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1997), and also An introduction to bayesian networks by F.V.Jensen
(Springer 1996). Both are excellent introductions to the field.
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1 The Junction Tree Algorithm

One may have had the nagging suspicion during the discussion of the
algorithms relating to DAGs, that what we are really exploiting is
the underlying graphical structure, whether this be directed or not.
Does it really matter if the graph is directed. For example, in bucket
elimination, we are essentially removing the directedness of the graph
and defining (undirected) functions in their place. What this suggests
is that the complexity of the calculations on directed graphs can be
transformed into an undirected graph, possibly of greater connectivity
than the directed graph from which it was derived.

Indeed, there is an algorithm that does this. A graph, directed or
undirected, is transformed into an undirected graph on which the
relevant computations can be performed. This is called the junction
tree algorithm.

Cluster Potential Representation of a Graph

Consider a directed chain

p(U) = p (a|b) p (b|c) p (c|d) p(d)

where U , the “universe” represents all the variables in the graph. The

A B C D
(a)

A,B B B,C C C,D

(b)

Figure 1: (a) A belief network. (b) A cluster graph representation
of the network. The cluster potentials are defined on the round/oval
nodes, and the separator potentials are defined on the square nodes,
which share common variables with their neighbours.

cluster graph distribution is defined as the product of all the cluster
potentials, divided by the product of the separator potentials. In
fig(1), for the cluster graph to represent the BN we need

p(U) =
Ψ (a, b)Ψ (b, c)Ψ (c, d)

Ψ (b)Ψ (c)
= p (a|b) p (b|c) p (c|d) p(d)

One such assignment of the cluster and separator potentials to sat-
isfy this would be Ψ (a, b) = p (a|b), Ψ (b, c) = p (b|c), Ψ (c, d) =
p (c|d) p(d), and Ψ (b) = 1, Ψ (c) = 1. Note that here we have defined
the potentials to be functions of the (cluster) node of variables, and
there is no restriction about symmetry of these potential functions (in
contrast to the example of an undirected graph given in a previous
chapter, where the potentials where functions of the links and not of
the nodes).

For every cluster representation, we claim that there exists another
cluster representation for which the clusters contain the marginals of
the distribution. Consider the following, which follows simply from
the definition of conditional probability:

p(U) =
Ψ∗ (a, b)Ψ∗ (b, c)Ψ∗ (c, d)

Ψ∗ (b)Ψ∗ (c)
=

p (a, b) p (b, c) p (c, d)

p(b)p(c)

Where the cluster and separator potentials are set to Ψ∗ (a, b) =
p (a, b), Ψ∗ (b, c) = p (b, c), Ψ (c, d) = p (c, d), and Ψ∗ (b) = p(b),
Ψ∗ (c) = p(c). It turns out that every singly-connnected graph can
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Figure 2: (a) A loopy Belief Network. (b) A cluster graph represen-
tation of the network. A valid assignment of the cluster potentials
is Ψ (f, c, d) = p(f |c, d), Ψ (d, a, b) = p(d|a, b)p(a)p(b), Ψ (g, d, e) =
p(g|d, e)p(e), Ψ (a, c, d) = p(c|a). All the separator potentials are set
to 1. Note that whilst it would appear that it is unnecessary to make
the cluster ACD dependent on d, this is nevertheless chosen, since the
cluster graph then satisfies the running intersection property, namely
that if a variable appears in two different clusters, it also appears on
all clusters inbetween.

always be represented as a product of the the clique marginals di-
vided by the product of the separator marginals – this is a useful and
widely applied result in the development of exact and approximate
inference algorithms.

What we would like to do for a general distribution is to define a po-
tential representation of the graph such that, coupled with a suitable
algorithm to modify these potentials, the effect will be, as above, that
the marginals of individual or groups (in fact cliques) can be read off
directly from the modified potentials. This is the idea of the junction
tree algorithm.

Marginalization

Let Ψ (v) be a potential on the set of variables v, and let w be a subset
of v. A potential over w can be constructed by marginalization, by
which we mean

Ψ (w) =
∑

v\w

Ψ(v)

1.1 Cluster Trees

A cluster is a set which contains one or more variables. A cluster isCluster
represented by a (cluster) node.

The separator (set) is the intersection of two adjacent nodes. ForSeparator
example, in fig(2), the separator of the nodes containing DAB and
FCD is D.

A cluster tree over U is a tree of clusters of variables from U . TheCluster Tree
nodes are subsets of U and the union of all nodes is U .

Associated with each node and separator is a potential over the vari-
ables contained in the node or separator.

Note that we define potentials also on the separator sets. The rea-
son for this will become clear later since it will help us construct an
invariant representation of a graphical model.

A cluster tree corresponding to a BN is constructed in the following
way:

• Form a family of nodes such that for each variable a with parents
pa (a) there is at least one node v such that pa (a) ∪ {a} ∈ v.
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• Organize the nodes as a tree with separators

• Initialise all node and separator potentials to unity.

• For each variable a choose exactly one node v containing pa (a)∪
{a} ∈ v and multiply the potential on v by p (a|pa (a)).

It is clear from this construction that the product of all the potentials
is just the product of all the conditional probabilities in the BN, so
that this is indeed a potential representation of the BN.

For example, in fig(2) we depict a cluster tree representation of the
BN in fig(2a)

In this case, the cluster potentials are

Ψ (d, a, b) = p (d|a, b) p(a)p(b), Ψ(f, c, d) = p(f |c, d), Ψ(g, d, e) = p(g|d, e)p(e)

The separator potentials Ψ1(d) and Ψ2(d) are set to unity.

Absorption in cluster trees

The idea behind absorption is that we wish the potentials to be mod-
ified in such a manner that the potential resulting from marginaliza-
tion to their separator s from either v or w gives the same potential
Ψ (s). If this is the case, then we say that the link is consistent.

Consider a potential representation with neighbouring clusters v andConsistent link
w, sharing the variables s in common. If our aim is that the JTA
modifies the potentials such that the marginal of the distribution
p(w) is given by the (modified) potential Ψ (w), then1

p(s) =
∑

w\s

Ψ(w)

Similarly,

p(s) =
∑

v\s

Ψ(v)

This then requires

∑

w\s

Ψ(w) = p(s) =
∑

v\s

Ψ(v) ,

We identify the (modified) separator potential Ψ (s) = p(s).

Imagine that by some process, we have managed to achiee consistency,
but that now some new evidence changes Ψ (v) to Ψ∗ (v) (this is
achieved by clamping one of the variables in v to a particular state).
In order that the link remains consistent, we need to change Ψ (w)
and Ψ (s) in order to satisfy

∑

w\s

Ψ∗ (w) = Ψ∗ (s) =
∑

v\s

Ψ∗ (v) .

Let v and w be neighbours in a cluster tree, let s be their separa-Absorption
tor, and let Ψ∗ (v), Ψ (w) and Ψ (s) be their potentials. Absorption
replaces the tables Ψ∗ (s) and Ψ∗ (w) with

Ψ∗ (s) =
∑

v\s

Ψ(v)

Ψ∗ (w) = Ψ (w)
Ψ∗ (s)

Ψ (s)

1 Note that, in the beginning, the assignment of the cluster potentials does not
satisfy the consistency requirement. The aim is to find an algorithm that mod-
ifies them so that ultimately consistency is achieved.
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The idea behind this definition is that, under the update of the table
for v, the table for the separator s and neighbour w are updated such
that the link remains consistent. To see this consider

∑

w\s

Ψ∗ (w) =
∑

w\s

Ψ(w)
Ψ∗ (s)

Ψ (s)
=

Ψ∗ (s)

Ψ∗ (s)

∑

w\s

Ψ(w) =
Ψ∗ (s)

Ψ (s)
Ψ (s) = Ψ∗ (s) =

∑

v\s

Ψ∗ (v)

Note that if Ψ (s) can be zero, then we need also Ψ (w) to be zero
when Ψ (s) is zero for this procedure to be well defined. In this case,
the potential takes the value unity at that point. (This requirement
is on Ψ (w) and not Ψ∗ (s) since we are considering whether or not it
is possible to transmit the information through the current state of
the link). We say that a link is supportive if it allows absorption in
both directions (that is Ψ (v) and Ψ (w) will both be zero when Ψ (s)
is zero). Note that supportiveness is preserved under absorption.

Let T be a supportive cluster tree. Then the product of all cluster po-Invariance of Cluster Tree
under Absorption tentials divided by the product of all separator potentials is invariant

under absorption.

When w absorbs v though the separator s only the potentials of wProof:
and s are changed. It is enough therefore to show that the fraction
of the w and s tables is unchanged. We have

Ψ∗ (w)

Ψ∗ (s)
=

Ψ (w) Ψ∗(s)
Ψ(s)

Ψ∗ (s)
=

Ψ (w)

Ψ (s)

So that if we start with a BN over U , construct a corresponding cluster
tree T , and then perform a series of absorptions, then T remains
a representation of p(U) and is given by the product of all cluster
potentials divided by the product of all separator potentials.

Message Passing in cluster trees

In the above, we think of absorption as passing a message from v
to w via the separator s. In general, however, s will be connected
to more than one cluster v. This motivates the following message
passing scheme (c.f belief propagation).

A node v can send exactly one message to a neighbour w, and it mayMessage Passing
only be sent when v has received a message from each of its other
neighbours.

Let T be a supportive cluster tree, and suppose that messages areSufficiency of message
passing passed according to the message passing scheme. Then

After a message has been passed in both directions along each link:

• there will be no further changes in the potentials (the algorithm
converges).

• Each link in the tree T is consistent.

1.2 Junction Trees

Let T be a cluster tree over U and let a be a variable in U and suppose
that a is an element of the nodes v and w. If T is consistent, we would
expect that

∑
v\a Ψ(v) =

∑
w\a Ψ(w). Certainly this is true it v and

w are neighbours, but otherwise there is no guarantee.

We say that a consistent cluster tree is globally consistent if for anyGlobal Consistency
nodes v and w with intersection I we have

∑

v\I

Ψ(v) =
∑

w\I

Ψ(w)
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Figure 3: A junction tree

A cluster tree is a junction tree if, for each pair of nodes, v and w, allJunction Tree
nodes on the path between v and w contain the intersection v ∩ w.
This is also called the running intersection property.Running Intersection

From this definition, it is clear that, in a consistent junction tree, the
local consistency will be passed on to any neighbours. That is, ALocal=Global consistency
consistent junction tree is globally consistent.

Let T be a consistent junction tree over U , and let Ψ (U) be the prod-Marginals
uct of all potentials divided by the product of all separator potentials.
Let v be a node with potential Ψ (v). Then

Ψ (v) =
∑

U\v

Ψ(U)

To gain some intuition about the meaning of this theorem, consider
the junction tree in fig(3). After a full round of message passing on
this tree, each link is consistent, and the product of the potentials
divided by the product of the separator potentials is just the BN
itself. Imagine that we are interested in calculating the marginal for
the node ABC. That requires summing over all the other variables,
D,E, F,G,H. If we consider summing over H then, because the link
is consistent, ∑

h

Ψ(eh) = Ψ (e)

so that the ratio
∑

h
Ψ(eh)
Ψ(e) is unity, so that the effect of summing over

node H is that the link between EH and DCE can be removed, along
with the separator. The same happens for the link between node EG
and DCE, and also for CF to ABC. The only nodes remaining are
now DCE and ABC and their separator C, which have so far been
unaffected by the summations. We still need to sum out over D and
E. Again, because the link is consistent,

∑

de

Ψ(d, c, e) = Ψ (c)

so that the ratio
∑

de
Ψ(d,c,e)

Ψ(c) = 1. The result of the summation of
all variables not in ABC therefore produces unity for the cliques and
their separators, and the summed potential representation reduces
simply to the potential Ψ (a, b, c) which is the marginal p(a, b, c). It
is clear that a similar effect will happen for other nodes. Formally,
one can prove this using induction.

Because the BN is given by the product of node potentials divided by
the product of separator potentials, then this means that the marginal
for the node (group or clique of variables) is given by the potential in
the globally consistent junction tree. That is, Let p(U) be a BN, and
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(b) Junction Graph

Figure 4: (a) A singly connected graph and (b) its junction graph. By
removing any of the links in (b) with separator F you get a junction
tree.

let T be a corresponding junction tree. After a full round of message
passing in T , we have for each node v and each separator s that

Ψ (v) =
∑

U\v

p(U) = p(v) and Ψ (s) = p(s)

We can then obtain the marginals for individual variables by simple
brute force summation over the other variables in that potential. In
the case that the number of variables in each node is small, this will
not give rise to any computational difficulties. However, since the
complexity is exponential in the clique size of the Junction Tree, it is
prudent to construct the Junction Tree to have minimal clique sizes.
Although, for a general graph, this is itself computationally difficult,
there exist efficient heuristics for this task.

1.3 Constructing Junction Trees

Singly Connected DAGs

For each variable a with parents, form the cluster pa (a)∪a. Between
any two clusters with a non-empty intersection add a link with the
intersection as the separator. The resulting graph is called a junction
graph. All separators consist of a single variable, and if the junction
graph contains cycles, then all separators on the cycle contain the
same variable. Therefore any of the links can be removed to break
the cycle, and by removing links until you have a tree, you get a
junction tree.

Consider the graph in fig(4)a. Following the above procedure, we get
the junction graph fig(4)b. By breaking the cycle any where in the
loop BCF − −F − −FI − −F − −FJ − −F − −BCF , we obtain a
junction tree.

We know that when we construct a cluster tree corresponding to aMoral Graph
DAG, then for all variables a there must be a cluster v containing
pa (a)∪a. We can illustrate this on a graph by having a link between
any pair of variables which must appear in the same cluster. This
means that we take the DAG, add a link between any pair of variables
with a common child, and drop the direction of the original links. The
resulting graph is the moral graph. From the moral graph you can
find the clusters, namely the cliques in the graph.
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Figure 5: If we were to form a clique graph from the graph on the left,
this would not satisfy the running intersection property, namely that
if a node appears in two cliques, it appears everywhere on the path
between the cliques. By introducing the extra link (middle picture),
this forms larger cliques, of size three. The resulting clique graph
(right) does satisfy the running intersection property. Hence it is
clear that loops of length four or more certainly require the addition
of such chordal links to ensure the running intersection property in
the resulting clique graph. It turns out that adding a chord in for
all loops of length four or more is sufficient to ensure the running
intersection property for any resulting clique graph.

Coping with Cycles

The previous section showed how to construct a JT for a singly-
connected graph. If we attempt to do this for a multiply connected
(loopy) graph, we find that the above procedure generally does not
work since the resulting graph will not necessarily satisfy the running
intersection property. The idea is to grow larger clusters, such that
these the resulting graph does satisfy the running intersection prop-
erty. Clearly, a trivial solution would be to include all the variables
in the graph in one cluster, and this will complete our requirements.
However, of course, this does not help in finding an efficient algorithm
for computing marginals. What we need is a sufficient approach that
will guarantee that we can always form a junction tree from the re-
sulting junction graph. This operation is called triangulation, and
it generally increases the minimum clique size, sometimes substan-
tially. The intuition for why triangulation is needed can be gained
from considering a simple four variable loop as in fig(5), where the
act of including a link makes the resulting graph satisfy the running
intersection property. Formally, we need define the triangularisation
operations as follows:

This is a link joining two non-consecutive vertices of a loop.Chord

An undirected graph is triangulated if every cycle/loop of length 4 orTriangulation
more has a chord.

The importance of this definition derives from the following theorem.

An undirected graph is triangulated if and only if its junction graphTriangulated= ∃ Junction
Tree has a junction tree.

This therefore defines a method for constructing a junction tree.

• Moralise the graph. (That is, add links between parents of a
common child).

• Triangulate the graph. (That is, for every loop of length four
or more, ensure that the loop has a chord.)

• Assign the potentials accordingly.

The Junction Tree Algorithm

From the above, we essentially have all we need.

We need to do the following steps : moralisation and triangulation.
We are then guaranteed to be able to form a Junction Tree. Assign
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Figure 6: Construction of a junction tree for a singly connected DAG.
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(b) Moralised and Trian-
gulated

Figure 7: Example of the JTA. In (a) is the original loopy graph. (b)
The moralisation links are between nodes E and F and between nodes
F and G. The other additional links come from triangularisation.
The clique size of the resulting clique tree (not shown) is four.

the potentials to the cliques on the Junction Tree and assign the sep-
arator potentials on the JT to unity. Then carry out the absorption
procedure until updates have been passed along both directions of
every link on the JT. Then the clique marginals can be read off from
the JT. An example is given in fig(7).

There are some interesting points about the JTA. It provides an up-
per bound on the computation required to calculate marginals in the
graph. This means that there may indeed exist more efficient algo-
rithms in particular cases. There are, in general, many different ways
to carry out the triangularisation step. Ideally, we would like to find
a triangularised graph which has minimal clique size. However, it
can be shown to be a hard-computation problem (NP -hard) to find
the most efficient triangularisation. In practice, the triangularisa-
tion algorithms used are somewhat heuristic, and chosen to provide
reasonable, but clearly not optimal, performance.

The precise algorithms for carry out triangulation and forming a JT
are not detailed here, and the interested reader should consult the
Jensen book for details.

The junction tree algorithm can be applied also to undirected graph-
ical models since they naturally have an undirected graph represen-
tation. In that case, there is no need to carry out the intermediate
moralisation stage.

1.4 Finding the Most Likely State

Previously, we have mainly concentrated on finding marginal proba-
bilities, p(xi). However, another natural question to ask is what is the
most likely state of the distribution? There is a simple trick which
will enable us to convert the JTA to enable us to answer this.

In general, a probability distribution may be written as

p =
1

Z

∏

c

φ(xc)

where φ(xc) is the potential for cluster c. Consider a modified distri-
bution in which we wish to re-weight the states, making the higher
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Figure 8: p ∗ (x) ∝ (p(x)10. In both figures the vertical dashed line
indicates (on the x-axis the mean value for x. Note how p∗ becomes
much more peaked around its most probable valuem, and how the
mean value in p∗ shifts to be close to the most likely value. In the
limit p∗(x) ∝ (p(x))β ,β → ∞, then the mean of the distribution p∗

tends to the most-likely value.

probability states exponentially more likely than lower probability
states. This can be achieved by defining

p∗ =
1

Zβ

∏

xc

φβ(xc)

where β is a very large positive quantity. This makes the distribution
p∗ very peaked around the most-likely value of p, see fig(8).

In the JTA, we need to carry out summations over states. However,
in the limit β → ∞ it is clear that only the most-likely state will
contribute, and hence that the summation operation can be replaced
by a maximisation operation in the definition of absorption. The
algorithm thus proceeds as normal, replacing the summations with
maximisations, until the final stage, whereby from the table one reads
off argmax

xc

φ(xc) for the variables in the modified final potential on

cluster c to find the most likely state.

A simple example of the JTA

Consider running the JTA on the simple graph

p(a, b, c) = p(a|b)p(b|c)p(c)

a b c
(a)

a,b b b,c

(b)

Figure 9: (a) A belief network. (b) JTA for the network.

There are three questions we are interested in (i) What is p(b)? (ii)
What is p(b|a = 1, c = 1) (iii) What is the likelihood of the evidence
p(a = 1, c = 1)

For this simple graph, the moralisation and triangularisation steps
are trivial, and the JTA is given immediately by fig(9b). A valid
assignment is Ψ (a, b) = p(a|b), Ψ (b) = 1, Ψ (b, c) = p(b|c)p(c).

First let’s absorb from (a, b) through the separator b to (b, c):

Finding a marginal p(b)

First we just run the JTA as usual.
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• The new separator is given by Ψ∗ (b) =
∑

a Ψ(a, b) =
∑

a p(a|b) =
1.

• The new potential on (b, c) is given by Ψ∗ (b, c) = Ψ(b,c)Ψ∗(b)
Ψ(b) =

p(b|c)p(b)×1
1 .

• The new separator is given by Ψ∗∗ (b) =
∑

c Ψ
∗ (b, c) =

∑
c p(b|c)p(c).

• The new potential on (a, b) is given by Ψ∗ (a, b) = Ψ(a,b)Ψ∗∗(b)
Ψ∗(b) =

p(a|b)
∑

c
p(b|c)p(c)

1 . This is therefore indeed equal to the marginal
since

∑
c p(a, b, c) = p(a, b).

Also, the new separator Ψ∗∗ (b) contains the marginal p(b) since
Ψ∗∗ (b) =

∑
c p(b|c)p(c) =

∑
c p(b, c) = p(b).

Finding a conditional marginal p(b|a = 1, c = 1)

First we clamp the evidential variables in their states. Then we claim
that the effect of running the JTA is to produce on the cliques, the
joint marginals p(a = 1, b, c = 1), p(a = 1, b, c = 1) and p(a = 1, b, c =
1) for the final potentials on the two cliques and their separator. We
demonstrate this below:

• In general, the new separator is given by Ψ∗ (b) =
∑

a Ψ(a, b) =∑
a p(a|b) = 1. However, since a is clamped in state a = 1, then

the summation is not carried out over a, and we have instead
Ψ∗ (b) = p(a = 1|b).

• The new potential on the (b, c) clique is given by Ψ∗ (b, c) =
Ψ(b,c)Ψ∗(b)

Ψ(b) = p(b|c=1)p(c=1)p(a=1|b)
1 .

• The new separator is normally given by Ψ∗∗ (b) =
∑

c Ψ
∗ (b, c) =∑

c p(b|c)p(c). However, since c is clamped in state 1, we have
instead Ψ∗∗ (b) = p(b|c = 1)p(c = 1)p(a = 1|b)

• The new potential on (a, b) is given by Ψ∗ (a, b) = Ψ(a,b)Ψ∗∗(b)
Ψ∗(b) =

p(a=1|b)p(b|c=1)p(c=1)p(a=1|b)
p(a=1|b) = p(a = 1|b)p(b|c = 1)p(c = 1).

Hence, here in this special case, all the cliques contain the joint dis-
tribution p(a = 1, b, c = 1).

In general, the effect of clamping a set of variables V in their evidential
states, and running the JTA is that, for a clique i which contains the
set of non-evidential variables Hi, the potentials after the end of the
JTA contains the marginal p(Hi, V ).

Then calculating the conditional marginal p(b|a = 1, c = 1) is a sim-
ple matter since p(b|a = 1, c = 1) ∝ p(a = 1, b, c = 1), where the
proportionality is determined by the normalisation constraint.

Finding the likelihood p(a = 1, c = 1)

By the above procedure, the effect of clamping the variables in their
evidential states and running the JTA produces the joint marginals,
such as Ψ∗ (a, b) = p(a = 1, b, c = 1). Then calculating the likelihood
is easy since we just sum out over the non-evidential variables of any
converged potential : p(a = 1, c = 1) =

∑
b Ψ

∗ (a, b) =
∑

b p(a =
1, b, c = 1).

Whilst we have demonstrated these results only on such a simple
graph, the same story holds in the general case. Hence calculating
conditional marginals and likelihoods can be obtained in exactly the
same way. The main thing to remember is that clamping the variables
in evidential states means that the joint distribution on the non-
evidential variables in a clique with all the evidental variables clamped
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in their evidential states is what is found a the end of the JTA. From
this conditionals and the likelihood are straightforward to calculate.


