
Future Directions
Model articulatory measurements with nonlinear manifolds; use complementary infor-
mation in acoustic data; use better dynamic models.
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Method PER (%)
Baseline (MFCCs only) 31.1
GMM 22.0
Ours (k = 4, λ = 0, γ = 0) 20.4
Ours ( k = 6, λ = 1, γ = 1) 20.0

•Phonetic recognition with reconstructed data:
reconstructed articulatory measurements are
concatenated with 39D MFCC and used as in-
puts to a GMM-HMM phone recognizer.

Experimental Results

•We compare with two related approaches

–The modified EM algorithm for PCA [2], corresponding to the special unregular-
ized case of our algorithm ( λ = γ = 0).

–Gaussian Mixture Model (GMM) [3]: model fully observed frames with GMM, fill
in missing entries of each frame with conditional mean given observed entries.

•Reconstructing artificially blacked-out data by transferring missing patterns

Source
speaker

Corrupted
Frames (%)

Missing
Entries (%)

Target
speaker Init. GMM Ours

(λ = 0, γ = 0)
Ours
(λ = 0)

Ours
(γ = 0) Ours

JW29 98.4 13.9

JW13 25.51 17.25 1.97 1.81 1.84 1.63
JW26 23.13 13.21 2.10 1.99 1.33 1.32
JW31 21.82 14.81 1.42 1.42 1.38 1.19
JW45 24.95 13.67 1.88 1.38 1.45 1.20

JW30 20.6 3.4

JW13 21.65 2.59 6.51 1.69 6.38 1.69
JW26 22.42 4.83 6.64 2.13 6.51 2.10
JW31 19.72 7.14 5.87 1.85 5.76 1.83
JW45 25.70 2.90 1.89 1.80 1.36 1.35

Reconstruction errors (RMSE) in millimeters obtained by different algorithms.

TP024: “Things in a row provide a sense of order ...”
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Ground Truth
Ours (λ = γ = 0)
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TP029: “When else fails, use force ... ”
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Ground Truth
Ours (λ = γ = 0)
Ours
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TP079: “... he once knew - signs that would tell for sure ...”
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Ours (λ = γ = 0)
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TP094: “Put these two down? ...”
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Sample reconstructions of the horizontal and vertical coordinates of the mandibular
MNm (left) and mid-tongue T3 (right) pellets.
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Speaker

Missing data patterns Validation of the low-rank assumption

Data

•Wisconsin X-ray microbeam (XRMB) [1]: simulta-
neously recorded speech and articulatory measure-
ments from 47 American English speakers.

•53 utterances per speaker, 3.4% of the entries are
missing, yet 23.6% of the frames contain at least
one missing entry.
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Solution via Alternating Optimization

•The objective function is convex and quadratic in U if V is fixed and vice versa.

•Our algorithm alternates between:

–U-step For fixed V, compute the gradient of (1) wrt U and set it to zero to obtain
a k × k linear system for each row i of U:

UiV⊤diag
(

Mi
)

V + λUi + γUi(V⊤LV)=X diag
(

Mi
)

V,

so that each row of U can be solved in closed form as

Ui = X diag
(

Mi
)

V(V⊤ diag
(

Mi
)

V + λI + γV⊤LV)−1.

–V-step For fixed U, compute the gradient of (1) wrt V and set it to zero to obtain
the following linear system

(M⊤ ⊙ (VU⊤ − X⊤))U + λV + γLVU⊤U = 0, (2)

where all rows of V are coupled due to the smoothness penalty. Nonetheless, V

can be obtained efficiently by solving a sparse NK × NK linear system

(K + λI + γL ⊗ (U⊤U)) · vec(V⊤) = vec(U⊤(M ⊙ X)),

where K =







U⊤ diag (M1)U
. . .

U⊤ diag (MN )U





 .

• Initialization: fill missing entries with zeros, compute the truncated SVD to obtain
U and V.

•Convergence: each U/V-step finds the best solution in U and V respectively
given the other set of parameters are fixed, and decreases the overall objective.
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Smoothed Low-Rank Matrix Completion Objective

•Notation: We denote by X = [x1, . . . ,xN ] ∈ R
D×N the articulatory measurements

over N successive frames, M ∈ R
D×N a binary matrix with Mij = 1 if Xij is ob-

served and 0 otherwise, ⊙ the element-wise multiplication and ⊗ the Kronecker
(“outer”) product, Mi (Mj) the i-th row (j-th column) of the matrix M.

•Two important observations

– Physical constraints imply the data matrix is approximately low-rank : X ≈

UV⊤, where U ∈ R
D×k, V ∈ R

N×k, and k < max{D,N}.
– Articulatory trajectories are smooth in time , i.e., the difference between succes-

sive frames ‖xi+1 − xi‖ should be small. This suggests a smoothness penalty

S(Y) =
N−1
∑

j=1

‖yj+1 − yj‖
2 = tr

(

YLY⊤
)

with L =













1 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
... ... . . . . . . ...
0 0 · · · −1 1













for Y ∈ R
D×N .

•Our objective function combines the two intuitions:

min
U,V

∥

∥

∥M ⊙ (X − UV⊤)
∥

∥

∥

2

F
+ λ(‖U‖2

F + ‖V‖2
F ) + γ tr

(

UV⊤LVU⊤
)

, (1)

where λ, γ > 0 are trade-off parameters selected by cross-validation.

•The L2 regularization functions like a Gaussian prior on U and V, and helps avoid
numerical instability.

•Special case of γ = 0: without smoothness penalty, our objective leads to the alter-
nating least squares (ALS) algorithm which is widely used in the matrix completion
and collaborative filtering literature.

•Reconstruction: once (U,V) are obtained by solving (1), missing entries of X are
filled with the corresponding entries of UV⊤.
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Abstract

•Articulatory measurements have been used in a variety of speech science and
technology applications, e.g., speech synthesis, articulatory inversion, and multi-
view acoustic feature learning.

•Recording technologies (electromagnetic articulography, X-ray microbeam) typi-
cally have pellets attached to articulators. Limitations of the technologies lead to
high rates of loss in this expensive and time-consuming data source.

•We propose a simple algorithm for reconstructing missing measurements based
on low-rank matrix factorization combined with temporal smoothness regular-
ization . The algorithm alternates between two steps, each having a closed form
as the solution of a linear system.

•We demonstrate the algorithm on the Wisconsin X-ray microbeam database and
achieve better root mean squared error and phonetic recognition performance than
previous algorithms.
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