updates.
- Z-step: nolonger decouples over different points.

$$\begin{array}{ll} \min_{\mathbf{Z}} & \lambda \operatorname{tr} \left(\mathbf{Z}^{\top} \mathbf{L} \mathbf{Z} \right) - \operatorname{tr} \left(\mathbf{B}^{\top} \mathbf{Z} \right) \\ \text{s.t.} & \mathbf{Z} \mathbf{1}_{K} = \mathbf{1}_{N}, \\ & \mathbf{Z} \geq 0, \end{array}$$

where $\mathbf{B}_{nk} = G(\left\|\frac{\mathbf{x}_n - \mathbf{c}_k}{\sigma}\right\|^2)$, \mathbf{L} is the graph Laplacian.

- Quadratic program of NK variables.
- Interior point method is too slow for large dataset.
- We use first order method instead.

Laplacian *K*-modes: Z-step

The ISTA/FISTA framework (gradient proximal method):

• Solves $\min_{\mathbf{x}} f(\mathbf{x}) = g(\mathbf{x}) + h(\mathbf{x})$. *g* is convex and has Lipschitz continuous gradient (with constant *L*). *h* is convex and not necessarily differentiable.

 $\mathbf{*} \mathbf{x}_{n+1} = \arg\min_{\mathbf{y}} \frac{L}{2} \left\| \mathbf{y} - (\mathbf{x}_n - \frac{1}{L} \nabla g(\mathbf{x}_n)) \right\|^2 + h(\mathbf{y}).$

• Convergence: $f(\mathbf{x}_T) - f(\mathbf{x}^*) \approx \mathcal{O}(\frac{1}{T})$ for constant stepsize $\frac{1}{L}$.

• Nesterov's acceleration scheme improves the rate to $\mathcal{O}(\frac{1}{T^2})$.

- \clubsuit Apply to our Z-step:
 - g is the quadratic objective function, with $L = 2\lambda \sigma_1(\mathbf{L})$.
 - h is the indicator function of probability simplex, therefore the proximal step is computing Euclidean projection.

Accelerated gradient projection for Z-step

Input: Initial
$$\mathbf{Z}_0 \in \mathbf{R}^{N \times K}$$
, $s = \frac{1}{2\lambda \sigma_1(\mathbf{L})}$

1: Set
$$Y_1 = Z_0, t_1 = 1, k = 1$$
.

2: repeat

- 3: Compute gradient at \mathbf{Y}_k : $\mathbf{G}_k = 2\lambda \mathbf{L} \mathbf{Y}_k \mathbf{B}$,
- 4: $Z_k = \text{SimplexProj}(Y_k sG_k)$ where SimplexProj() projects each row of the argument onto the probability simplex,

5:
$$t_{k+1} = \frac{1+\sqrt{1+4t_k^2}}{2}$$

6:
$$\mathbf{Y}_{k+1} = \mathbf{Z}_k + (\frac{t_k - 1}{t_{k+1}})(\mathbf{Z}_k - \mathbf{Z}_{k-1}),$$

7:
$$k = k + 1$$
,

8: **until** convergence.

Output: \mathbf{Z}_k is the solution of \mathbf{Z} given \mathbf{C} .

Projection onto the probability simplex

Input: A vector $\mathbf{v} \in \mathbf{R}^{K}$ 1: Sort \mathbf{v} into $\mathbf{u} : u_{1} \ge u_{2} \ge \cdots \ge u_{K}$ 2: Find $\rho = \max\{1 \le j \le K : u_{j} - \frac{1}{j}(\sum_{r=1}^{j} u_{r} - 1) > 0\}$ 3: Define $\theta = \frac{1}{\rho}(\sum_{r=1}^{\rho} u_{r} - 1)$ Output: \mathbf{w} s.t. $w_{i} = \max\{v_{i} - \theta, 0\}$

Computational complexity: $\mathcal{O}(K \log K)$.

Laplacian *K*-modes: occluder segmentation

K = 5. Each pixel is connected with nearby eight pixels with edge weighted using heat kernel.