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Abstract
This paper proposes a Region-based Convolutional Recurrent
Neural Network (R-CRNN) for audio event detection (AED).
The proposed network is inspired by Faster-RCNN [1], a well-
known region-based convolutional network framework for vi-
sual object detection. Different from the original Faster-RCNN,
a recurrent layer is added on top of the convolutional network to
capture the long-term temporal context from the extracted high-
level features. While most of the previous works on AED gener-
ate predictions at frame level first, and then use post-processing
to predict the onset/offset timestamps of events from a proba-
bility sequence; the proposed method generates predictions at
event level directly and can be trained end-to-end with a multi-
task loss, which optimizes the classification and localization of
audio events simultaneously. The proposed method is tested on
DCASE 2017 Challenge dataset [2]. To the best of our knowl-
edge, R-CRNN is the best performing single-model method
among all methods without using ensembles both on develop-
ment and evaluation sets. Compared to the other region-based
network for AED (R-FCN [3]) with an event-based error rate
(ER) of 0.18 on the development set, our method reduced the
ER to half.
Index Terms: audio event detection, region-based neural net-
work, DCASE2017 challenge

1. Introduction
Audio event detection (AED) aims to enable intelligent systems
to understand the surrounding environment based on audio cues.
AED is well-suited for certain scenarios when other indicators
(e.g. visual data) is not suitable or not available. AED has been
appiled to autonomous driving and driving assistance systems
to prevent accidents, where visual detection of the event is diffi-
cult when the object is not in sight. Dobre et. al [4] used AED to
detect sirens on the road, and Foggia et. al [5] applied it to iden-
tify hazardous situations such as tire skidding and car crashes.
AED is also suitable for the surveillance in public transporta-
tion, where the visual analysis is not sufficient to reliably under-
stand passengers activity due to the occlusions in overcrowded
environments. Rouas et al. [6] used AED to detect critical situa-
tions and to warn the control room, and Laffitte et al. [7] applied
AED to detect scream and shouted speech in subway trains. It is
a common challenge to collect data for training a robust detector
when these target events only happen occasionally in the real-
world scenario. The Detection and Classification of Acoustic
Scenes and Events (DCASE) challenges have been held since
2013 [8, 9, 2] to stimulate the research in this field. DCASE
Challenge 2017 [2] task 2 provides datasets and baseline sys-
tems for detection of rare sound events, which asks to identify
the onset time of target events (baby crying, glass breaking, and
gunshot) within synthesized 30-second clips.

Among the submitted systems in DCASE 2017, most of

the models consist of Deep Neural Network (DNN), Convolu-
tional Neural Network (CNN), and Recurrent Neural Network
(RNN). These works make frame level prediction followed by
post-processing to generate the hypothesis of audio events. The
baseline system [2] takes a chunk of spectrogram as input, and
then feed it into one CNN and one RNN. Outputs from these
two networks are fed it into a DNN for final classification. The
methods ranked top 2 in the challenge [10, 11] apply Convo-
lutional Recurrent Neural Network as the main architecture.
Lim et al. [10] used 1D CNN with 2 layers of long short term
memory (LSTM) layers to generate the frame level prediction;
Cakir et al. [11] used 2D CNN with gated recurrent unit (GRU)
layers to compute the prediction at each frame. These frame
level predictions need a post-processing stage to generate on-
set/offset timestamps for target events. Median filters [12, 11]
and ad-hoc rules [10] have been used as the post-processing
step. In this work, we make predictions at event level, and on-
set/offset timestamps are incorporated into the cost function di-
rectly. There is no post-processing for converting frame level
predictions (frame-wise probability) to event level predictions
(onset/offset timestamps with event probability) for R-CRNN.

To make predicions at event level, region-based neural net-
work is used as the main architecture. Our model is inspired
by Faster-RCNN [1], a well known region-based convolutional
network framework for visual object detection. Different from
detecting visual objects from an image, which has no temporal
information included, AED can take advantage of temporal con-
textual information from a spectrogram. Therefore, a recurrent
layer is added on top of the convolutional network to capture
the long-term temporal context from the extracted high-level
features. By incorporating temporal context, R-CRNN has bet-
ter performance than the other region-based network for AED
(R-FCN) [3], which is a fully convolutional network without
recurrent layers.

2. R-CRNN
As shown in Figure 1, the proposed R-CRNN consists of three
modules: CRNN, region proposal network (RPN), and a final
classifier. The first CRNN module extracts high-level features
from the input spectrogram. The RPN computes event propos-
als based on the extracted features, and the classifier further
refines the center/length of event proposals to generate audio
event prediction.

2.1. Convolutional Recurrent Neural Network

Figure 2 shows the architecture of the proposed CRNN for fea-
ture extraction. CRNN takes 30-second sound clips as input
and extracts the high-level feature map. We follow the set-
tings in [10] to decompose each clip into a sequence of 46 ms
frames (2,048 points sampled at 44.1k Hz) with a 23 ms shift.



Input Spectrogram

CRNN

Region Proposal Network

Event Proposals

Time

Final Classifier

Time

Audio Event Prediction

Figure 1: R-CRNN is an end-to-end model that predicts audio
events at event level. No post-processing is needed for convert-
ing frame level to event level predictions.
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Figure 2: The architecture of CRNN. We use CRNN as a feature
extractor in R-CRNN for AED. For the notation of convolutional
kernels and strides, the first and second dimensions represent
the time axis and frequency axis repectively.

64 dimensional log filter bank energies (LFBEs) are calculated
for each frame, and we aggregate the LFBEs from all frames
to generate the input spectrogram. We use residual network
(ResNet) [13] as the convlutional network in CRNN, and there
are two convolutional blocks in it. 2D convolutional kernels are
used in CRNN, which generates a high-level feature map with
time resolution of 186 ms (8× of the time resolution in the in-
put spectrogram). The size of the high-level feature map is (162,
2U ), where U is the number of units in the bi-directional GRU
layer.

2.2. Region Proposal Network

We use RPN proposed by Ren et al. [1] to generate event pro-
posals (time intervals) for AED. While the original RPN gener-
ates region proposals in a 2-d search space (x, y axes in an im-
age), we simplify it to generate event proposals in a 1-D search
space (time axis only). In this work, RPN takes a region of the
high-level feature map generated by CRNN, and outputs a set of
event proposals, where each proposal has a probability of con-
taining audio events. We use RPN to quickly locate a vicinity
of the event and reduce the number of intervals to be considered
in the final classification.

As shown in Figure 3, a stripe window slides over the high-
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Figure 3: RPN generates event proposals by refining anchor
intervals at each location on the time axis.

level feature and maps the window to a lower-dimensional (128-
d) feature. The size of sliding window is 3×n, where n is the
height of the high-level feature map (n = 2U in our case). The
receptive field of the sliding window is 557 ms (3×8×frame
shift), but it can actually contain contextual information from
intervals longer than 557 ms since the feature extractor CRNN
has a recurrent layer.

At each frame of the high-level feature map, we propose
multiple regions of different sizes center around it. RPN takes
anchor intervals with fixed sizes and then outputs k interval pro-
posals by refining these anchor intervals at each frame. The
fixed sizes of anchor intervals are {1,2,4,8,16,32} frames in
the high-level feature map through our experiments. The 128-
d feature of the sliding window at each location is fed to one
dense layer (cls) to predict the probability of having an event
(k scores), and another dense layer (reg) to encode the coor-
dinates of interval proposals (2k coordinates). Following the
settings in [1], these k proposals are parameterized by shifting
and scaling relative to k anchor intervals.

For training RPN, each anchor interval is assigned to a
ground-truth binary label that indicates containing target events
or not. Similar to the cost function defined in [1], the cost func-
tion of RPN can be defined as:

L({pi}, {ti}) =
∑
i

Lcls(pi, p
∗
i )+λ

∑
i

p∗iLreg(ti, t
∗
i ), (1)

where i is the index of anchor interval, and pi is the predicted
probability of containing target events for anchor i. If anchor in-
terval i is highly overlapped with target events, the ground-truth
label p∗i is set to one. If not, p∗i is set to zero. Lcls is the cross
entropy for binary classification. For the regression part, ti is
a vector representing the two parameterized coordinates of the
predicted interval proposal, and t∗i is the vector of the ground-
truth event interval assigned to a positive anchor. For Lreg , we
use the robust loss function (smooth L1) defined in [14]. λ is
the coefficient to balance the classification error and regression
error, and is set to one in all of our experiments. This multi-task
cost function (1) optimizes binary classfication and localization
simultaneously.

2.3. Final Classifier

After the interval proposals are available, we use non-maximum
suppression (NMS) [15] to remove highly overlapped propos-
als. In our experiments, 100 proposals based on their probabil-
ity of containing audio events (cls) are selected to feed into the
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Figure 4: The final classifier takes event proposals generated
from RPN and generates audio event predictions.

final classifier. The final classifier takes event proposals gen-
erated from RPN as input, and generates audio event predic-
tions. As shown in Figure 4, a corresponding region of interest
(RoI) on the high-level feature map is cropped for each event
proposal. The cropped region is fed into a RoI pooling layer
as proposed in [14] to generate a fixed-length feature vector
(7×n in our experiments). This fixed-length feature vector is
fed into two dense layers (M nodes) with dropout rate 0.5, fol-
lowed by two output layers, which produce the probability of
containing the target event, and the regression to refine the cen-
ter/length of the event. We use NMS again to remove highly
overlapped events in these predictions. Also, events with prob-
ability lower than a pre-set threshold (0.8) will be removed at
this stage. Since DCASE 2017 task 2 has an assumption that
there is at most one event in each clip, only the event with the
highest probability is kept in our experiments.

We use the same loss function (1) as RPN to train the final
classifier, where the i in becomes the index of event proposals.
This loss is used twice when training R-CRNN: one for RPN to
identify the interval proposals, and one for the final classifier to
predict audio events from event proposals.

2.4. Extension for Multi-Class Event Detector

R-CRNN can be extended to detect different classes of events
simultaneously within the same framework by adding more out-
puts to the final classifier. There is no change needed in RPN
since it generates interval proposals agnostic to event classes.
For adding an extra class, the number of extra parameters is
3M+3 (M+1 for the classification and 2M+2 for the localiza-
tion), where M is the number of nodes in the dense layers of the
final classifier.

3. Experimental Results
3.1. Dataset

We tested R-CRNN on the dataset provided by DCASE 2017
Challenge task2: “Detection of rare sound events.” It consists of
isolated target events (baby crying, glass breaking, and gunshot)
downloaded from freesound.org, and 30-second background
sound clips from TUT Acoustic Scenes 2016 dataset [16]. A
synthesizer provided in the development set is used to generate

Method Babycry Glass. Gunshot Avg.
CNN 0.31 0.13 0.21 0.22
CRNN GRU 0.28 0.18 0.18 0.21
CRNN BiGRU 0.14 0.08 0.15 0.12

Table 1: Event-based error rate of using different types of fea-
ture extractor for R-CRNN on DCASE 2017 development set.

mixtures of target events and background sound clips at random
onset time. The synthesized clips are 30-second monaural audio
with 44,100 Hz and 24 bits. For each target event, two training
sets of 5,000 samples is generated with event-to-background ra-
tios (EBR) of -6, 0, 6dB. The first one is for the pre-training of
CRNN, and the event occurrence probability is set to 0.5 for the
synthesizer. This event occurrence probability follows the same
setting of development and test set provided by the challenge.
The second one is for the training of R-CRNN, and the event oc-
currence probability is set to 0.99 to get more positive training
samples.

3.2. Pre-training

From the experience of computer vision community, training
a region-based network for detection from scratch is very dif-
ficult. Previous works on visual object detection [14, 1] used
weights pre-trained from image classification on ImageNet [17]
as the weight initialization for the feature extractor [18, 13] in
region-based networks. In the pre-training, we pre-train the
CRNN on a binary classification task using utterance level la-
bels, and the trained CRNN is used as the weight initializa-
tion in the training of R-CRNN. Note that given the pre-trained
CRNN as the weight initialization, the training of R-CRNN is
an end-to-end process, which optimizes the classification and
localization of audio events simultaneously. The pre-training
stage is stopped when the loss on the development set has
stopped improving for 10 epochs. We use adaptive momen-
tum (ADAM) [19] as the optimizer and the initial learning rate
is set to 0.001. The size of mini-batch is set to 80. We use
Keras with Tensorflow backend to implement our models in the
experiments.

3.3. Training

After the pre-training stage, the weights of pre-trained CRNN
are used as the weight initialization of R-CRNN. The training
of R-CRNN is stopped when the loss on the development set
has stopped improving for 10 epochs. We use ADAM as the
optimizer and the initial learning rate is set to 0.00001.

3.4. Evaluation

We use the sed eval toolbox provided by the challenge [20] to
evaluate the predictions made by R-CRNN. Event-based error
rate (ER) and event-based F1 score are the metrics used for eval-
uating the performance of AED methods in DCASE 2017. In
the challenge, these metrics are calculated using onset only con-
dition with a collar of 500 ms.

3.5. Results

Experiments on Different Feature Extractors. To investi-
gate the performance of different feature extractors, we exper-
imented with different architectures to generate the high-level



Hyper-parameters Babycry Glassbreak Gunshot
# units in Bi-GRU 50 50 100
M 128 256 256
# parameters 1,110,874 1,250,394 1,782,094

Table 2: R-CRNN hyper-parameters for each target class.

Method Babycry Glass. Gunshot Avg.
W/o pre-training 0.23 0.17 0.37 0.26
Pre-training 0.25 0.09 0.35 0.23
(fixed CRNN)
Pre-training 0.09 0.04 0.14 0.09
(finetune CRNN)

Table 3: Event-based error rate of using different pre-training
methods for R-CRNN on DCASE 2017 development set.

feature map for the region-based network. Three different types
have been tested: convolutional network (CNN), CRNN with
an uni-directional GRU layer (CRNN GRU), and CRNN with
a bi-directional GRU layer (CRNN BiGRU). We set M to 512
and use 100 units in the GRU layer. For CNN, we use the same
architecture as shown in Figure 2 without the Bi-GRU layer.
For CRNN GRU, we replace the Bi-GRU layer in Figure 2
with a uni-directional GRU layer. Table 1 shows the results
on DCASE 2017 development set. Note that all of these results
used pre-trained weights from the binary classification task as
the weight initialization. By adding a bi-directional GRU layer
on top of the convolutional network, the generated high-level
feature map contains long-term temporal contextual informa-
tion and ER is reduced from 0.22 to 0.12. Based on these re-
sults, we chose CRNN BiGRU as the feature extractor through
our experiments.
Hyper-parameter Search. After selecting the feature extrac-
tor, we did a hyper-parameter search for R-CRNN. The grid
search covers on the number of units in Bi-GRU layer: {50,
100}; and the number of nodes in the dense layers in the final
classifier (M): {64, 128, 256, 512}. The best performing R-
CRNN hyper-parameters and the number of parameters in the
model for each target class are listed in Table 2.
Experiment on Different Pre-training Settings. To investi-
gate the effect of pre-training on the feature extractor CRNN,
we tested three different settings for pre-training. We use the
best performing hyper-parameters shown in Table 2 to build
R-CRNN, and experiment on three settings: 1) Without pre-
training: R-CRNN is trained from scratch. 2) Pre-training
(fixed CRNN): We use the pre-trained weights of CRNN for
weight initialization, and treat CRNN as a fixed feature ex-
tractor. There is no updates in CRNN during the training of
R-CRNN. 3) Pre-training: We use the pre-trained weights of
CRNN for weight initialization, and all parameters are train-
able during the training of R-CRNN. Table 3 shows the results
of using different pre-training methods. Using the pre-trained
CRNN as a fixed feature extractor works slightly better than
without any pre-training. By making all parameters trainable
in the training of R-CRNN, the performance improves signifi-
cantly in all target events. We suspect that fixing the weights
of CRNN constraints the search in the weight space during gra-
dient descent in the training of R-CRNN, which decreases the
performance.

Development Evaluation
Method ER F-score ER F-score
R-CRNN 0.09 95.5% 0.23 87.9%
1D-CRNN [10] 0.07 96.3% 0.13 93.1%
(Ranked 1st)
CRNN [11] 0.14 92.9% 0.17 91.0%
(Ranked 2nd)
DNN/CNN [12] 0.19 89.8% 0.28 85.3%
(Ranked 3rd)
R-FCN [3] 0.18 90.5% 0.32 82.0%
Baseline 0.53 72.7% 0.64 64.1%

Table 4: Performance of different methods on DCASE 2017 de-
velopment set and evaluation set.

Comparison with Other Methods. Table 4 shows the results
(event-based ER and F-score) of R-CRNN, and the comparison
with other AED methods on DCASE 2017 development set and
evaluation set. On the development set, R-CRNN without us-
ing ensemble method achieves performance comparable to 1D-
CRNN [10], which uses ensembles consist of up to 5 models for
each target event. Compared to the other region-based network
for AED (R-FCN [3]) with an ER of 0.18 on the development
set, our method reduced the ER to half. The major difference
between R-CRNN and R-FCN is that we add a recurrent layer
into R-CRNN to contain long-term temporal contextual infor-
mation, where R-FCN is a fully convolutional network. We
thus observe that adding recurrent layers is advantageous for
region-based networks on AED. The results from experiments
of different feature extractor also support this observation.

On the evaluation set, R-CRNN performs worse than the
top 2 methods among all submissions in the challenge. Note
that both of the top 2 methods use ensemble method. The ER
increases from 0.09 on the development set to 0.23 on the eval-
uation set. We suspect that R-CRNN suffers from over-fitting
due to the high model complexity of region-based networks
and limited amount of training data. The region-based network
for visual detection used weights pre-trained on ImageNet [17],
which contains 1.43 million annotated samples. Our model is
trained on a set of synthetic data that contains about 100 real
samples for each target event. We believe that using a larger
training set with more non-synthetic samples may alleviate this
over-fitting issue.

4. Conclusions
A Region-based Convolutional Recurrent Neural Network is
proposed for AED. There is no post-processing needed for con-
verting the prediction from frame level to event level, since R-
CRNN can be trained on a multi-task loss function that op-
timizes the classification and localization of audio events si-
multaneously. On DCASE 2017 development and evaluation
sets, R-CRNN is the best performing method without using en-
semble method. On the development set, our method achieves
performance comparable to the method ranked 1st in the chal-
lenge [10], which used an ensemble up to 5 models for each
target event. To utilize the temporal information in audio sig-
nals, a recurrent layer is added into R-CRNN to contain long-
term temporal context. Our method performs significantly bet-
ter than the other region-based method (R-FCN) [3], which is a
fully convolutional network.
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