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Abstract

Label sequence learning is the problem of inferring a state se-
quence from an observation sequence, where the state sequence
may encode a labeling, annotation or segmentation of the se-
quence. In this paper we give an overview of discriminative
methods developed for this problem. Special emphasis is put on
large margin methods by generalizing multiclass Support Vec-
tor Machines and AdaBoost to the case of label sequences. An
experimental evaluation demonstrates the advantages over clas-
sical approaches like Hidden Markov Models and the competi-
tiveness with methods like Conditional Random Fields.

1. Introduction
The problem of labeling, annotating or segmenting observation
sequences is omnipresent in areas like natural language pro-
cessing, speech recognition, information retrieval, and compu-
tational biology. Prominent examples include part-of-speech
tagging, named entity classification, information extraction,
continuous speech recognition, and secondary protein struc-
ture prediction. Formally, problems of this type can often
be cast as the problem of inferring a label or state sequence
y = (y1, y2, . . . , yT ) with yt ∈ Σ from an observation se-
quence x = (x1, x2, . . . , xT ).

Up to now, the predominant formalism for modeling label
sequences has been based on Hidden Markov Models (HMMs)
and variations thereof. Yet, despite its success HMMs have
two major shortcomings. First, HMMs are typically trained
in a non-discriminant manner using maximum likelihood esti-
mation for a joint sampling model of observation and label se-
quences. Second, efficient inference and learning in this setting
often requires to make questionable conditional independence
assumptions. The first problem poses the challenge of finding
more appropriate objective functions, i.e. alternatives to the log-
likelihood that are more closely related to application-relevant
performance measures. The second problem is one of develop-
ing more powerful architectures, for example, by allowing di-
rect dependencies between a label and past/future observations
(overlapping features) or by efficiently handling higher-order
combinations of input features. At the same time, one would
like to address these shortcomings without sacrificing some of
the benefits that HMMs offer, namely a dynamic programming
formulation for decoding, inference and learning.

In this paper we focus on the supervised learning frame-
work and assume that a set of labeled training sequences is
available from which the desired mapping is learned. Label se-
quence learning can then be thought of as a natural extension of
supervised classification. In particular, we present generaliza-
tions of two of the most competitive large margin methods for
classification, Support Vector Machines (SVMs) and AdaBoost,
to the problem of label sequence learning.

2. Learning Architectures
We will work in the following setting: A learning architec-
ture specifies a family of λ-parameterized discriminant func-
tions F (x,y;λ) that assign a numerical score to every pair of
observation/label sequences. One can think of F (x,y;λ) as
measuring the compatibility between the observation sequence
x and the label sequence y. Each discriminant function F in-
duces a mapping f ,

f(x;λ) = arg max
y

F (x,y;λ) , (1)

where ties are arbitrarily broken. In this paper, we will restrict
our attention to discriminant functions that are linear in some
feature representation of (x,y). Hence, F has the following
general functional form

F (x,y;λ) =
X

k

λkψk(x,y) = 〈λ,Ψ(x,y)〉 . (2)

The remaining crucial ingredients of an architecture are thus the
extracted features or statistics ψk.

For concreteness, let us assure ourselves that the HMM
architecture can be handled as a special case in this setting.
HMMs extract two types of features from a sequence pair
(x,y). The first type of features deal with label-label inter-
actions between neighboring labels:

ψk(x,y) =
X

t

[[yt=σm]][[yt+1 = σ̄m]], (3)

where σm, σ̄m ∈ Σ denote states and [[·]] denotes the indicator
function of the enclosed predicate. These features simply count
how often a particular combination of labels occur at neighbor-
ing sites. The second type of features ψk conjunctively combine
input attributes φl with states σm,

ψk(x,y) =
X

t

[[yt=σm]]φl(x
t) . (4)

For example, if each input is described by L attributes φl and if
there are K = |Σ| possible states, then one may extract a total
ofK ·L features of this type by combining every input attribute
with every state.

There are at least two ways for designing more powerful
learning architectures. First, one may include direct dependen-
cies of the type in Eq. (4) between a label variable yt and input
features φl(xs) with s 6= t , for example, s ∈ {t−δ, . . . , t+δ}.
These are also sometimes called “overlapping” features, since
the same input feature φl(xs) is included in multiple statistics.

Second, in kernel-based architectures it may not be pos-
sible or efficient to work with the explicit input attributes Φ,
but the data may instead be represented via kernel functions
K(x, x̄) = 〈Φ(x),Φ(x̄)〉. Hence there is a need for methods
that can work in a dual representation, where the data only en-
ters through values of K on pairs of observations.



3. Loss Functions and Risks
There is no single objective function for label sequences that
would be preferable in all situations, rather this choice will de-
pend on the specific application. Consequently, we will discuss
a number of reasonable alternatives.

First of all, based on a generalization of the standard zero-
one classification loss to label sequences one can define the fol-
lowing empirical risk for n training instances

Rzo(λ) =
1

n

n
X

i=1

[[f(xi;λ) 6= yi]] . (5)

A second risk function we consider is based on the rank loss
[1, 2] which measures the fraction of incorrect label sequences
that are ranked higher than the correct one. In order to account
for varying sequence lengths, we include weights w(Ti) > 0
for every sequence, where Ti is the length of the i-th sequence,

Rrk(λ,w)=

n
X

i=1

w(Ti)
X

y 6=yi

[[F (xi,y;λ)≥F (xi,yi; λ)]] . (6)

Since we expect the rank loss to scale exponentially with
the sequence length, we have investigated weighting functions
logw(Ti) = Ti log π with π ∈ (0; 1] in the experiments.

Lastly, the Hamming risk [1, 2] measures the zero-one loss
for individual labels and reduces to the standard empirical mis-
classification risk, if the sequential nature of the data is ignored,

Rhm(λ) =
1

P

i
Ti

n
X

i=1

Ti
X

t=1

[[f t(xi;λ) 6= yti ]] . (7)

The three risk functions presented are discontinuous in λ
and generally difficult to optimize. Moreover, minimizing the
empirical risk alone is not sufficient to ensure good generaliza-
tion performance. The methods discussed in the sequel can be
understood as minimizing an upper bound on one of these risk
functions, possibly combined with a regularization term.

4. Conditional Random Fields
Conditional random fields (CRFs) [3] can be considered the
state-of-the-art in label sequence learning. CRFs are a natu-
ral generalization of logistic regression to label sequences. The
starting point is to define a conditional probability of a label
sequence given an observation sequence as

p(y|x;λ) =
1

Z(x, λ)
exp [F (x,y;λ)] , (8)

where Z(x, λ) is a normalization constant. One can interpret
the weights λ as the canonical parameters and the ψk(x,y) as
the sufficient statistics of a conditional exponential family.

A number of algorithms have been proposed to estimate λ
by maximizing the conditional likelihood, or equivalently by
minimizing

Rlog(λ) = −
1

n

n
X

i=1

log p(yi|xi;λ) . (9)

These include iterative scaling [3] and various flavors of con-
jugate gradient descent and second order methods [4, 5, 6] as
well as approximation methods such as the voted perceptron
[7]. Usually a regularization term proportional to the squared
norm ‖λ‖2 is added, resulting in a penalized likelihood crite-
rion [8]. The negative log-likelihood provides an upper bound
on the empirical zero-one risk:

Proposition 1. Rzo log 2 ≤ Rlog.

Proof. Distinguish two cases:
(i) F (xi,yi;λ) > maxy 6=yi

F (xi,y;λ) in which case
log 2[[f(xi;λ) 6= yi]] = 0 = − log 1 ≤ − log p(yi|xi;λ).
(ii) F (xi,yi;λ) ≤ maxy 6=yi

F (xi,y;λ) in which case
log 2[[f(xi;λ) 6= yi]] = − log 1

2
≤ − log p(yi|xi;λ), since

p(yi|xi;λ) ≤ 1
2

.
Summing over all i completes the proof.

Following [9, 2] one can also use a modification of the loga-
rithmic risk based on the marginal probabilities of the individual
label variables yti in estimating λ,

Rmg(λ) = −
1

P

i
Ti

n
X

i=1

Ti
X

t=1

log p(yti |x;λ) (10)

This defines an upper bound on the Hamming risk Rhm, if one
uses a pointwise decoding function

Proposition 2. With f t(x;λ) = arg maxσ Pr(Y t = σ|x;λ),
the following bound holds: log 2 · Rhm(λ) ≤ Rmg(λ).

Proof. Omitted, analogous to Proposition 1.

Again, standard numerical optimization procedures such as
conjugate gradient can be used to optimizeRmg, since the com-
putation of the gradient can be carried out efficiently by dy-
namic programming as shown in [9].

5. Hidden Markov SVMs
We present a generalization of SVMs to label sequence learn-
ing. As a first step, we propose to generalize the multiclass
separation margin [10, 11] and define the margin achieved by λ
on an instance (x,y) as

γ(x,y;λ) ≡ [F (x,y;λ)−max
y′ 6=y

F (x,y′;λ)]/2 . (11)

Notice that γ(x,y) > 0 implies that the correct label sequence
receives the highest score. In general, we want the score of
the correct output not only to be maximal, but also to be larger
than the second best output by some margin, which is what γ
measures. Then we propose to choose λ by maximizing the
minimal margin, i.e. λ∗ = arg maxλ mini γ(xi,yi;λ).

Notice that the discriminant function F is linear in the fea-
ture representation ψk. Hence, if a minimal margin of γ > 0
can be achieved, then the margin can be made arbitrary large
by scaling λ. Using the standard trick of fixing the functional
margin at 1, one can hence equivalently minimize the squared
norm ‖λ‖2 subject to the margin constraints.

In order to accommodate for margin violations one can gen-
eralize this formulation in two ways. First one may add one
slack variable ξi for every training sequence. A soft-margin
SVM problem can than be formulated as

SVM1: min
λ,ξ

1

2
‖λ‖2 +C

n
X

i=1

ξi, s.t. ξi ≥ 0, ∀i

1

2
[F (xi,yi;λ)− F (xi,y;λ)] ≥ 1− ξi, ∀i,y 6= yi .

Notice that the optimal solution of the slack variables is implic-
itly determined by the weights λ, ξi(λ) = max{0, 1 − γi(λ)}.

Proposition 3. The risk Rsvm(λ) = 1
n

Pn

i=1 ξi(λ) is an upper
bound on the sequence classification loss.



Proof. (i) If ξi(λ) < 1, then one gets F (xi,yi; λ) −
maxy 6=yi

F (xi,y;λ) = γ(xi,yi) > 0 which means the data
point is correctly classified and [[f(xi;λ) 6= yi]] = 0 ≤ ξi(λ).
(ii) If ξi(λ) ≥ 1, then is automatically an upper bound, since
[[f(xi;λ) 6= yi]] ≤ 1 ≤ ξi(λ).

As an alternative to SVM1, one can also introduce one
slack variable for every training instance and every sequence y,
leading to a similar QP, SVM2, with slack variables ξiy(λ) =
max{0, 1− [F (xi,yi)−F (xi,y)]/2}. This provides an upper
bound on the rank loss:

Proposition 4. 1
n

Pn

i=1 w(Ti)
P

y 6=yi
ξiy(λ) ≥ Rrk(λ,w).

Proof. (i) If ξiy(λ) < 1, then F (xi,yi;λ) > F (xi,y;λ)
which implies that y is ranked lower than yi, in which case
ξiy(λ) ≥ 0 establishes the bound.
(ii) If ξiy(λ) ≥ 1, then the bound holds trivially, since the con-
tribution of every pair (xi,y) toRrk can be at most 1.

Comparing SVM1 and SVM2, notice that we expect the
number of active inequalities in SVM1 to be much smaller com-
pared to SVM2, since SVM1 only penalizes the largest mar-
gin violation for each example. While this is a data-dependent,
i.e. empirical assertion, it is of great practical relevance and has
led us to focus on the sparser SVM1 formulation.

The main computational challenge in optimizing SVM1 is
posed by the extremely large number of linear inequalities, scal-
ing exponentially with the length of the sequences. However,
one can reasonably expect that only a very tiny fraction of in-
equalities will be active at the solution. Hence, we propose to
use a row selection or working set procedure to incrementally
add inequalities to the problem. Along these lines, we first de-
rive the dual QP with Lagrange multipliers αiy for every margin
inequality.

DSVM1 max
α

1

2

X

i,y

αiy

"

1 −
X

j,ȳ

αjȳziyzjȳKi,j(y, ȳ)

#

s.t. αiy ≥ 0, ∀i,y;
X

y

αiy ≤ C,
X

y

ziyαiy = 0 , ∀i

Here ziy denotes a binary pseudo-label, i.e. ziy = 1 for y =
yi and ziy = −1, otherwise. Ki,j(y, ȳ) denotes the inner
product between training sequences defined as Ki,j(y, ȳ) =
P

k
ψk(xi,y)ψk(xj , ȳ).
It is important to point out that for features that just involve

a single label, one can combine this with an implicit feature
representation for observation vectors. Hence with ψk(x,y) =
P

t
[[yt = σm]]φl(xt+r) and k ∈ I , where I is the index set

over features that combine input attributes with states, one can
exploit the identity

X

k∈I

ψk(x,y)ψk(x̄, ȳ)=
X

s,t

[[ys= ȳt]]K(xs, x̄t) . (12)

The implications are significant, since this allows to carry over
all the advantages of non-linear SVMs to the label sequence
case.

As a first step towards solving DSVM1, we observe that
the constraints only couple αiy for the same training instance i.
Hence we can adapt the strategy proposed in [11] and optimize
over a subspace associated with a particular training instance,
while keeping the remaining variables fixed. Secondly, we pro-
pose to maintain an active set of label sequences, Si, for every
instance. The full algorithm is shown in Algorithm 1. In order
to perform step 4, we use a two-best Viterbi decoding.

Algorithm 1 Working set optimization for DSVM1.
1: Si ← {yi}, αi = 0, ∀i
2: repeat
3: for i = 1, . . . , n do
4: compute ŷ = arg maxy 6=yi

F (xi,y;α)
5: if F (xi,yi;α)− F (xi, ŷ;α) < 2 then
6: Si ← Si ∪ {ŷ}
7: optimize DSVM1 over {αiy|y ∈ Si}
8: end if
9: remove y ∈ Si with αiy < ε

10: end for
11: until converged

6. Label Sequence AdaBoost
As a second large margin method, we present a generalization
of AdaBoost to label sequence learning. Following [12], our
starting point will be the following exponential risk function

Rexp(λ,w) ≡
n

X

i=1

w(Ti)
X

y 6=yi

eF (xi,y;λ)−F (xi,yi;λ) (13)

Proposition 5. The exponential risk is an upper bound on the
rank risk,Rrnk ≤ Rexp.

Proof. (i) If F (xi,yi;λ) > F (xi,y;λ) then [[F (xi,y;λ) ≥
F (xi,yi;λ)]] = 0 ≤ ez for any z.
(ii) Otherwise, [[F (xi,y;λ) ≥ F (xi,yi;λ)]] = 1 = e0 ≤

eF (xi,y;λ)−F (xi,yi;λ).
Performing a weighted sum over all instances and label se-
quences y completes the proof.

One way of minimizing the exponential loss in Eq. (13) is
by gradient-based methods [2], but here we will also outline
the derivation of a boosting algorithm that generalizes the Ada-
Boost.MR algorithm for multiclass classification [1]. We iden-
tify ΣTi with a set of possible super-labels for xi and define
a sequence of distributions Dr(i,y) over (xi,y) pairs recur-
sively as follows:

Dr+1(i,y)≡
Dr(i,y)

Zr
e4λk(ψk(xi,y)−ψk(xi,yi)). (14)

Here k = k(r) denotes the feature selected in the r-th round,
4λk is the corresponding update increment and Zr the normal-
ization constant. We initialize D0(i,y) = w(Ti)

(|Σ|Ti−1)
P

j w(Tj )
.

After R rounds of boosting, the parameters vector is given by
λk =

PR

r=14λk(r).

Proposition 6. For any number of rounds R,Rrk ≤
QR

r=1 Zr .

Proof. [1, Theorem 6]

Hence, one may greedily optimize the upper bound by se-
lecting at every round a feature k leading to the minimal Zr .
As discussed in [2] the parallel computation of Zr for all k us-
ing dynamic programming is usually inefficient. Instead, we
propose to compute an upper bound on Zr and use these upper
bounds for selecting features in every round of boosting.

The basic idea is to use the following inequality valid for x,
x0 ≤ x ≤ x1, leading to a bound that is linear in x,

ex ≤ ex0
x1 − x

x1 − x0
+ ex1

x− x0

x1 − x0
, (15)



which results in

Zr+1 ≤ ake
4λkψ

min
ik + (1 − ak)e

4λkψ
max
ik (16a)

ak =
X

i,y 6=yi

Dr(i,y)
ψmaxik − ψk(xi,y)

ψmaxik − ψminik

, (16b)

where ψmaxik and ψminik are an upper and lower bound on the
value of feature ψk(xi,y) taken over all y. The left hand side
of Eq. (16a) can be minimized analytically with respect to4λk
to give the tightest bound. The index k achieving the smallest
upper bound is selected.

We would like to point out that all the quantities involved
(such as ak) can be computed for all features simultaneously
with a single dynamic programming run per sequence [2].

Algorithm 2 Label sequence AdaBoost.MR.

1: initialize D0(i,y) = w(Ti)

(|Σ|Ti−1)
P

j w(Tj )
, D0(xi,yi) = 0

2: initialize λ = 0
3: for r = 1, . . . , R do
4: perform dynamic programming to compute {ak}
5: select k minimizing the upper bound in Eq. (16a)
6: compute optimal increment4λk
7: update weight λk ← λk +4λk
8: update Dr+1 using Eq. (14)
9: end for

7. Applications and Experiments
We report experiments on two applications: named entity recog-
nition (NER) and part-of-speech tagging (POS). For the first
task we generated a sub-corpus consisting of 300 sentences
from the Spanish news wire article corpus which was provided
for the Special Session of limited to CoNLL2002 on NER. The
label set in this corpus consist of non-name and the beginning
and continuation of person names, organizations, locations and
miscellaneous names, resulting in a total of |Σ| = 9 different
labels. For the tagging application we extracted a corpus con-
sisting of 300 sentences from the Penn TreeBank corpus. The
total number of function tags was |Σ| = 45. All input features
are simple binary features. Most features are indicator functions
for a word occurring within a fixed size window centered on the
word being labeled. In addition there are features that encode
morphological properties, e.g. spelling features.

Table 1 summarizes the experimental results. We have
trained standard HMMs as well as HMMs with overlapping fea-
tures. As can be seen, all discriminative methods outperform
HMMs. HM-SVMs overall achieve the best accuracy values.
Boosting performs somewhat worse than the other methods, but
has the advantage to lead to a sparse solution, which may have
additional advantages in real-time settings.

8. Conclusion
We surveyed discriminative methods for label sequence learn-
ing and presented generalizations of large margin methods,
SVM and AdaBoost. These methods combine the advantages
of large margin methods with the elegance and efficiency of
HMMs. Our experiments prove the competitiveness of these
methods on two benchmark sets. We are currently working on
a large-scale experimental evaluation.

HMM CRF MRF SVM EXP Boost
NER 89.13 94.55 94.56 94.92 94.14 92.26

(91.15)
POS 73.60 87.12 87.55 88.16 86.47 85.89

(77.22)

Table 1: Prediction accuracies of various method. HMM: Hid-
den Markov Model, overlapping features in brackets, CRF:
Conditional Random Fields, MRF: Marginal Random Fields,
minimizing Rmg, SVM: Hidden Markov Support Vector Ma-
chine, EXP: minimizing exponential loss Rexp, Boost: general-
ization of AdaBoost.
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