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Abstract

Learning the common structure shared by a set of supervised tasks is an important
practical and theoretical problem. Knowledge of this structure may lead to bet-
ter generalization performance on the tasks and may also facilitate learning new
tasks. We propose a framework for solving this problem, which is based on reg-
ularization with spectral functions of matrices. This class of regularization prob-
lems exhibits appealing computational properties and can be optimized efficiently
by an alternating minimization algorithm. In addition, we provide a necessary
and sufficient condition for convexity of the regularizer. We analyze concrete ex-
amples of the framework, which are equivalent to regularization with Lp matrix
norms. Experiments on two real data sets indicate that the algorithm scales well
with the number of tasks and improves on state of the art statistical performance.

1 Introduction

Recently, there has been renewed interest in the problem of multi-task learning, see [2, 4, 5, 14,
16, 19] and references therein. This problem is important in a variety of applications, ranging from
conjoint analysis [12], to object detection in computer vision [18], to multiple microarray data set
integration in computational biology [8] – to mention just a few. A key objective in many multi-
task learning algorithms is to implement mechanisms for learning the possible structure underlying
the tasks. Finding this common structure is important because it allows pooling information across
the tasks, a property which is particularly appealing when there are many tasks but only few data
per task. Moreover, knowledge of the common structure may facilitate learning new tasks (transfer
learning), see [6] and references therein.
In this paper, we extend the formulation of [4], where the structure shared by the tasks is described
by a positive definite matrix. In Section 2, we propose a framework in which the task parameters and
the structure matrix are jointly computed by minimizing a regularization function. This function has
the following appealing property. When the structure matrix is fixed, the function decomposes across
the tasks, which can hence be learned independently with standard methods such as SVMs. When
the task parameters are fixed, the optimal structure matrix is a spectral function of the covariance of
the tasks and can often be explicitly computed. As we shall see, spectral functions are of particular
interest in this context because they lead to an efficient alternating minimization algorithm.
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The contribution of this paper is threefold. First, in Section 3 we provide a necessary and sufficient
condition for convexity of the optimization problem. Second, in Section 4 we characterize the spec-
tral functions which relate to Schatten Lp regularization and present the alternating minimization
algorithm. Third, in Section 5 we discuss the connection between our framework and the convex
optimization method for learning the kernel [11, 15], which leads to a much simpler proof of the
convexity in the kernel than the one given in [15]. Finally, in Section 6 we present experiments on
two real data sets. The experiments indicate that the alternating algorithm runs significantly faster
than gradient descent and that our method improves on state of the art statistical performance on
these data sets. They also highlight that our approach can be used for transfer learning.

2 Modelling Tasks’ Structure

In this section, we introduce our multi-task learning framework. We denote by S
d the set of d × d

symmetric matrices, by S
d
+ (Sd

++) the subset of positive semidefinite (definite) ones and by O
d the

set of d × d orthogonal matrices. For every positive integer n, we define INn = {1, . . . , n}. We
let T be the number of tasks which we want to simultaneously learn. We assume for simplicity
that each task t ∈ INT is well described by a linear function defined, for every x ∈ IRd, as w>

t x,
where wt is a fixed vector of coefficients. For each task t ∈ INT , there are m data examples
{(xtj , ytj) : j ∈ INm} ⊂ IRd × IR available. In practice, the number of examples per task may vary
but we have kept it constant for simplicity of notation.
Our goal is to learn the vectors w1, . . . , wT , as well as the common structure underlying the tasks,
from the data examples. In this paper we follow the formulation in [4], where the tasks’ structure
is summarized by a positive definite matrix D which is linked to the covariance matrix between
the tasks, WW>. Here, W denotes the d × T matrix whose t-th column is given by the vector wt

(we have assumed for simplicity that the mean task is zero). Specifically, we learn W and D by
minimizing the function

Reg(W,D) := Err(W ) + γ Penalty(W,D), (2.1)
where γ is a positive parameter which balances the importance between the error and the penalty.
The former may be any bounded from below and convex function evaluated at the values w>

t xtj ,
t ∈ INT , j ∈ INm. Typically, it will be the average error on the tasks, namely, Err(W ) =
∑

t∈INT
Lt(wt), where Lt(wt) =

∑

j∈INm
`(ytj , w

>

t xtj) and ` : IR × IR → [0,∞) is a prescribed
loss function (e.g. quadratic, SVM, logistic etc.). We shall assume that the loss ` is convex in its
second argument, which ensures that the function Err is also convex. The latter term favors the tasks
sharing some common structure and is given by

Penalty(W,D) = tr(F (D)WW >) =

T
∑

t=1

w>

t F (D)wt, (2.2)

where F : S
d
++ → S

d
++ is a prescribed spectral matrix function. This is to say that F is induced

by applying a function f : (0,∞) → (0,∞) to the eigenvalues of its argument. That is, for every
D ∈ S

d
++ we write D = UΛU>, where U ∈ O

d, Λ = Diag(λ1, . . . , λd), and define
F (D) = UF (Λ)U>, F (Λ) = Diag(f(λ1), . . . , f(λd)). (2.3)

In the rest of the paper, we will always use F to denote a spectral matrix function and f to denote
the associated real function, as above.
Minimization of the function Reg allows us to learn the tasks and at the same time a good represen-
tation for them which is summarized by the eigenvectors and eigenvalues of the matrix D. Different
choices of the function f reflect different properties which we would like the tasks to share. In the
special case that f is a constant, the tasks are totally independent and the regularizer (2.2) is a sum
of T independent L2 regularizers. In the case f(λ) = λ−1, which is considered in [4], the regular-
izer favors a sparse representation in the sense that the tasks share a small common set of features.
More generally, functions of the form f(λ) = λ−α, α ≥ 0, allow for combining shared features
and task-specific features to some degree tuned by the exponent α. Moreover, the regularizer (2.2)
ensures that the optimal representation (optimal D) is a function of the tasks’ covariance WW >.
Thus, we propose to solve the minimization problem

inf
{

Reg(W,D) : W ∈ IRd×T , D ∈ S
d
++, tr D ≤ 1

}

(2.4)
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for functions f belonging to an appropriate class. As we shall see in Section 4, the upper bound
on the trace of D in (2.4) prevents the infimum from being zero, which would lead to overfitting.
Moreover, even though the infimum above is not attained in general, the problem in W resulting
after partial minimization over D admits a minimizer.
Since the first term in (2.1) is independent of D, we can first optimize the second term with respect
to D. That is, we can compute the infimum

Ωf (W ) := inf
{

tr(F (D)WW>) : D ∈ S
d
++, tr D ≤ 1

}

. (2.5)
In this way we could end up with an optimization problem in W only. However, in general this
would be a complex matrix optimization problem. It may require sophisticated optimization tools
such as semidefinite programming, which may not scale well with the size of W . Fortunately, as
we shall show, problem (2.4) can be efficiently solved by alternately minimizing over D and W . In
particular, in Section 4 we shall show that Ωf is a function of the singular values of W only. Hence,
the only matrix operation required by alternate minimization is singular value decomposition and
the rest are merely vector problems.
Finally, we note that the ideas above may be extended naturally to a reproducing kernel Hilbert space
setting [3].

3 Joint Convexity via Matrix Concave Functions

In this section, we address the issue of convexity of the regularization function (2.1). Our main
result characterizes the class of spectral functions F for which the term w>F (D)w is jointly convex
in (w,D), which in turn implies that (2.4) is a convex optimization problem.
To illustrate our result, we require the matrix analytic concept of concavity, see, for example, [7].
We say that the real-valued function g : (0,∞) → IR is matrix concave of order d if

λG(A) + (1 − λ)G(B) ¹ G(λA + (1 − λ)B) ∀A,B ∈ S
d
++ and λ ∈ [0, 1] ,

where G is defined as in (2.3). The notation ¹ denotes the Loewner partial order on S
d: C ¹ D

if and only if D − C is positive semidefinite. If g is a matrix concave function of order d for any
d ∈ IN, we simply say that g is matrix concave. We also say that g is matrix convex (of order d)
if −g is matrix concave (of order d). Clearly, matrix concavity implies matrix concavity of smaller
orders (and hence standard concavity).
Theorem 3.1. Let F : Sd

++→ S
d
++ be a spectral function. Then the function ρ : IRd×S

d
++→ [0,∞)

defined as ρ(w,D) = w>F (D)w is jointly convex if and only if 1

f
is matrix concave of order d.

Proof. By definition, ρ is convex if and only if, for any w1, w2 ∈ IRd, D1, D2 ∈ S
d
++ and λ ∈

(0, 1), it holds that
ρ(λw1 + (1 − λ)w2, λD1 + (1 − λ)D2) ≤ λρ(w1, D1) + (1 − λ)ρ(w2, D2).

Let C := F (λD1 + (1 − λ)D2), A := F (D1)/λ,B := F (D2)/(1 − λ), w := λw1 + (1 − λ)w2

and z := λw1. Using this notation, the above inequality can be rewritten as

w>Cw ≤ z>Az + (w − z)>B(w − z) ∀w, z ∈ IRd. (3.1)

The right hand side in (3.1) is minimized for z = (A + B)−1Bw and hence (3.1) is equivalent to

w>Cw ≤ w>
[

B(A + B)−1A(A + B)−1B +
(

I − (A + B)−1B
)

>

B
(

I − (A + B)−1B
)]

w ,

∀w ∈ IRd, or to

C ¹ B(A + B)−1A(A + B)−1B +
(

I − (A + B)−1B
)

>

B
(

I − (A + B)−1B
)

= B(A + B)−1A(A + B)−1B + B − 2B(A + B)−1B + B(A + B)−1B(A + B)−1B

= B − B(A + B)−1B = (A−1 + B−1)−1 ,

where the last equality follows from the matrix inversion lemma [10, Sec. 0.7]. The above inequality
is identical to (see e.g. [10, Sec. 7.7])

A−1 + B−1 ¹ C−1 ,
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or, using the initial notation,
λ
(

F (D1)
)−1

+ (1 − λ)
(

F (D2)
)−1

¹
(

F (λD1 + (1 − λ)D2)
)−1

.

By definition, this inequality holds for any D1, D2 ∈ S
d
++, λ ∈ (0, 1) if and only if 1

f
is matrix

concave of order d.

Examples of matrix concave functions on (0,∞) are log(x + 1) and the function xs for s ∈ [0, 1]
– see [7] for other examples and theoretical results. We conclude with the remark that, whenever 1

f

is matrix concave of order d, function Ωf in (2.5) is convex, because it is the partial infimum of a
jointly convex function [9, Sec. IV.2.4].

4 Regularization with Schatten Lp Prenorms

4.1 Partial Minimization of the Penalty Term

In this section, we focus on the family of negative power functions f and obtain that function Ωf

in (2.5) relates to the Schatten Lp prenorms. We start by showing that problem (2.5) reduces to a
minimization problem in IRd, by application of a useful matrix inequality. In the following, we let
B take the place of WW > for brevity.
Lemma 4.1. Let F : S

d → S
d be a spectral function, B ∈ S

d and βi, i ∈ INd, the eigenvalues of
B. Then,

inf{tr(F (D)B) : D ∈ S
d
++, tr D ≤ 1} = inf

{

∑

i∈INd

f(δi)βi : δi > 0, i ∈ INd,
∑

i∈INd

δi ≤ 1

}

.

Moreover, for the infimum on the left to be attained, F (D) has to share a set of eigenvectors with B
so that the corresponding eigenvalues are in the reverse order as the βi.

Proof. We use an inequality of Von Neumann [13, Sec. H.1.h] to obtain, for all X,Y ∈ S
d, that

tr(XY ) ≥
∑

i∈INd

λiµi

where λi and µi are the eigenvalues of X and Y in nonincreasing and nondecreasing order, re-
spectively. The equality is attained whenever X = UDiag(λ)U>, Y = UDiag(µ)U> for some
U ∈ O

d. Applying this inequality for X = F (D), Y = B and denoting f(δi) = λi, i ∈ INd, the
result follows.

Using this lemma, we can now derive the solution of problem (2.5) in the case that f is a negative
power function.
Proposition 4.2. Let B ∈ S

d
+ and s ∈ (0, 1]. Then we have that

(trBs)
1

s = inf
{

tr(D
s−1

s B) : D ∈ S
d
++, tr D ≤ 1

}

.

Moreover, if B ∈ S
d
++ the infimum is attained and the minimizer is given by D =

Bs

tr Bs
.

Proof. By Lemma 4.1, it suffices to show the analogous statement for vectors, namely that
(

∑

i∈INd

βs
i

)
1

s

= inf

{

∑

i∈INd

δ
s−1

s

i βi : δi > 0, i ∈ INd,
∑

i∈INd

δi ≤ 1

}

where βi ≥ 0, i ∈ INd. To this end, we apply Hölder’s inequality with p = 1

s
and q = 1

1−s
:

∑

i∈INd

βs
i =

∑

i∈INd

(

δ
s−1

s

i βi

)s

δ1−s
i ≤

(

∑

i∈INd

δ
s−1

s

i βi

)s(
∑

i∈INd

δi

)1−s

≤

(

∑

i∈INd

δ
s−1

s

i βi

)s

.

When βi > 0, i ∈ INd, the equality is attained for δi =
βs

i
∑

j∈INd
βs

j

, i ∈ INd. To show that the

inequality is sharp in all other cases, we replace βi by βi,ε := βi + ε, i ∈ INd, ε > 0, define
δi,ε = βs

i,ε/(
∑

j βs
j,ε) and take the limits as ε → 0.
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The above result implies that the regularization problem (2.4) is conceptually equivalent to regular-
ization with a Schatten Lp prenorm of W , when the coupling function f takes the form f(x) = x1− 2

p

with p ∈ (0, 2], p = 2s. The Schatten Lp prenorm is the Lp prenorm of the singular values of a
matrix. In particular, trace norm regularization (see [1, 17]) corresponds to the case p = 1. We also
note that generalization error bounds for Schatten Lp norm regularization can be derived along the
lines of [14].

4.2 Learning Algorithm

Lemma 4.1 demonstrates that optimization problems such as (2.4) with spectral regularizers of the
form (2.2) are computationally appealing, since they decompose to vector problems in d variables
along with singular value decomposition of the matrix W . In particular, for the Schatten Lp prenorm
with p ∈ (0, 2], the proof of Proposition 4.2 suggests a way to solve problem (2.4). We modify the
penalty term (2.2) as

Penaltyε(W,D) = tr
(

F (D)(WW> + εI)
)

, (4.1)
where ε > 0 and let Regε(W,D) = Err(W ) + γ Penaltyε(W,D) be the corresponding regulariza-
tion function. By Proposition 4.2, for a fixed W ∈ IRd×T there is a unique minimizer of Penaltyε

(under the constraints in (2.5)), given by the formula

Dε(W ) =
(WW> + εI)

p

2

tr(WW> + εI)
p

2

. (4.2)

Moreover, there exists a minimizer of problem (2.4), which is unique if p ∈ (1, 2].
Therefore, we can solve problem (2.4) using an alternating minimization algorithm, which is an
extension of the one presented in [4] for the special case F (D) = D−1. Each iteration of the
algorithm consists of two steps. In the first step, we keep D fixed and minimize over W . This
consists in solving the problem

min

{

∑

t∈INT

Lt(wt) + γ
∑

t∈INT

w>

t F (D)wt : W ∈ IRd×T

}

.

This minimization can be carried out independently for each task since the regularizer decouples
when D is fixed. Specifically, introducing new variables for (F (D))

1

2 wt yields a standard L2 reg-
ularization problem for each task with the same kernel K(x, z) = x>(F (D))−1z, x, z ∈ IRd. In
other words, we simply learn the parameters wt – the columns of matrix W – independently by
a regularization method, for example by an SVM or ridge regression method, for which there are
well developed tool boxes. In the second step, we keep matrix W fixed and minimize over D using
equation (4.2).
Space limitations prevent us from providing a convergence proof of the algorithm. We only note
that following the proof detailed in [3] for the case p = 1, one can show that the sequence produced
by the algorithm converges to the unique minimizer of Regε if p ∈ [1, 2], or to a local minimizer
if p ∈ (0, 1). Moreover, by [3, Thm. 3] as ε goes to zero the algorithm converges to a solution of
problem (2.4), if p ∈ [1, 2]. In theory, an algorithm without ε-perturbation does not converge to a
minimizer, since the columns of W and D always remain in the initial column space. In practice,
however, we have observed that even such an algorithm converges to an optimal solution, because
of round-off effects.

5 Relation to Learning the Kernel

In this section, we discuss the connection between the multi-task framework (2.1)-(2.4) and the
framework for learning the kernel, see [11, 15] and references therein. To this end, we define the
kernel Kf (D)(x, z) = x>(F (D))−1z, x, z ∈ IRd, the set of kernels Kf = {Kf (D) : D ∈
S

d
++, tr D ≤ 1} and, for every kernel K, the task kernel matrix Kt = (K(xti, xtj) : i, j ∈ INm),

t ∈ INT . It is easy to prove, using Weyl’s monotonicity theorem [10, Sec. 4.3] and [7, Thm. V.2.5],
that the set Kf is convex if and only if 1

f
is matrix concave. By the well-known representer theorem

(see e.g. [11]), problem (2.4) is equivalent to minimizing the function
∑

t∈INT

(

∑

i∈INm

`(yti, (Ktct)i) + γ c>

t Ktct

)

(5.1)
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over ct ∈ IRm (for t ∈ INT ) and K ∈ Kf . It is apparent that the function (5.1) is not jointly convex
in ct and K. However, minimizing each term over the vector ct gives a convex function of K.
Proposition 5.1. Let K be the set of all reproducing kernels on IRd. If `(y, ·) is convex for any
y ∈ IR then the function Et : K → [0,∞) defined for every K ∈ K as

Et(K) = min

{

∑

i∈INm

`(yti, (Ktc)i) + γ c>Ktc : c ∈ IRm

}

is convex.

Proof. Without loss of generality, we can assume as in [15] that Kt are invertible for all t ∈ INT .
For every a ∈ IRm and K ∈ K , we define the function Gt(a,K) =

∑

i∈INm
`(yti, ai)+γ a>K−1

t a,
which is jointly convex by Theorem 3.1. Clearly, Et(K) = min{Gt(a,K) : a ∈ IRm}. Recalling
that the partial minimum of a jointly convex function is convex [9, Sec. IV.2.4], we obtain the
convexity of Et.

The fact that the function Et is convex has already been proved in [15], using minimax theorems
and Fenchel duality. Here, we were able to simplify the proof of this result by appealing to the joint
convexity property stated in Theorem 3.1.

6 Experiments

In this section, we first report a comparison of the computational cost between the alternating min-
imization algorithm and the gradient descent algorithm. We then study how performance varies for
different Lp regularizers, compare our approach with other multi-task learning methods and report
experiments on transfer learning.
We used two data sets in our experiments. The first one is the computer survey data from [12]. It
was taken from a survey of 180 persons who rated the likelihood of purchasing one of 20 different
personal computers. Here the persons correspond to tasks and the computer models to examples.
The input represents 13 different computer characteristics (price, CPU, RAM etc.) while the output
is an integer rating on the scale 0 − 10. Following [12], we used the first 8 examples per task as the
training data and the last 4 examples per task as the test data. We measured the root mean square
error of the predicted from the actual ratings for the test data, averaged across people.
The second data set is the school data set from the Inner London Education Authority (see
http://www.cmm.bristol.ac.uk/learning-training/multilevel-m-support/datasets.shtml). It consists of
examination scores of 15362 students from 139 secondary schools in London. Thus, there are 139
tasks, corresponding to predicting student performance in each school. The input consists of the year
of the examination, 4 school-specific and 3 student-specific attributes. Following [5], we replaced
categorical attributes with binary ones, to obtain 27 attributes in total. We generated the training and
test sets by 10 random splits of the data, so that 75% of the examples from each school (task) belong
to the training set and 25% to the test set. Here, in order to compare our results with those in [5], we
used the measure of percentage explained variance, which is defined as one minus the mean squared
test error over the variance of the test data and indicates the percentage of variance explained by
the prediction model. Finally, we note that in both data sets we used the square loss, tuned the
regularization parameter γ with 5-fold cross-validation and added an additional input component
accounting for the bias term.
In the first experiment, we study the computational cost of the alternating minimization algorithm
against the gradient descent algorithm, both implemented in Matlab, for the Schatten L1.5 norm. The
left plot in Figure 1 shows the value of the objective function (2.1) versus the number of iterations,
on the computer survey data. The curves for different learning rates η are shown, whereas for rates
greater than 0.05 gradient descent diverges. The alternating algorithm curve for ε = 10−16 is also
shown. We further note that for both data sets our algorithm typically needed less than 30 iterations
to converge. The right plot depicts the CPU time (in seconds) needed to reach a value of the objective
function which is less than 10−5 away from the minimum, versus the number of tasks. It is clear
that our algorithm is at least an order of magnitude faster than gradient descent with the optimal
learning rate and scales better with the number of tasks. We note that the computational cost of our
method is mainly due to the T ridge regressions in the supervised step (learning W ) and the singular
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value decomposition in the unsupervised step (learning D). A singular value decomposition is also
needed in gradient descent, for computing the gradient of the Schatten Lp norm. We have observed
that the cost per iteration is smaller for gradient descent but the number of iterations is at least an
order of magnitude larger, leading to the large difference in time cost.
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Figure 1: Comparison between the alternating algorithm and the gradient descent algorithm.
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Figure 2: Performance versus p for the computer survey data (left) and the school data (right).

Table 1: Comparison of different methods on the computer survey data (left) and school data (right).
Method RMSE

p = 2 3.88
p = 1 1.93
p = 0.7 1.86

Hierarchical Bayes [12] 1.90

Method Explained variance
p = 2 23.5 ± 2.0%
p = 1 26.7 ± 2.0%

Hierarchical Bayes [5] 29.5 ± 0.4%

In the second experiment we study the statistical performance of our method as the spectral function
changes. Specifically, we choose functions giving rise to Schatten Lp prenorms, as discussed in
Section 4. The results, shown in Figure 2, indicate that the trace norm is the best norm on these
data sets. However, on the computer survey data a value of p less than one gives the best result
overall. From this we speculate that our method can even approximate well the solutions of certain
non-convex problems. In contrast, on the school data the trace norm gives almost the best result.
Next, in Table 1, we compare our algorithm with the hierarchical Bayes (HB) method described in
[5, 12]. This method also learns a matrix D using Bayesian inference. Our method improves on
the HB method on the computer survey data and is competitive on the school data (even though our
regularizer is simpler than HB and the data splits of [5] are not available).
Finally, we present preliminary results on transfer learning. On the computer survey data, we trained
our method with p = 1 on 150 randomly selected tasks and then used the learned structure matrix D
for training 30 ridge regressions on the remaining tasks. We obtained an RMSE of 1.98 on these 30
“new” tasks, which is not much worse than an RMSE of 1.88 on the 150 tasks. In comparison, when
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using the raw data (D = I
d

) on the 30 tasks we obtained an RMSE of 3.83. A similar experiment was
performed on the school data, first training on a random subset of 110 schools and then transferring
D to the remaining 29 schools. We obtained an explained variance of 19.2% on the new tasks. This
was worse than the explained variance of 24.8% on the 110 tasks but still better than the explained
variance of 13.9% with the raw representation.
7 Conclusion
We have presented a spectral regularization framework for learning the structure shared by many
supervised tasks. This structure is summarized by a positive definite matrix which is a spectral
function of the tasks’ covariance matrix. The framework is appealing both theoretically and prac-
tically. Theoretically, it brings to bear the rich class of spectral functions which is well-studied in
matrix analysis. Practically, we have argued via the concrete example of negative power spectral
functions, that the tasks’ parameters and the structure matrix can be efficiently computed using an
alternating minimization algorithm, improving upon state of the art statistical performance on two
real data sets. A natural question is to which extent the framework can be generalized to allow for
more complex task sharing mechanisms, in which the structure parameters depend on higher order
statistical properties of the tasks.
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