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Manifold Learning

High dimensional dataset with manifold structure.
I Variations within the dataset can be modeled by a few latent variables.
-] Small variation in latent space leads to small variation in data space.

I Local neighborhood of each data point can be approximated by a tangent space.

Manifold

Latent Observed
low-dimensional space RZ high-dimensional space R

_p.]_



An example: MNIST
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Small variations in translation, rotation, scaling and different writing styles change the

Image appearance slightly, and do not change the identity.



Mean-shift update

Given a set of data points X = [x,...,xy] C R”.
I Maximizes kernel density estimate (mode finding)

ZG(

I Applies the mean-shift update (fixed point iteration) iteratively
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| Gradient ascent. Linear convergence rate.
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Mean-shift clustering

[] . points that converge to the same
mode/centroid define a cluster. Number of clusters depends on o.

[] . update dataset after each
mean-shift step, has much faster (cubic) convergence rate and
strong (isotropic) denoising effect.
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Outline

— Manifold Blurring Mean-shift (MBMS) algorithm for

manifold denoising
— MBMS for matrix completion
— K -modes algorithm for clustering

— Laplacian K -modes algorithm for clustering



Motivation

We develop an algorithm that denoises the dataset, and acts as a
preprocessing step for unsupervised/supervised learning.




Manifold Blurring Mean-Shift

[] . local clustering with GBMS, moves data
point to the kernel average of its neighbors

) Gk = %) /0P
" 2 Soren Gllen =5 T

[] . estimate local tangent space with PCA,
gives the best linear L-dimensional manifold in terms of
reconstruction error (orthogonal projection on the manifold)
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| User parameters: o, K, L.
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Practicalities

"1 Variations of MBMS:
[] . use full/knn graph in predictor step.

[] : MBMSK with o = oo.
I GBMS: L =0, no corrector step.

I User parameters can be determined by cross-validation for
supervised problem.

I Stopping criteria: orthogonal variance A; (sum of the trailing D — L
eigenvalues of x,,’s local covariance) is small.
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GBMS

Denoising a noisy spiral with outliers over iterations. [




Dimensionality reduction with Isomap and LTSA for iterations of MBMSk. ul



Experiment: preprocessing for classifying MNIST

We denoise images of each digit separately using MBMSK.
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Sample pairs of (original,denoised) images from the training set.




Experiment: preprocessing for classifying MNIST

Classify test set using denoised training set and Nearest Neighbor.
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Some misclassified images. Each triplet is (test, original-nearest-neighbor,
denoised-nearest-neighbor) and the corresponding label is above each image, with
errors highlighted.
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5—fold cross-validation error
(%) curves with a nearest-neighbor classi-
fier on training set using MBMSK.

. denoising and classifica-
tion of the MNIST test set, by training on
the entire training set and smaller subsets.




Conclusion

I Very effective at denoising in a handful of iterations.
I Nonparametric and deterministic.

I Causing very small shrinkage or distortion.

I Able to handle large noise and extreme outliers.
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Outline

— Manifold Blurring Mean-shift (MBMS) algorithm for

manifold denoising
— MBMS for matrix completion
— K -modes algorithm for clustering

— Laplacian K -modes algorithm for clustering



Problem Setting

] Given a set of data points X = [x;,...,xy] C R”, where each point
may contain missing entries.

(1 XM and X7 indicate the selection of missing or present entries X, where
PcU M=U—-PandUU ={(d,n): d=1,...,D,n=1,...,N}.

7 Indices P and values X of the present entries are the data of the problem.

I An ill-posed problem. Very important in industrial applications.
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Popular approaches for matrix completion
Low-rank: minx | X||, st Xp=Xp
Matrix factorization (probabilistic and nonlinear extensions):
: T\2 2 2
Ny, R Z(i,j)eP(Xij — LR )" + A(|[L{[g + IR[[r0)-

Globally low-rank assumption is too restrictive for nonlinear
manifold. We use assumption instead.

data SVP
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MBMS for matrix completion

I GBMS maximizes the following objective function by taking parallel
steps of the mean-shift form for each point:
)

1
EF(X) = —
I Apply GBMS to matrix completion by adding the constraints given
by the present values Xp = X»p.

I We iteratively carry out a GBMS denoising step on X and refill Xp
to the present values; equivalent to a gradient projection algorithm.

I MBMS can be applied instead to prevent shrinkage.

I Hyperparameters and number of iterations can be cross-validated
on held out present entries.

Xn — Xm

o
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SVP + GBMS SVP + MBMS
7T=1 =2

Gaussian Gaussian + GBMS Gaussian + MBMS
7T=10 T=1 T = 25

Denoising effect of different algorithms on 100D swissroll.
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Running sequence with 148 samples of 150D sensor readings. [

frame 2 (leg distance) frame 10 (foot pose) frame 147 (leg pose)

Sample reconstructions when 85% percent data is missing. Row 1: initialization. Row
2. Init+GBMS. Row 3: init+MBMS. Color indicates different initialization: :

’ ’
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[ niPCA

- 8-nlPCA + GBMS
—2—nl|PCA + MBMS

- 8-SVP + GBMS
—A—SVP + MBMS

- Gaussian

- @ - Gaussian + GBMS
—4— Gaussian + MBMS

error

% of missing data

Results on Mocap dataset. Mean of errors (RSSE) of 5 runs obtained by different
algorithms for varying percentage of missing values.
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Experiment: MNIST digit 7

6 265 greyscale images of size 28 x 28, 50% entries missing.

Methods RSSE | mean | stdev
nIPCA 707 | 26.1 | 42.6
SVP 6.99 | 21.8 | 39.3

+ GBMS (400,140,0,1) | 6.54 | 18.8 | 37.7
+ MBMS (500,140,9,5) | 6.03 | 17.0 | 34.9

Reconstruction errors of different algorithms at their optimal parameters.
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Experiment: MNIST digit 7
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We propose new denoising paradigm for matrix completion, which
generalizes the commonly used assumption of low rank.

MBMS-based algorithm bridges the gap between pure denoising
(GBMS) and local low rank.

Denoising works due to the fundamental fact that a missing value
can be predicted by , @ common
approach in recommender systems.
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Outline

— Manifold Blurring Mean-shift (MBMS) algorithm for

manifold denoising
— MBMS for matrix completion
— K -modes algorithm for clustering

— Laplacian K -modes algorithm for clustering



Motivation

(1 Given a dataset x;,...,xy € R”, centroids-based clustering
] partition data points into groups,
1 estimate a representative c;, € R” of each cluster k.

"I Popular algorithms of this type: K-means, mean-shift, K-medoids.
[ No K-modes algorithm exists.

data K-means K-modes GMS
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K-means K-modes (o = 0.1)




K-means algorithm

Optimizes over assignment Z and centroids C

mm Z Z Znk ||Xn — ckH

=1 n=1

St. 2z € {O,l},Zznk —1, forn=1,...,N.
k=1

| Efficient algorithm alternates Z-step (computes assignment) and C-step
(computes mean).

I Can only produce convex clusters (Voronoi tessellation).

I Cluster mean may not be valid pattern.

"1 Sensitive to noise and outliers.
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K-modes: objective function

5o

n=1 k=1

)
K
st. z., €{0,1}, Z’an =1, forn=1,..., N,
k=1
I Sum of KDE but separately for each cluster.
I Combines the notions of assignment and density estimation.

I Two limit cases: “K-medoids” when ¢ — 0, K-means when o — oo.
I Alternating optimization with guaranteed convergence

] Z-step: decouples over points,
] C-step: decouples over clusters,
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K-modes: homotopy algorithm

Start with 0 = oo (K-means), gradually decrease ¢ while running J

iterations of the fixed-o K-modes algorithm for each value of ¢, until
reach a target value o*.

I A deterministic algorithm given local optimum found by K-means.
1 Follows an optimum path (Z(0),C(0)) for o € [o*, o).

I Homotopy techniques tends to find better optima than starting
directly at the target value o*.

| Representative, valid centroids are obtained for a wide range of
iIntermediate o values.
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[1 K = 2. No value of ¢ results in two modes that separate the (honconvex) moons.



3 natural clusters, but use K = 2. [




K-means result (X = 10, 0 = o0)
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Centroids are average of different classes.

Neighborhoods are not homogeneous/pure.




[]

K-modes result (X =10, 0 =1)
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Centroids are very representative.

Neighborhoods are homogeneous/pure.



Mean-shift result (¢ = 1.8369)
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In high dimensions, many modes have very few associated points.




K-modes is more robust than K-means and GMS to outliers and
parameter misspecification.

K-modes will return exactly K modes (one per cluster) no matter
the value of o, and whether the dataset KDE has more or fewer
than K modes.

Centroids are representative, valid patterns.
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Outline

— Manifold Blurring Mean-shift (MBMS) algorithm for

manifold denoising
— MBMS for matrix completion
— K -modes algorithm for clustering

— Laplacian K -modes algorithm for clustering



Limitation of K-modes assignment: can only find convex clusters.

In addition to representative centroids and density estimate, we
want more flexible assignment.

K-modes (¢ = 0.1) Laplacian K-modes (¢ = 0.1)
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Key to separate clusters with manifold structure: nearby data points
should have similar assignment.

1. Relax the assignment to be continuous, but constrain them to probabillities.
2. Build a graph on the dataset, let w,,,, be the weight between x,,, and x,,.

3. Add Laplacian smoothing term 2 32" S™Y w0, [|2m — 20
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Laplacian K -modes: objective function

DO | >~

N N N K
Z Zwmn Hzm — ZnH2 — ZzznkG(

n=1 n=1 k=1

)

|_x

Zznk_l forn=1,.... N,
k
zok >0, forn=1,... N, k=1,... K.

I Obtain hard assignment by choosing largest assignment probability.
I Alternating optimization
| C-step: decouples over clusters,

| Z-step: , Solved with gradient projection.
"I Homotopy in (o, A) can be done similarly as in K-modes.
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K-modes Laplacian K-modes

K=5. K-modes assignment rule can never separate the spirals.
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Out-of-sample problem

(] Optimize assignment z of new point x given Z and C from training.
I The out-of-sample problem is equivalently

1 _ 2
min |1z~ 7~ yal*

st. z'lg=1, z>0

)

where z is the weighted mean of training assignments, q is soft
distance to centroids.

I Projection of z + vq onto the probability simplex.

I Itis a mixture of two assignment rules and a nonlinear mapping.
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Laplacian K-modes Out-of-sample

] k=2 Homotopy in ¢ for Laplacian K-modes.
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Clustering analysis

Statistics of datasets.

dataset size (V) | dimensionality (D) | # of classes (K)
MNIST (digit image) 2000 768 10
COIL20 (object image) 1440 1024 20
TDT2 (document) 9394 36771 30

Clustering accuracy (%).

dataset K-means | K-modes | GMS | NCut | GNMF | DCD | Lap. K-modes
MNIST 58.2 59.2 159 | 655 66.2 69.4 70.5

COIL-20 66.5 67.2 27.2 | 79.0 75.3 71.5 81.0 (81.5)
TDT2 68.9 70.0 N/A 88.4 88.6 55.1 91.4

Normalized Mutual Information (%).

dataset K-means | K-modes | GMS | NCut | GNMF | DCD | Lap. K-modes
MNIST 53.3 53.6 6.51 | 66.9 64.9 65.6 68.8

COIL-20 75.3 75.9 38.9 | 88.0 87.5 77.6 87.3 (88.0)
TDT2 75.3 75.8 N/A 83.7 83.7 68.6 88.8
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Clustering analysis
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Centroids found by different algorithms on COIL-20.



Summary

Comparison of different clustering algorithms.

K-means K-medoids  Mean-shift Spectral K-modes Laplacian
clustering K-modes
Centroids likely invalid “valid” “valid” N/A valid valid
Nonconvex clusters no depends yes yes no yes
Density no no yes no yes yes
Assignment hard hard hard hard hard soft
Cost/iteration KND KN2D N2D N2 ~ N3 KND KND
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Conclusion

I We develop mean-shift algorithms to analyze dataset with low
degrees of freedom.

I Future directions:
I Theoretical analysis

I Speedup training and testing
I Incorporating more domain knowledge
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Denoising a complex shape with nonuniform density and noise with MBMSf using
different affinity (left: normal, middle: diffusion maps, right: entropic affinity).
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For swissroll dataset, there is a wide range for each parameter in which
MBMS works well.

1 |1 X — trueX; ||

1 N
ND Juie

ND

o=o00,K =30

Behavior of LTP for different parameters K and L. Error decreases for all parameter
choices.
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histogram
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[1 K = 2. Separating mixture of a Gaussian component and a power-law component.
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Laplacian K-modes: alternating optimization

] C-step: decouples over different cluster. For cluster k, solve
MaXe, D e S0y 2 G (|| F= HQ) with mean-shift updates.

(02

] Z-step: nolonger decouples over different points.

min  Atr(Z'LZ) — tr (B'Z)
st. Zlg =1y,

7 > 0.

where B,,;, = G(HX”O;C’@HQ) L is the graph Laplacian.
"I Quadratic program of N K variables.

_I Interior point method is too slow for large dataset.
"I We use first order method instead.
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Laplacian K -modes: Z-step

LI The ISTA/FISTA framework (gradient proximal method):
] Solves min f(x) = g(x) + h(x). g is convex and has Lipschitz

continuous gradient (with constant L). h IS convex and not
necessarily differentiable.

0 Xpi1 = argm;n 2 |ly = (xn — %Vg(xn))H2 + h(y).

[l Convergence: f(xr) — f(x*) ~ O(z) for constant stepsize 1.

I Nesterov’s acceleration scheme improves the rate to O(=5).
I Apply to our Z-step:

| g is the quadratic objective function, with . = 2\o;(L).

"I~ is the indicator function of probability simplex, therefore the
proximal step is computing Euclidean projection.
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Accelerated gradient projection for  Z-step

Input: Initial Z, € RY*E, s = 2/\01@).

1. SetY; =Zy, t1 =1, k=

2: repeat

3: Compute gradientat Y, : G, = 2\LY, — B,

4: 7y = SimplexProj(Y, — sGy) where SimplexProj() projects each
row of the argument onto the probability simplex,

1++/1+4t2
S} tk—l—l — 2 k!
6: Y1 =2+ (i’;j)(zk —Zj—1),
7. k=k+1,
8: until convergence.

Output: Z, Is the solution of Z given C.
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Projection onto the probabillity simplex

Input: A vector v € R®
1: Sortvintou : wy > uy > -+ > ug

2: Find p = max{1 §j§K:uj—%( 7w, —1) >0}
3: Define 0 =210>7"_ u, — 1)
0 r
Output: w s.t. w; = max{v; — 6,0}

Computational complexity: O(K log K).
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Laplacian K -modes: occluder segmentation

— Normalized cut
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Normalized cut (o = 0.2) Laplacian K-modes (o = 0.2)

e

LI K = 5. Each pixel is connected with nearby eight pixeis with edge weighted using heat kernei.
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