
1

Learning to Integrate Data from Different
Sources and Tasks

Andreas Argyriou

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of the

University of London.

Department of Computer Science

University College London

October 2007

2

I, Andreas Argyriou, confirm that the work presented in this thesis is my own. Where information

has been derived from other sources, I confirm that this has been indicated in the thesis.

Abstract 3

Abstract

Supervised learning aims at developing models with good generalization properties using input/output

empirical data. Methods which use linear functions and especially kernel methods, such as ridge regres-

sion, support vector machines and logistic regression, have been extensively applied for this purpose.

The first question we study deals with selecting kernels appropriate for a specific supervised task. To

this end we formulate a methodology for learning combinations of prescribed basic kernels, which can be

applied to a variety of kernel methods. Unlike previous approaches, it can address cases in which the set

of basic kernels is infinite and even uncountable, like the set of all Gaussian kernels. We also propose an

algorithm which is conceptually simple and is based on existing kernel methods. Secondly, we address

the problem of learning common feature representations across multiple tasks. It has been empirically

and theoretically shown that, when different tasks are related, it is possible to exploit task relatedness

in order to improve prediction on each task – as opposed to treating each task in isolation. We propose

a framework which is based on learning a common set of features jointly for a number of tasks. This

framework favors sparse solutions, in the sense that only a small number of features are involved. We

show that the problem can be reformulated as a convex one and can be solved with a conceptually simple

alternating algorithm, which is guaranteed to converge to an optimal solution. Moreover, the formulation

and algorithm we propose can be phrased in terms of kernels and hence can incorporate nonlinear feature

maps. Finally, we connect the two main questions explored in this thesis by demonstrating the analogy

between learning combinations of kernels and learning common feature representations across multiple

tasks.

Acknowledgements 4

Acknowledgements

The following thesis would not have been a reality without my collaboration with several people, the

feedback they have provided and their support. During its preparation, I have benefited greatly from

interaction with my thesis supervisor, Massimiliano Pontil, from having collaborated with him and from

his expertise in kernel learning methods. He has an eye for problems that are exciting and important and

an appreciation for mathematical rigor. Equally importantly, he has always been accessible and willing to

discuss even the least promising ideas and his critique, positive or negative, has been extremely valuable.

Last but not least, he has cultivated an environment of top-rate collaborators who are an inexhaustible

source of research ideas. Among these, I have been very fortunate to have worked with a mathematician

of the stature of Charles A. Micchelli and an all-around scientist like Theodoros Evgeniou. I would like

to thank them for their support in this and many other ways. I would also like to thank Raphael Hauser,

Mark Herbster, Andreas Maurer and Yiming Ying, with whom it has been a joy to work and be friends.

Many thanks go to Mark Girolami and John Shawe-Taylor who have read the thesis thoroughly and

provided excellent comments and suggestions. Also to Zoubin Ghahramani who has given feedback for

early versions of my work. In addition, I have benefited from discussions with several people in the wider

machine learning community and especially from the fruitful and exciting intellectual environment of

UCL Computer Science and the Gatsby Institute. Finally, I would like to thank my family and my friends,

in London and abroad, for providing a supportive environment but also for the intellectual exchange with

them, in science and many other areas.

Contents 5

Contents

1 Introduction 11

2 Convex Analysis and Regularization in Hilbert Spaces 14

2.1 Convex Sets and Functions . 14

2.1.1 Basic Definitions . 14

2.1.2 Closure and Continuity . 17

2.1.3 Separation and Representations . 17

2.1.4 Directional Derivatives and Subgradients . 18

2.1.5 Max-Functions . 19

2.1.6 The Convex Conjugate . 20

2.1.7 Optimization . 21

2.1.8 Minimax Problems . 22

2.2 Regularization with Reproducing Kernels . 23

2.2.1 Reproducing Kernel Hilbert Spaces . 23

2.2.2 Regularization in an RKHS . 24

2.2.3 Semi-Supervised Learning with Graph Laplacians 26

2.3 Spectral Functions . 27

3 Learning from Multiple Sources and Parameterizations 30

3.1 Learning by Integrating Sources . 31

3.1.1 Finite Combinations of Kernels . 32

3.1.2 Model Selection and Kernel Parameter Learning 34

3.2 Parameterized Convex Combinations of Kernels . 35

3.2.1 Notation . 35

3.2.2 Framework for Learning Combinations of Kernels 36

3.2.3 Convexity of Learning the Kernel . 38

3.2.4 Minimax Formulation and its Properties . 39

3.2.5 Special Cases of Interest . 45

3.2.6 Related Problems . 46

3.2.7 Examples of Kernel Parameterizations . 47

Contents 6

3.3 Greedy Algorithm for Learning Convex Combinations of

Kernels . 48

3.3.1 Convergence Properties . 49

3.3.2 Implementation Issues . 50

3.4 Computational Issues . 51

3.4.1 Tractable Cases . 51

3.4.2 Minimizing Sums of Exponentials . 51

3.4.3 A DC-Programming Approach . 52

3.5 Experimental Validation . 53

3.5.1 Experiments with the Greedy Algorithm . 53

3.5.2 Experiments with the DC Algorithm . 55

3.6 Interpretation of Learning the Kernel in the Space of Features 58

3.7 Bounds for Learning the Kernel . 59

3.8 Convex Combinations of Graph Kernels . 60

3.8.1 Combining Graph Laplacians . 60

3.8.2 Experiments . 61

4 Multi-Task Feature Learning 65

4.1 Prior Work . 66

4.2 Feature Selection and Learning . 68

4.3 Multi-Task Feature Learning . 69

4.3.1 Overview . 69

4.3.2 Learning Sparse Multi-Task Representations 70

4.3.3 Equivalent Convex Optimization Problem . 73

4.4 Alternating Minimization Algorithm . 77

4.4.1 Convergence . 79

4.5 Relation to Trace Norm Regularization . 79

4.6 Learning Nonlinear Features . 80

4.6.1 A Representer Theorem . 80

4.6.2 An Alternating Algorithm for Nonlinear Features 82

4.7 Experiments . 84

4.7.1 Synthetic Data . 84

4.7.2 Real Data . 87

4.8 Generalization to Matrix Concave Functions . 94

4.8.1 Modeling Tasks’ Structure . 94

4.8.2 Regularization with Schatten Lp Prenorms . 96

4.8.3 Experiments . 96

4.9 Connection between Multi-Task Learning and Learning the Kernel 98

Contents 7

5 Conclusion 100

A Proof of Lemma 55 104

B Convergence of Algorithm 1 105

C Proof of Equation (4.4.2) 107

D Convergence of Algorithm 3 108

E Proof of Lemma 79 110

Bibliography 110

List of Figures 8

List of Figures

3.1 Functional Eγ (solid line) and misclassification error (dotted line) after the first iteration

of Algorithm 1 for even vs. odd (left) and 3 vs. 8 (right). 55

3.2 Learned kernel coefficients for different classification tasks and kernel parameteriza-

tions. Top plots are for odd vs. even (the dimensionality is 1 on the left and 2 on the

right). Bottom plots are for the 3-8 task (left) and the 4-7 task (right), with dimensionality 2. 58

3.3 Learned [σ1, σ2] parameters of the kernels in the optimal convex combination, for the

odd vs. even task. The parameter range was [100,10000]. 59

3.4 Kernel weights for Euclidean (first 10), Transformation (middle 10) and Tangent (last 10). 64

3.5 Similarity matrices and corresponding learned coefficients of the convex combination

for the 6 vs. 9 task. 64

3.6 Misclassification error vs. number of training points for odd vs. even classification. The

number of labeled points is 10 on the left and 20 on the right. 64

4.1 Values of the (2, 1)-norm of a matrix containing T nonzero entries, equal to 1. When the

norm increases, the level of sparsity along the rows decreases. 72

4.2 Linear synthetic data. Left: test error versus the number of irrelevant variables, as the

number of tasks changes. Right: Frobenius norm of the difference of the learned and ac-

tual matrices D versus the number of irrelevant variables, as the number of tasks changes.

This is a measure of the quality of the learned features. 85

4.3 Linear synthetic data. Left: number of features learned versus the regularization param-

eter γ for 6 irrelevant variables. Right: matrix A learned, indicating the importance of

the learned features – the first 5 rows correspond to the true features (see text). The color

scale ranges from yellow (low values) to purple (high values). 85

4.4 Nonlinear synthetic data. Left: test error versus number of variables as the number of

simultaneously learned tasks changes, using a quadratic + linear kernel. Right: test error

versus number of variables for 200 tasks, using three different kernels (see text). 86

4.5 Matrix A learned in the nonlinear synthetic data experiment. The first 7 rows correspond

to the true features (see text). 87

4.6 Conjoint experiment with computer survey data: average root mean square error vs.

number of tasks. 88

List of Figures 9

4.7 Conjoint experiment with computer survey data: number of features learned (with 180

tasks) versus the regularization parameter γ. 88

4.8 Conjoint experiment with computer survey data. Left: matrix A learned, indicating

the importance of features learned for all 180 tasks simultaneously. Right: the most

important feature learned, common across the 180 people/tasks. 89

4.9 School data. Left: matrix A learned for the school data set using a linear kernel. For

clarity, only the 15 most important learned features/rows are shown. Right: The most

important feature learned, common across all 139 schools/tasks. 92

4.10 Dermatology data. Feature coefficients matrix A learned, using a linear kernel. 93

4.11 Comparison between the alternating algorithm and the gradient descent algorithm. 97

4.12 Performance versus p for the computer survey data (left) and the school data (right). . . . 97

List of Tables 10

List of Tables

3.1 Misclassification error percentage for the continuous and finite versions of the algorithm

and the SVM on different handwritten digit recognition tasks. 56

3.2 Misclassification error percentage for learning one kernel parameter on the MNIST tasks. 57

3.3 Misclassification error percentage of DC algorithm vs. finite grid for 2 parameters on

the MNIST tasks. 57

3.4 Misclassification error percentage (top) and standard deviation (bottom) for the best con-

vex combination of kernels on different handwritten digit recognition tasks, using differ-

ent distances. See text for description. 62

4.1 Comparison of different methods for the computer survey data. MTL-FEAT is the

method developed in this thesis. 90

4.2 Comparison of different methods for the school data. 91

4.3 Performance of the algorithms for the dermatology data. 93

11

Chapter 1

Introduction

A key goal in machine learning is to develop algorithms for estimating models with good generaliza-

tion properties, based on empirical data. In particular, a large number of machine learning problems

are supervised problems. Supervised learning is characterized by the availability of input/output data

{(x1, y1), . . . , (xm, ym)} ⊆ X × Y . The data is usually assumed to be drawn i.i.d. from a probability

distribution on the input/output space X × Y . For example, the inputs may be vectors in R
d, such as

those obtained from images, text, biological data etc. and the outputs may describe positive or negative

(+1,−1), an integer rating or a continuous quantity. The goal of a supervised learning algorithm is to

select a prediction function f : X → Y from a function class F so that the expected error of predictions

f(x) over the whole input space is small. Moreover, depending on the type of output, supervised learn-

ing includes classification, regression and ranking. This distinction, however, will not be important in

the treatment we follow in this thesis.

Our focus will be on algorithms for supervised tasks that use linear classes of functions. That is, the

inputs are transformed through a feature map Φ : X → H, where H is a Hilbert space, and the outputs

are real numbers. The function learned should be of the form f(x) = 〈w,Φ(x)〉, for some w ∈ H.

These methods allow for treating various forms of data as mathematically manageable quantities. More

importantly, the use of a feature map which is appropriate for a particular task can lead to a predictor

with greatly improved statistical accuracy, as opposed to a simple linear predictor. In this sense, the

feature map can be viewed as a representation for the data. The availability of a good representation is

clearly important for the success of the learning algorithm.

It is often the case, though, that the best feature maps are high or infinite-dimensional. Fortunately,

the associated computational issues can be surpassed if the inner products of the form 〈Φ(x),Φ(x′)〉,
x, x′ ∈ X , are known – even without explicitly knowing the feature map. Learning algorithms that

only involve such inner products have been studied extensively in recent years and are known as kernel

methods. Such methods include ridge regression, support vector machines, logistic regression etc.

In this thesis, we are going to study a family of kernel methods in two different contexts. First, we

will consider the question of how to select feature maps appropriate for a specific task. One approach is

to jointly select a number of feature maps from a prescribed set. The second question is how to jointly

learn a number of features common across multiple tasks. Moreover, we will connect these two questions

12

towards the end of the thesis, where our proposed methods will be shown to be equivalent.

Throughout our discussion there is a common theme of learning by using multiple feature maps,

either for single-task or for multi-task learning. Combining feature maps boosts performance in many

cases, especially when each feature map expresses only some part of the useful representation. Moreover,

an optimal feature map may be unknown or hard to obtain. Thus, frequently a set of feature maps is

assumed a priori and the goal is to select the ones which together obtain the best results for the task at

hand.

For example, in many biological applications such as protein classification, it is expensive to obtain

certain types of information and the information available may refer to different characteristics of pro-

teins. This makes it imperative to combine disparate types of information. Another example comes from

computer vision, where one objective is to discriminate between images of two objects or characters. It

is often hard to describe such images completely with a single feature map, even a complex one. More-

over, little may be known about the nature of a good representation so that we have to start with a large

set of candidates.

In practice, combining feature maps is done implicitly and corresponds to combining kernels. In

prior work it has been shown that concatenating feature maps can be phrased equivalently as combining

the corresponding kernels in a convex way. This further favors a small number of feature maps in the

solution through penalization with an L1 type norm. As a consequence, in this thesis we will consider

the problem of learning a supervised task using convex combinations of kernels.

This topic is addressed in Chapter 3, where we formulate a methodology for learning combinations

of kernels that relates to recent research. Our framework has the advantage that it can be applied to a

variety of learning methods with kernels. Unlike previous approaches, it can address cases in which the

number of prescribed kernels is not finite. In this way, it is particularly suitable for learning parame-

terized kernels. We study the associated optimization problem and, among other results, show that the

number of kernels in the solution is limited by the size of the data. Our theoretical study motivates an

algorithm that can learn combinations of infinitely many parameterized kernels. This algorithm is con-

ceptually simple and based on existing kernel methods such as SVMs. However, as we shall demonstrate,

the problem is a hard one in many cases.

In Chapter 4, we describe our method for learning common features across multiple tasks. Multi-

task learning has been motivated from situations in which only a relatively small amount of data is

available for each of a number of tasks. The main insight is that, if the tasks are related in some way,

then it may be possible to exploit task relatedness in order to improve performance on each task – as

opposed to treating each task in isolation. Other terms, like “inductive transfer”, “transfer learning” or

“learning to learn”, are also sometimes used to describe similar learning problems.

In nature, it is often the case that the same processes underly similar learning tasks. At an early

age, humans learn how to recognize such analogies and then transfer knowledge from one task they

have learned to a new one. For example, recognizing alphanumeric characters is essentially learned

once and every time a new symbol is created or seen it is learned with no effort. Clearly, this happens

13

because some general aspects of the character-generating process are learned by the mind, not just the

specifics of recognizing a particular character. In other situations, the mind may develop a concept by

learning a specialized task and then generalizing to more abstract concepts as more related tasks are

encountered. Instances of this can be seen in the discovery of scientific laws and the educational or

training processes. Similarly, learning some tasks benefits greatly from (or could be impossible without)

pooling them together, as in recognizing an object from images taken under different conditions, pose,

views etc.

Our working assumption will be that task relatedness is due to the existence of a common repre-

sentation shared among the tasks. Clearly this assumption is more applicable in certain situations than

others. We claim, however, that it leads naturally to a method which recognizes and exploits task simi-

larities of this nature (if any exist). Our formulation is based on learning a common set of simple feature

maps for all the tasks. We further wish to have sparse solutions in the sense that only few of the fea-

ture maps are involved in the solution. Sparsity conforms with the insight that we should find shared

similarities only where they exist, in other words we should not overfit the data with a complicated

representation.

The formulation and associated algorithm we propose are phrased in terms of kernels and hence

can be extended to incorporate nonlinear feature maps. The main questions that will occupy us relate

to the optimization and computational properties of our method. We shall show that the problem can

be reformulated as a convex one and, consequently, does not suffer from problems of local optima.

Moreover, it can be solved with a conceptually simple alternating algorithm which is guaranteed to

converge to the optimal solution. Finally, experiments with synthetic and real data demonstrate that this

algorithm indeed finds good common features and exploits them to obtain better statistical performance.

14

Chapter 2

Convex Analysis and Regularization in Hilbert

Spaces

During the last decade, the use of regularization methods has become one of the main tools in machine

learning research. The regularization framework covers a variety of popular methods in machine learn-

ing, such as support vector machines, ridge regression and logistic regression, as well as several methods

in statistics, signal processing and other fields. In this thesis, we shall build on the regularization ap-

proach for addressing problems such as combining kernels and multi-task learning.

To this end, in this chapter we review some of the fundamentals of convex analysis, which will

be a valuable mathematical tool throughout this thesis. These will allow posing and studying a number

of optimization problems, as well as the algorithms for their solution. Moreover, we review some of

the theory of L2 regularization with reproducing kernels. In particular, we present the main results

about optimal solutions of regularization problems and some fundamental theorems from the theory of

reproducing kernels. We will also be interested in another category of regularization problems, which

involve the spectra of matrices and will make their appearance in the context of multi-task learning. To

this end, we review some results from matrix analysis.

2.1 Convex Sets and Functions

In this section we present the basics of convex analysis. The presentation is mainly based on [Borwein

and Lewis, 2005] and [Rockafellar and Wets, 1998]. We use R
m to denote the set of vectors with m

real components and Nm the set of integers {1, . . . m}, for every natural number m. We also use 〈·, ·〉
to denote the standard inner product in R

m and R
m×s to denote the set of m × s matrices with real

elements.

2.1.1 Basic Definitions

A set is called convex if it includes every linear segment whose endpoints belong to the set.

Definition 1 A subset C of R
m is convex if and only if

λc + (1− λ)c′ ∈ C ∀λ ∈ [0, 1], c, c′ ∈ C.

2.1. Convex Sets and Functions 15

The expression λc + (1 − λ)c′, whenever λ ∈ [0, 1], is called a convex combination of c and c′.

More generally,
∑

i∈Nn
λici is called a convex combination of c1, . . . , cn if λi ≥ 0,∀i ∈ Nn, and

∑
i∈Nn

λi = 1.

Definition 2 The convex hull of a subset S of R
m is the smallest convex set that includes S. It is denoted

by conv S.

Theorem 3 The convex hull conv S of a set S ⊆ R
m consists of all the convex combinations of elements

of S.

Similarly, an affine combination is of the form τc + (1− τ)c′ with no restriction on τ . Sets closed

under affine combinations are called affine sets. Equivalently, an affine set is the intersection of a finite

family of hyperplanes. Also, the affine hull affS of a set S is the smallest affine set that includes S.

An important class of convex sets are polyhedral sets.

Definition 4 A set P ⊆ R
m is called polyhedral if it is the intersection of a finite family of closed

half-spaces or hyperplanes.

Definition 5 A set P ⊆ R
m is called a polytope if it is the convex hull of a finite subset of R

m.

In fact, bounded polyhedral sets and polytopes coincide. Another important class of convex sets are

convex cones.

Definition 6 A set K ⊆ R
m is called a cone if 0 ∈ K and λc ∈ K for all λ ≥ 0 and c ∈ K.

In other words, cones are unions of rays. Examples of convex cones are half-spaces of the form {〈a, x〉 ≤
0 : x ∈ R

m}, the orthant R
m
+ of vectors in R

m with nonnegative elements and the set S
m
+ of m × m

positive semidefinite matrices.

We now introduce convex functions taking values on the extended real line R∪{+∞}. This conven-

tion is often followed in the optimization literature since it facilitates the inclusion of convex constraints.

On the other hand it prohibits certain operations, such as subtraction.

Definition 7 A function f : R
m → R ∪ {+∞} is called convex if

f(λc + (1− λ)c′) ≤ λf(c) + (1− λ)f(c′) ∀λ ∈ [0, 1], c, c′ ∈ R
m. (2.1.1)

In particular, f is called strictly convex if the above inequality is strict whenever c 6= c′, λ ∈ (0, 1) and

f(c), f(c′) ∈ R.

Definition 8 A function f : R
m → R ∪ {−∞} is called concave if −f is convex. It is called strictly

concave if −f is strictly convex.

Well known examples of convex functions include the quadratic forms f(c) = 〈c, Ac〉 whenever

A is an m ×m positive semidefinite matrix (which are strictly convex for A positive definite). Affine

functions f(c) = Ac + b, A ∈ R
s×m, b ∈ R

s, are the only finite functions on R
m which are both

2.1. Convex Sets and Functions 16

convex and concave. The exponential function on the reals and the function f(c) =




− log c c > 0

+∞ c ≤ 0

are convex. Also, any norm on R
m is convex.

We call the set in which f takes finite values the domain of f .

Definition 9 The domain of a convex function f : R
m → R ∪ {+∞}, denoted by dom f , is the set

{c ∈ R
m : f(c) ∈ R} .

Clearly, the domain of a convex function f is a convex set. Thus, any real-valued function, defined on a

convex subset C of R
m and satisfying inequalities (2.1.1), can be thought of as a convex function on the

whole of R
m with domain equal to C, by setting its value to +∞ outside C. However, we will also call

such functions convex on C, for brevity.

Not only the domain but all the level sets of a convex function are convex.

Theorem 10 If f : R
m → R ∪ {+∞} is convex then all sets of the type

{c ∈ R
m : f(c) ≤ a} or {c ∈ R

m : f(c) < a} ,

with a ∈ R, are convex.

Convexity is preserved under some common operations.

Theorem 11

(a) The intersection of a family of convex sets is convex.

(b) The supremum of a family of convex functions is convex.

(c) The supremum of a finite family of strictly convex functions is strictly convex.

Theorem 12 Let fi : R
m → R∪{+∞} be convex functions for all i ∈ Nn. Then for any real coefficients

αi ≥ 0, i ∈ Nn, the function
∑

i∈Nn
αifi is convex. Moreover, it is strictly convex if there exists i ∈ Nn

such that αi > 0 and fi strictly convex.

Theorem 13 (Separability) Let fi : R
mi → R ∪ {+∞} be convex functions for all i ∈ Nn and let

m =
∑

i∈Nn
mi. Then the function f : R

m → R ∪ {+∞} defined as f(c) =
∑

i∈Nn
fi(ci), where

ci ∈ R
mi and c is the concatenation of the ci, is convex. If all the fi are strictly convex then f is strictly

convex as well.

Theorem 14 (Composition with an affine map) Let g : R
m → R ∪ {+∞} be a convex function and

A ∈ R
m×s, a ∈ R

m. Then the function f : R
s → R ∪ {+∞} defined as f(c) = g(Ac + a),∀c ∈ R

s, is

convex.

Theorem 15 (Partial infimum) Let g : R
m × R

s → R ∪ {+∞} be convex. Then the function f :

R
m → R ∪ {+∞} defined as f(c) = inf{g(c, u) : u ∈ R

s},∀c ∈ R
m, is convex.

2.1. Convex Sets and Functions 17

Finally, there is a simple test for convexity when the function is twice differentiable.

Theorem 16 Assume that f : R
m → R∪{+∞} is twice differentiable on an open convex setO ⊆ R

m.

Then f is convex on O if and only if its Hessian matrix is positive semidefinite. Moreover, positive

definiteness is sufficient (but not necessary) for strict convexity.

2.1.2 Closure and Continuity

A concept appearing as a technical detail in many statements in convex analysis is that of closure of a

function.

Definition 17 The function f : R
m → R ∪ {+∞} is lower semicontinuous at c ∈ R

m if

lim inf
c′→c

f(c′) = f(c).

Equivalently, the level sets {c ∈ R
m : f(c) ≤ a} are closed for every a ∈ R

m.

For every function, there is a greatest minorizing function which is lower semicontinuous.

Definition 18 The lower closure of a function f : R
m → R ∪ {+∞}, denoted by cl f , is defined as

(cl f)(c) = lim inf
c′→c

f(c′) ∀c ∈ R
m.

A few useful facts about closures are the following.

Theorem 19

(a) For any function f : R
m → R ∪ {+∞}, cl f ≤ f .

(b) For any functions f1, f2 : R
m → R ∪ {+∞}, f1 ≤ f2 (uniformly) implies cl f1 ≤ cl f2.

Theorem 20 Let T be a set and ft : R
m → R ∪ {+∞} be convex functions for every t ∈ T . Then

cl(sup{ft : t ∈ T }) = sup{cl ft : t ∈ T } .

Theorem 21 The lower closure of a convex function f : R
m → R ∪ {+∞} is convex.

In general, convex functions are not lower semicontinuous. However, inside the interior of their

domain they are continuous.

Theorem 22 A convex function f : R
m → R ∪ {+∞} is continuous on int(dom f).

In fact, f is locally Lipschitz inside int(dom f).

2.1.3 Separation and Representations

Another fundamental property of convex sets which underlies much of convex analysis is separation.

There are several separation theorems but here we state one special case which we will use later.

Theorem 23 (Strict separation) Let C ⊆ R
m be a closed convex set and z ∈ R

m be a point that does

not belong to C. Then z can be strictly separated from C, that is, there exist a ∈ R
m, b ∈ R such that

〈z, a〉+ b > 0 and 〈c, a〉+ b ≤ 0 , ∀c ∈ C.

2.1. Convex Sets and Functions 18

An important basic fact that will be useful in Section 3.1 is that any point in a convex set has a represen-

tation of limited size.

Theorem 24 (Carathéodory) Let S ⊆ R
m be a nonempty set. Then every point in conv S can be

expressed as a convex combination of at most m + 1 points of S.

A consequence is that compact convex sets can be represented using only extreme points.

Theorem 25 The convex hull of a compact set S ⊆ R
m is compact. In particular, the convex hull of a

finite set is compact.

An extreme point of a convex set C ⊆ R
m is a point c ∈ C whose complement C \ {c} is convex.

Theorem 26 (Minkowski) Any compact convex set C ⊆ R
m is the convex hull of its extreme points.

2.1.4 Directional Derivatives and Subgradients

It is often the case that we have to deal with convex functions which are not everywhere differentiable,

regardless of whether they are finite or not. This will be true for some important convex functions

appearing in Section 3.1. On the other hand, we need first order conditions that characterize the solutions

of minimization problems. This has led to several generalizations of derivatives for nondifferentiable

functions. Here we follow one common such approach, based on the right directional derivative.

Definition 27 The directional derivative of a convex function f : R
m → R ∪ {+∞} at c ∈ dom f in a

direction δ ∈ R
m is defined as

f ′(c; δ) = lim
t→0+

f(c + tδ)− f(c)

t
.

Theorem 28 Let f : R
m → R ∪ {+∞} be a convex function and let c ∈ dom f . The directional

derivative f ′(c; ·) exists everywhere and takes values in R ∪ {−∞,+∞}. Moreover, it is positively

homogeneous.

Theorem 29 Let f : R
m → R ∪ {+∞} be a convex function and let c ∈ int(dom f). The directional

derivative f ′(c; ·) is everywhere finite and sublinear (and hence convex). In particular, f is differentiable

if and only if f ′(c; ·) is linear.

A sublinear function is one that is both positively homogeneous, f(αc) = αf(c),∀c ∈ R
m, α ≥ 0, and

subadditive, f(c + c′) ≤ f(c) + f(c′),∀c, c′ ∈ R
m.

Now, let us generalize the concept of gradient by allowing more than one subgradients of the func-

tion at a point.

Definition 30 A subgradient of a convex function f : R
m → R ∪ {+∞} at c ∈ R

m is any vector

g ∈ R
m satisfying the inequalities

〈g, c′ − c〉 ≤ f(c′)− f(c) ∀c′ ∈ R
m.

Definition 31 The subdifferential of a convex function f : R
m → R ∪ {+∞} at c ∈ R

m, denoted by

∂f(c), is the set of subgradients of f at c. In particular, if c /∈ dom f then ∂f(c) = ∅.

2.1. Convex Sets and Functions 19

Geometrically, subgradients correspond to hyperplanes that pass through point c but leave the graph of

the function in the same half-space. It is easy to see that the subdifferential is always a closed convex

set. Moreover, at points c ∈ int(dom f) where f is differentiable, it consists of just one element, the

gradient ∇f(c).

It is easy to obtain an equivalent characterization of subgradients, using directional derivatives.

Theorem 32 Let f : R
m → R∪ {+∞} be a convex function and let c ∈ dom f . Then g ∈ ∂f(c) if and

only if

〈g, δ〉 ≤ f ′(c; δ) ∀δ ∈ R
m.

These inequalities are sharp in the following sense.

Theorem 33 (Max formula) Let f : R
m → R ∪ {+∞} be a convex function and let c ∈ dom f . Then

cl(f ′(c; ·)) = sup{〈g, ·〉 : g ∈ ∂f(c)} .

Note that we use the convention sup ∅ = −∞.

The most useful property of subgradients is the first order condition for optimality.

Theorem 34 Let f : R
m → R ∪ {+∞} be a convex function and let c ∈ dom f . Then c is a minimizer

of f if and only if 0 ∈ ∂f(c). Equivalently this condition can be written as

f ′(c; δ) ≥ 0 ∀δ ∈ R
m.

2.1.5 Max-Functions

We have already mentioned the convexity of a supremum of convex functions. This type of functions

occurs very frequently in optimization problems, for example in minimax problems. There are important

rules for directional derivatives and the subdifferentials of such functions and they appear in different

variants. Here, we take special care to allow for infinite families of convex functions.

The first fact concerns differentiation of a max-function. It is a slight variation of a result from

[Micchelli and Pontil, 2005]. See also [Rockafellar and Wets, 1998, 8.31,10.31], [Borwein and Lewis,

2005, Sec. 2.3] for smooth versions.

Theorem 35 Let T be a compact set, C a convex subset of R
m and ft : C → R a convex function for

every t ∈ T . Assume also that, for every c ∈ C, the function t 7→ ft(c) is continuous on T . We define

the convex function f : C → R as

f(c) := max{ft(c) : t ∈ T } ∀c ∈ C

and the sets

M(c) := {t ∈ T : ft(c) = f(c)} ∀c ∈ C.

2.1. Convex Sets and Functions 20

Then the right derivative of f in the direction δ ∈ R
m is given by

f ′(c; δ) = sup{f ′
t(c; δ) : t ∈M(c)} ∀c ∈ C.

Inside the above supremum we allow +∞ and assume that the resulting value in such cases equals +∞.

The next theorem gives a formula for the subdifferential of a max-function. See also [Hiriart-Urruty

and Lemaréchal, 1996, Sec. VI.4.4] for other versions.

Theorem 36 Under the assumptions of Theorem 35, the subdifferential of f at any point c ∈ C is given

by

∂f(c) = cl


conv


 ⋃

t∈M(c)

∂ft(c)




 .

PROOF. LetM := cl
(
conv

(⋃
t∈M(c) ∂ft(c)

))
. First assume that z ∈ ∂f(c). If z /∈ M then there

exists a hyperplane {v : v ∈ R
m, 〈w, v〉+ α = 0}, α ∈ R, w ∈ R

m, which strictly separates z fromM,

that is, 〈w, z〉+ α > 0 and 〈w, g〉+ α ≤ 0, ∀g ∈M (see Theorem 23). Subtracting, we conclude that

sup{〈w, g〉 : g ∈M} < 〈w, z〉 . (2.1.2)

On the other hand, using Theorem 35 we obtain that f ′(c; δ) = sup{ft
′(c; δ) : t ∈ M(c)} for every

δ ∈ R
m. Thus, cl f ′(c; ·) = cl(sup{ft

′(c; ·) : t ∈M(c)}) = sup{cl(ft
′(c; ·)) : t ∈M(c)}, by Theorem

20. Applying the “max formula” (Theorem 33), we get

sup{〈w, g〉 : g ∈ ∂f(c)} = sup{sup{〈w, g〉 : g ∈ ∂ft(c)} : t ∈M(c)} ,

which contradicts (2.1.2). Thus z ∈M.

Conversely, assuming that z ∈ M, it has to be the limit of a sequence of vectors
{
zn ∈

conv
(⋃

t∈M(c) ∂ft(c)
)

: n ∈ N
}

. From the definition of subgradients, for each zn and every c′ ∈ C,

〈zn, c′ − c〉 ≤ sup{〈gt, c
′ − c〉 : gt ∈ ∂ft(c), t ∈M(c)}

≤ sup{ft(c
′)− f(c) : t ∈M(c)} ≤ f(c′)− f(c) .

Taking the limits, we obtain that z ∈ ∂f(c) and the result follows.

2.1.6 The Convex Conjugate

An important part of optimization theory is concerned with primal-dual pairs of problems. Underlying

such duality correspondences there are several types of dualities, one of which arises from Fenchel

conjugation.

Definition 37 Consider an arbitrary function f : R
m → R ∪ {−∞,+∞}. The conjugate of f is the

function f∗ : R
m → R ∪ {−∞,+∞} defined as

f∗(z) = sup{〈z, c〉 − f(c) : c ∈ R
m} ∀z ∈ R

m.

2.1. Convex Sets and Functions 21

The conjugate function f∗ is always convex. If dom f is nonempty then f ∗ never takes the value −∞.

Theorem 38 If f : R
m → R ∪ {+∞} is convex and its domain is nonempty, then f ∗ is lower semi-

continuous and f∗∗ = cl f. Thus, conjugacy induces a one-to-one correspondence in the class of lower

semicontinuous convex functions with nonempty domain.

Another interesting duality correspondence connects conjugacy and subgradients.

Theorem 39 Let f : R
m → R∪{+∞} a lower semicontinuous convex function with nonempty domain.

Then for all c, z ∈ R
m,

f(c) + f∗(z) ≥ 〈c, z〉 .

Equality holds if and only if z ∈ ∂f(c), which is also equivalent to c ∈ ∂f ∗(z).

Two examples that relate to popular learning methods are the following. The conjugate of the

square loss f(c) = ‖c − y‖2 equals f∗(z) = 1
4‖z‖2 + 〈z, y〉. The conjugate of the hinge loss f(c) =

max(1− yc, 0) equals f∗(z) =





z

y
if min(0,−y) ≤ z ≤ max(0,−y)

+∞ otherwise
.

One important use of the convex conjugate is in obtaining a dual problem equivalent to a given

optimization problem. We shall apply such a technique in Lemma 55 of Section 3.2.3, which shows the

convexity of the optimization problem for learning kernels. Another well known approach to obtaining

dual problems is Fenchel’s duality theorem (see for example [Borwein and Lewis, 2005]).

2.1.7 Optimization

One recurring theme of this thesis is to treat several learning problems under the light of optimization

theory. In particular, we will be mainly interested in convex optimization problems.

A minimization problem has the form

inf{f(c) : c ∈ R
m} , (2.1.3)

for some function f : R
m → R∪{+∞}. The first question that should be answered about a minimization

problem is whether the minimum is actually attained. That is, whether there exists a (global) minimizer

ĉ ∈ R
m of f such that f(ĉ) = inf{f(c) : c ∈ R

m}. A local minimizer is a minimizer of the problem

further restricted in a neighborhood around ĉ. The set of minimizers of f is denoted by argmin f .

Theorem 40 Let f : R
m → R ∪ {+∞} be a lower semicontinuous function with nonempty domain. If

all level sets of the form {c ∈ R
m : f(c) ≤ a}, a ∈ R, are bounded then f has a global minimizer. This

condition is equivalent to lim inf
‖c‖→∞

f(c) = +∞.

A convex problem is a problem of the form

inf{ f(c) : c ∈ R
m, fi(c) ≤ 0 ∀i ∈ Nk, 〈aj , c〉 = 0 ∀j ∈ N`} ,

where f, f1, . . . , fk : R
m → R are convex functions. The inequalities fi(c) ≤ 0, i ∈ Nk, express a finite

set of convex constraints and the equalities 〈aj , c〉 = 0, j ∈ N`, a finite set of linear constraints. Clearly,

2.1. Convex Sets and Functions 22

we can rewrite any such problem in the form (2.1.3) using some convex function f : R
m → R ∪ {+∞}

whose domain is specified by the constraints, so that the convex analytic tools of the previous sections

can be applied.

Theorem 41 Assume that f : R
m → R ∪ {+∞} is convex. Then

(a) Any local minimizer of f is a global minimizer.

(b) The set of all minimizers, argmin f , is convex.

(c) If in addition f is strictly convex then the minimizer is unique.

2.1.8 Minimax Problems

Another category of optimization problems is minimax problems. They are of the form

inf{sup{f(c, z) : z ∈ Z} : c ∈ C}

or of the form

sup{inf{f(c, z) : c ∈ C} : z ∈ Z}

where f : C ×Z → R and C,Z are nonempty sets. It is easy to show that the values of the two problems

are always ordered:

sup{inf{f(c, z) : c ∈ C} : z ∈ Z} ≤ inf{sup{f(c, z) : z ∈ Z} : c ∈ C} .

Under certain conditions, this inequality becomes an equality, that is, the infimum and the supremum

can be interchanged. One case when this happens is when there exists a saddle point.

Definition 42 A point (ĉ, ẑ) ∈ C × Z is called a saddle point of f if it satisfies

f(ĉ, z) ≤ f(ĉ, ẑ) ≤ f(c, ẑ) ∀c ∈ C, z ∈ Z.

There are several results relating to minimax problems in the literature. Here, we record a version of the

classical von Neumann minimax theorem that can be found in [Aubin, 1982, Ch. 7].

Theorem 43 Let f : C × Z → R where C is a closed convex subset of a Hausdorff topological vector

space C and Z is a convex subset of a vector space Z . If the function c 7→ f(c, z) is convex and lower

semicontinuous for every z ∈ Z , the function z 7→ f(c, z) is concave for every c ∈ C and there exists

z0 ∈ Z such that for all a ∈ R the set {c : c ∈ C, f(c, z0) ≤ a} is compact, then there exists ĉ ∈ C such

that

sup{f(ĉ, z) : z ∈ Z} = sup{inf{f(c, z) : c ∈ C} : z ∈ Z}.

In particular, we have that

min{sup{f(c, z) : z ∈ Z} : c ∈ C} = sup{inf{f(c, z) : c ∈ C} : z ∈ Z}.

Note that the above theorem does not show the existence of a saddle point, since the supremum over z

may not be attained in general.

2.2. Regularization with Reproducing Kernels 23

2.2 Regularization with Reproducing Kernels

We now review a family of learning methods that has been used extensively in recent years. These

methods are based on regularization problems which are posed over Hilbert spaces of a certain type. The

discussion below is based on [Aronszajn, 1950, Cucker and Smale, 2001, Evgeniou et al., 2000, Gohberg

et al., 2003, Schölkopf and Smola, 2002, Shawe-Taylor and Cristianini, 2004, Wahba, 1990].

2.2.1 Reproducing Kernel Hilbert Spaces

An inner product on a vector space E is a real valued function 〈·, ·〉 defined on E×E with the properties:

(a) 〈u + u′, v〉 = 〈u, v〉+ 〈u′, v〉

(b) 〈au, v〉 = a〈u, v〉

(c) 〈u, v〉 = 〈v, u〉

(d) 〈u, u〉 ≥ 0

(e) 〈u, u〉 = 0 if and only if u = 0

for all u, u′, v ∈ E, a ∈ R. E together with an inner product 〈·, ·〉 is called an inner product space. The

associated norm is defined as ‖u‖ =
√
〈u, u〉 for every u ∈ E.

A sequence {un : n ∈ N} in an inner product spaceH is said to converge to a point u ∈ H, denoted

by un → u, if ‖un−u‖ → 0. A Cauchy sequence is a sequence {un : n ∈ N} such that ‖un−um‖ → 0

as n,m→∞. The spaceH is called complete if any Cauchy sequence converges to an element ofH.

Definition 44 A Hilbert space is an inner product space that is also complete.

The concept of Hilbert space is a natural generalization of R
m with the standard inner product.

In machine learning, we are interested in a particular type of Hilbert space. It relates closely to the

concept of reproducing kernel. Consider a set X .

Definition 45 A reproducing kernel is a symmetric function K : X × X → R such that, for every finite

set of inputs {xj : j ∈ Nm} ⊆ X and every m ∈ N, the m × m matrix (K(xi, xj) : i, j ∈ Nm) is

positive semidefinite.

It turns out that every kernel is associated with an (essentially) unique Hilbert spaceHK of functions

f : X → R. Consider a Hilbert space H of functions f : X → R with inner product 〈·, ·〉. Then K is a

reproducing kernel associated withH if and only if

(a) for every x ∈ X , Kx ∈ H

(b) for every f ∈ H and x ∈ X , 〈f,Kx〉 = f(x),

where Kx(·) := K(x, ·). Property (b) is the “reproducing property”. It implies that the inner product in

H can be defined from the bilinear form
∑

i,j∈Nm
αiβjK(xi, xj), which can be shown to induce a norm

〈f, f〉.

2.2. Regularization with Reproducing Kernels 24

Another important property is that a Hilbert spaceH admits a reproducing kernel if and only if, for

every x ∈ X , the point evaluation functional Lx(f) := f(x), ∀f ∈ H, is continuous on H. Finally, if

H admits a reproducing kernel, this kernel is unique.

A Hilbert space that admits a reproducing kernel is called a reproducing kernel Hilbert space

(RKHS). From now on, we will be using the term kernel instead of reproducing kernel, for brevity.

Some operations that give rise to kernels are the following.

Theorem 46

(a) If K1 and K2 are kernels then K1 + K2 is a kernel.

(b) If K is a kernel then aK is also a kernel, for every a ≥ 0.

(c) If K1 and K2 are kernels then K1K2 is a kernel.

(d) Let a function g : X → R
k. Then the function defined by K(x, x′) = 〈g(x), g(x′)〉,∀x, x′ ∈ X ,

is a kernel.

Common examples of kernels on X = R
m include

(a) linear kernels, K(x, x′) = 〈x,Ax′〉, where A is an m×m positive semidefinite matrix

(b) polynomial kernels, K(x, x′) = (〈x, x′〉+ a)k, where a ≥ 0, k ∈ N

(c) Gaussian kernels, K(x, x′) = e−ω‖x−x′‖2 , where ω > 0.

2.2.2 Regularization in an RKHS

Let X be a set from which inputs are drawn and x := {(xj , yj) : j ∈ Nm} ⊆ X ×R be prescribed data.

Supervised learning methods learn a function f : X → R that fits well the data x while having small

generalization error on the whole space X . The outputs {yj : j ∈ Nm} may take values in R, which is

the case of regression, in {−1,+1} (classification), or in N (ranking).

One well studied approach for supervised learning is to develop methods that, based on x, select a

suitable function f from an RKHSH. The main motivation is that learning in a linear class requires sim-

pler algorithms. Moreover, using kernels allows us to take advantage of some appealing computational

properties, as we shall see below. Thus, one can learn in an RKHS that includes functions of arbitrary

complexity or predictive ability, as long as the associated kernel is known.

Another motivation is that such methods can be interpreted as learning by using feature maps.

A feature map is a map Φ : X → W , where W is a Hilbert space with inner product 〈·, ·〉W . It

can be viewed as a transformation or as a representation of the inputs. For example, when the fea-

ture space W is finite dimensional, the inputs x ∈ X are mapped to a finite number of features

Φ1(x), . . . ,Φk(x) ∈ R. The kernel K is obtained from the feature map simply from inner products,

K(x, x′) = 〈Φ(x),Φ(x′)〉W ,∀x, x′ ∈ X . However, feature maps are not uniquely determined from

kernels.

2.2. Regularization with Reproducing Kernels 25

Let us use the notation Kx := (K(xi, xj) : i, j ∈ Nm) for the kernel matrix or Gram matrix of

kernel values on the data. Assume also a prescribed convex nonnegative error function Q : R
m×R

m →
R+. The most usual choice is Q(y, w) =

∑
j∈Nm

L(yj , wj), for w = (wj : j ∈ Nm), where L is a

nonnegative loss function, convex in the second argument. Assume that a kernel K is given and let HK

be its associated RKHS. Let also 〈·, ·〉K , ‖ · ‖K be the inner product and norm respectively inHK .

For every f ∈ HK , the standard L2 regularization functional is defined as

Eγ(f,K) := Q(y, Ix(f)) + γ‖f‖2K (2.2.1)

where the operator Ix is defined as Ix(f) := (f(xj) : j ∈ Nm). The constant γ > 0 is called the

regularization parameter. L2 regularization methods solve the variational problem

Eγ(K) := inf{Eγ(f,K) : f ∈ HK} . (2.2.2)

Minimization of the functional Eγ balances the effect of two terms. The error term, Q(y, Ix(f)),

favors functions that fit well the available training data x. In contrast, the smoothness term or regularizer,

‖f‖2K , is the square of an L2 type norm in HK and hence favors functions that have a more uniform

representation. Thus, the regularization functional avoids overfitting with a highly complex function that

fits “too well” the data, by favoring simple solutions through the regularizer. To see what happens at

the extremes, when γ → 0, the minimizing f̂ approaches the function with the smallest norm that fits

exactly the data (minimal norm interpolation). When γ → +∞, the solution approaches the identically

zero function. Moreover, results bounding the generalization error of the solutions of such problems can

be derived [Shawe-Taylor and Cristianini, 2004].

We have implicitly assumed that problem (2.2.2) admits a minimizer and this is indeed true. Since

Q : R
m → R+ is continuous and γ is a positive number, the infimum in (2.2.2) is attained because the

unit ball in HK is weakly compact. In addition, since Q is convex the minimizer is unique because the

right hand side of equation (2.2.1) is a strictly convex functional of f .

It is feasible to solve problem (2.2.2) regardless of the dimensionality of the Hilbert space, because

of the so called Representer Theorem [Wahba, 1990].

Theorem 47 If f̂ is a solution to problem (2.2.2) then it has the form

f̂(x) =
∑

j∈Nm

αjK(xj , x) ∀x ∈ X (2.2.3)

for some real vector α = (αj : j ∈ Nm).

Although it is simple to prove, this result is remarkable as it makes the variational problem (2.2.2)

amenable to computations. By replacing f with the right hand side of equation (2.2.3) in equation

(2.2.1) and then optimizing with respect to the vector α, we obtain the equivalent finite dimensional

problem

Eγ(K) := min{Q(Kxα) + γ〈α,Kxα〉 : α ∈ R
m} (2.2.4)

where 〈·, ·〉 is the standard inner product on R
m.

2.2. Regularization with Reproducing Kernels 26

The regularization framework presented above subsumes many well known learning methods. For

example, when Q is the square loss, Q(y, w) = ‖w − y‖2, the objective function in (2.2.4) is quadratic

in the vector α and its minimizer is obtained by solving a linear system of equations. When Q is the

hinge loss, Q(y, w) =
∑

j∈Nm
max(1−yjwj , 0), we obtain the standard support vector machine (SVM)

problem – see, for example, [Schölkopf and Smola, 2002, Shawe-Taylor and Cristianini, 2004]. A variety

of algorithmic methods can be applied to the solution of such regularization problems. In the SVM case,

for instance, either off-the-shelf quadratic programming methods or recently developed decomposition

methods [Joachims, 1998, Platt, 1998] can be used.

Finally, regarding the issue of determining the regularization parameter γ, the most common ap-

proach has been cross validation [Wahba, 1990]. In this, the training data x is split into a small number

k of subsets. Then, the optimization problem (2.2.4) is solved k times, each time replacing x with the

data in the k − 1 of the data sets and measuring the test error of the solution on the k-th data set. In

this way, an average measure of the error can be obtained for any fixed value of γ. This technique has

good statistical properties but has significant computational cost because the learning algorithm has to

be repeated for a number of values covering the range of γ. There are also a few other, more recent,

methods for determining the regularization parameter, such as computation of the regularization path

[Hastie et al., 2004].

2.2.3 Semi-Supervised Learning with Graph Laplacians

Apart from supervised learning, regularization in an RKHS has been applied to other problems as well.

Among these are semi-supervised learning problems, which are classification problems with only a

few of the output labels yj available. They have received significant attention in recent years, see, for

example, [Belkin and Niyogi, 2004, Blum and Chawla, 2001, Joachims, 2003, Kondor and Lafferty,

2002, Zhou et al., 2004, Zhu et al., 2003, 2005] and references therein. The main insight of semi-

supervised methods is that unlabeled data may be used to improve on the performance of learners that

are only based on the labeled data. Several semi-supervised learning methods build on the assumption

that the data is situated on a low dimensional manifold within the ambient space of the data and that

this manifold can be approximated by a weighted discrete graph whose vertices are identified with the

empirical (labeled and unlabeled) data.

Let G be an undirected graph with m vertices and an m×m adjacency matrix A such that Aij = 1

if there is an edge connecting vertices i and j and 0 otherwise1. The graph Laplacian L is the m ×m

matrix defined as L := D −A, where D = diag(di : i ∈ Nm) and di is the degree of vertex i, that is

di =
∑

j∈Nm
Aij .

We can identify the linear space of real-valued functions defined on the graph with R
m and intro-

duce on it the semi-inner product

〈u,v〉 := u
>
Lv ∀u,v ∈ R

m.

The induced seminorm is ‖v‖ :=
√
〈v,v〉, ∀v ∈ R

m. It is a seminorm since ‖v‖ = 0 if v is a constant

1The ideas we discuss below naturally extend to weighted graphs.

2.3. Spectral Functions 27

vector, as can be verified by noting that ‖v‖2 = 1
2

∑
i,j∈Nm

(vi − vj)
2Aij .

It is known that G has r connected components if and only if L has r eigenvectors with zero

eigenvalues. These eigenvectors are piecewise constant on the connected components of the graph.

In particular, G is connected if and only if the constant vector is the only eigenvector of L with zero

eigenvalue [Chung, 1997]. Therefore, we consider the linear subspaceH(G) of R
m

H(G) := range(L).

We wish to learn a function v ∈ H(G) based on a set of labeled vertices. Without loss of generality

we assume that the first ` ≤ m vertices are labeled and let y1, ..., y` ∈ {−1, 1} be the corresponding

labels. Following [Belkin and Niyogi, 2004] we prescribe a loss function Q and compute the function v

by solving the optimization problem

min
{
Q(y, v̄) + γ‖v‖2 : v ∈ H(G)

}
, (2.2.5)

where v̄ is the labeled part of v. A similar approach is presented in [Zhu et al., 2003] where v is

(essentially) obtained as the minimal norm interpolant in H(G) to the labeled vertices. The functional

(2.2.5) balances the error on the labeled points with a smoothness term measuring the complexity of v

on the graph. Note that this last term contains the information of both the labeled and unlabeled vertices

via the graph Laplacian.

Method (2.2.5) is a special case of problem (2.2.2). Indeed, the restriction of the semi-norm ‖ · ‖ on

H(G) is a norm. Moreover, the pseudoinverse of the Laplacian, L+, is the reproducing kernel of H(G)

– see, for example, [Herbster et al., 2005] for a proof. This means that for every v ∈ H(G) and i ∈ Nm

there holds the reproducing kernel property vi = 〈L+
i ,v〉, where L

+
i is the i-th column of L

+. Hence,

by setting X = Nm, f(i) = vi and K(i, j) = L+
ij , ∀i, j ∈ Nm, we see thatHK = H(G).

2.3 Spectral Functions

In Chapter 4, which is concerned with multi-task learning, we will be interested in regularization prob-

lems that involve matrices instead of vectors. Let us use S
d
++ to denote the set of d×d positive semidef-

inite matrices, O
d the set of d × d orthogonal matrices and Diag(λi)i∈Nd

the diagonal matrix with

diagonal entries {λi : i ∈ Nd}. We will use regularizers of the form

trace(W>F (D)W) =
∑

t∈NT

w>

t F (D)wt , (2.3.1)

where W ∈ R
d×T , D ∈ S

d
++ and F : S

d
++ → S

d
++ is a spectral matrix function. Therefore, a question

of interest is when such regularizers are convex (jointly in W,D).

Definition 48 We call a matrix function F : S
d
++ → S

d
++ spectral if it is induced by applying a real

function f : (0,∞) → (0,∞) to the eigenvalues of its argument. That is, for every D ∈ S
d
++ we write

D = UDiag(λi)i∈Nd
U>, where U ∈ O

d, and define

F (D) = UDiag(f(λi))i∈Nd
U> . (2.3.2)

2.3. Spectral Functions 28

We will adhere to the convention that capital letters denote a spectral matrix function and small letters

the associated real function as above.

Addressing the issue of convexity of the regularizer (2.3.1) requires the matrix analytic concept of

concavity (see, for example, [Bhatia, 1997]).

Definition 49 We say that the function g : (0,∞)→ R is matrix concave of order d if

λG(A) + (1− λ)G(B) � G(λA + (1− λ)B) ∀A,B ∈ S
d
++, λ ∈ [0, 1] ,

where G is defined as in (2.3.2).

The notation � denotes the Loewner partial order on S
d: A � B if and only if B − A is positive

semidefinite. If g is a matrix concave function of order d for any d ∈ N, we simply say that g is matrix

concave. We also say that g is matrix convex (of order d) if −g is matrix concave (of order d).

Definition 50 We say that the function g : (0,∞)→ R is matrix monotone of order d if

A � B =⇒ G(A) � G(B) ∀A,B ∈ S
d
++ ,

where G is defined as in (2.3.2).

Theorem 51 A function g : (0,∞) → R is matrix monotone (of any order) if and only if it is matrix

concave.

Examples of matrix concave/monotone functions on (0,∞) are log x and the function xs for s ∈ [0, 1] –

see [Bhatia, 1997, Horn and Johnson, 1991] for other examples and theoretical results.

Now we can characterize the class of spectral functions F for which the term w>F (D)w is jointly

convex in (w,D), with w ∈ R
d, D ∈ S

d
++.

Theorem 52 Let F : S
d
++→ S

d
++ be a spectral function. Then the function ρ : R

d × S
d
++→ [0,∞)

defined as ρ(w,D) = w>F (D)w is jointly convex if and only if 1
f

is matrix concave of order d.

PROOF. By definition, ρ is convex if and only if, for any w1, w2 ∈ R
d, D1, D2 ∈ S

d
++ and λ ∈ (0, 1),

it holds that

ρ(λw1 + (1− λ)w2, λD1 + (1− λ)D2) ≤ λρ(w1, D1) + (1− λ)ρ(w2, D2).

Let C := F (λD1 + (1 − λ)D2), A := F (D1)/λ,B := F (D2)/(1 − λ), w := λw1 + (1 − λ)w2 and

z := λw1. Using this notation, the above inequality can be rewritten as

w>Cw ≤ z>Az + (w − z)>B(w − z) ∀w, z ∈ R
d. (2.3.3)

The right hand side in (2.3.3) is minimized for z = (A + B)−1Bw and hence (2.3.3) is equivalent to

w>Cw ≤ w>
[
B(A + B)−1A(A + B)−1B +

(
I − (A + B)−1B

)>
B
(
I − (A + B)−1B

)]
w ,

2.3. Spectral Functions 29

∀w ∈ R
d, or to

C � B(A + B)−1A(A + B)−1B +
(
I − (A + B)−1B

)>
B
(
I − (A + B)−1B

)

= B(A + B)−1A(A + B)−1B + B − 2B(A + B)−1B + B(A + B)−1B(A + B)−1B

= B −B(A + B)−1B = (A−1 + B−1)−1 ,

where the last equality follows from the matrix inversion lemma [Horn and Johnson, 1985, Sec. 0.7].

The above inequality is identical to (see e.g. [Horn and Johnson, 1985, Sec. 7.7])

A−1 + B−1 � C−1 ,

or, using the initial notation,

λ
(
F (D1)

)−1
+ (1− λ)

(
F (D2)

)−1 �
(
F (λD1 + (1− λ)D2)

)−1
.

By definition, this inequality holds for any D1, D2 ∈ S
d
++, λ ∈ (0, 1) if and only if 1

f
is matrix concave

of order d.

Finally, we state a basic inequality due to von Neumann which underlies many facts about spectral

functions. It can be found, for example, in [Horn and Johnson, 1991, ex. 3.3.10]. We use σ(W), σ̄(W)

to denote the vector of singular values of matrix W ∈ R
d×T in nonincreasing and nondecreasing order

respectively.

Lemma 53 For any W,C ∈ R
d×T , we have that

〈σ̄(W), σ(C)〉 ≤ 〈W,C〉 ≤ 〈σ(W), σ(C)〉 .

The upper equality holds if and only if there are U ∈ Od and V ∈ OT such that W = UDiag(σ(W))V >

and C = UDiag(σ(C))V >. Similarly for the lower equality.

We emphasize that equality holds when not only are the row and column spaces for W and C equal,

but also the basis vectors match if ordered according to the ordering of the singular values. It is also

worth noting that this inequality is stronger than the Cauchy-Schwarz inequality for the Frobenius norm,

〈W,C〉 ≤ ‖W‖2‖C‖2.

30

Chapter 3

Learning from Multiple Sources and

Parameterizations

On a daily basis, humans make decisions by using heterogeneous sources of information about the same

task. In fact, there are many situations in which combining different sources helps us learn significantly

better than by using a single source. The importance of this trait has been appreciated in the machine

learning community as well. A substantial amount of recent work attempts to exploit heterogeneous fea-

tures which might encode different types of information about the same task or different representations

of the data. The resulting algorithms exhibit improved statistical performance in many applications, such

as biological ones, in which it is important to integrate different sources of knowledge.

We begin this chapter by reviewing relevant approaches from the supervised learning literature.

Among the various approaches we discuss, we emphasize those which are based on regularization in

reproducing kernel Hilbert spaces. The main idea behind them is that heterogeneous sources can give

rise to different feature maps and hence to different kernels, which can then be appropriately combined.

One case widely considered in the literature is that of a finite number of prescribed kernels. In this thesis,

however, we do not limit ourselves to a finite number of kernels, nor is anything known about them other

than their parameterized functional form.

We proceed to study the problem of combining kernels, by following the steps below.

• We define a general framework which formalizes the approach of learning combinations of pa-

rameterized kernels

• show that regularization in this framework leads to a saddle point optimization problem

• show that the “simplest” solution to this problem can be represented as a combination of a bounded

number of kernels and exhibits some interesting properties

• specialize these results to the better studied case of combining a finite number of kernels and show

that it leads to a convex optimization problem.

Our discussion then naturally leads to

• a general-purpose algorithm for combining heterogeneous parameterized kernels.

3.1. Learning by Integrating Sources 31

• an investigation of its convergence properties and

• application of techniques from optimization theory for accelerating it in computationally demand-

ing situations.

We also discuss the computational complexity of the saddle point optimization problem and show

that, depending on the parameterization of the kernel, it can give rise to both convex and nonconvex

problems.

Finally, we present a variation of our algorithm which can be used in different classification settings,

when only few labels are available (semi–supervised learning).

3.1 Learning by Integrating Sources

There are many practical situations in which it is advantageous to combine heterogeneous sources or

data representations. One example is protein function prediction (see [Lanckriet et al., 2004]) where

different types of information about the same protein may come from amino-acid sequences, protein-

protein interactions, gene expression data etc. Another biological example is combining co-occurrences

of oligomers between two DNA sequences (see [Sonnenburg et al., 2006]), which gives rise to a weighted

degree kernel as it is called. In vision problems, one may want to combine different image features or

different parts of the image, as in [Argyriou et al., 2006a]. Also, different representations can be obtained

from a graph or different graphs, especially in a semi-supervised setting (see [Argyriou et al., 2006b, Dai

and Yeung, 2007, Sindhwani et al., 2005, Tsuda et al., 2005, Zhu et al., 2005]).

Several recently proposed approaches [Bach et al., 2004, Bennett et al., 2002, Bi et al., 2004, Cram-

mer et al., 2003, Girolami and Rogers, 2005, Girolami and Zhong, 2007, Kondor and Jebara, 2007,

Lanckriet et al., 2004, Lin and Zhang, 2003, Micchelli and Pontil, 2005, Ong et al., 2005, Parrado-

Hernández et al., 2003, Pelckmans, 2005] tackle such situations by learning with combinations of kernels

(or multiple kernels, to use another common term). First, a kernel is defined for each source or represen-

tation, through inner products of features or in some other way. Thus a set of basic kernels is obtained.

Then a regularization-based optimization problem is solved over the set of linear or convex combinations

of these kernels. The goal is to learn a combined kernel and a corresponding regression/classification

function which predicts better than any function trained with one of the basic kernels. Moreover, the

weights in this combination should give a measure of how relevant each kernel is to the task at hand.

The main motivation behind this methodology has been computational. A principled approach for

selecting optimal kernels from a set of candidates (or a set of combinations for that matter) is cross

validation – see [Wahba, 1990] for a discussion. In this, the training data is split in k subsets and the

learning method is run k times, each time using one of the subsets as test data and the rest as training

data. In this way, an estimate of the expected error of the method for a specific kernel can be computed.

One drawback is that cross validation can be very inefficient, since the space of candidate kernels has to

be properly covered with a grid of kernels, which can incur exponential cost. A further drawback is that

the size of the training data is effectively reduced and this leads to deterioration of performance. Thus,

the aforementioned works on combinations of kernels attempt to avoid these drawbacks by employing

3.1. Learning by Integrating Sources 32

appropriate optimization problems, which are more efficient to solve. On the other hand, there are better

statistical guarantees for the results obtained with cross validation, although some guarantees also exist

for the methods of kernel combinations (see Section 3.7).

In these methods, the set of basic kernels can be constructed using prior information, but they

can also be general-purpose ones such as the linear, polynomial or Gaussian kernels. That is, even in

the absence of any knowledge about possible “good” features or representations, one can attempt to

combine different types of generic kernels. Feature maps with high approximating power, such as the

ones corresponding to Gaussian kernels, can be useful in many tasks and sometimes even more so than

a priori known feature maps.

In this thesis, we shall make the general assumption that the basic kernels belong to a parameterized

family. This subsumes both of the situations described above and departs from most of the literature in

that the number of basic kernels need not be finite. In order to learn combinations of such basic kernels,

we adopt the framework of [Micchelli and Pontil, 2005], which we study in more detail. One notable

example that falls under this framework is isotropic Gaussian basic kernels whose variance parameter can

take any nonnegative real value. We will also consider anisotropic Gaussian kernels, although we shall

see that the optimization problems to be solved become less tractable as the number of kernel parameters

increases. A finite set of basic kernels is another example, as are unions of sets of basic kernels.

3.1.1 Finite Combinations of Kernels

In the context of supervised learning there has been a great deal of interest in learning combinations

of a finite number of kernels. Some characteristic early work on this topic can be found in [Lanckriet

et al., 2002, 2004], which address this problem as a semidefinite program. The main formulation of

the papers is applicable to supervised learning with SVMs, even though the setting of these papers is

transduction, which means predicting the missing labels ys+1, . . . , ym of a partially labeled sample

x = {(x1, y1), . . . , (xs, ys), xs+1, . . . , xm} drawn from an input space X . An extension to inductive

supervised learning is also presented but, since it is based on transduction, it is less intuitive and efficient.

The goal is to learn a combination of n kernels which gives good generalization performance on the task

at hand by optimizing over a set of linear combinations of these kernels.

Assume that n kernels B1, . . . , Bn are given and let Bx,i, i ∈ Nn, denote the kernel matrix on the

data x corresponding to kernel Bi. The optimization problem is considered over a convex setK of kernel

matrices which can be either

K =

{
Kx =

∑

i∈Nn

µiBx,i : Kx ∈ S
m
++, traceKx = c

}
(3.1.1)

or

K =

{
Kx =

∑

i∈Nn

µiBx,i : µi ≥ 0, i ∈ Nn, traceKx = c

}
(3.1.2)

The constraint normalizing the trace of the kernel matrix is necessary to avoid overfitting of the data (see

Section 3.7). In [Lanckriet et al., 2004] and most related work, the regularization problems considered

are hard-margin or soft-margin support vector machine (SVM) problems. In [Lanckriet et al., 2004], the

3.1. Learning by Integrating Sources 33

formulation involves the dual optimization problem of an SVM, that is,

max{E(α,K) : α ∈ R
m : 0 ≤ α ≤ C, 〈α, y〉 = 0} ,

where C ≥ 0 is the margin parameter and E(α,K) is a function quadratic in α and linear in K (see

Section 2.2.2). The above maximal value then serves as the criterion whose minimization yields the

optimal K:

min{max{E(α,K) : α ∈ R
m : 0 ≤ α ≤ C, 〈α, y〉 = 0} : K ∈ K} . (3.1.3)

The authors show how this problem can be rewritten as a semidefinite program – case (3.1.1) – or a

quadratically constrained quadratic program – case (3.1.2). These types of problems can be solved with

general-purpose optimization packages which use interior-point methods.

However, such methods are practical only for moderately large values of m,n. As a result, more

efficient variations have been proposed for large data sets. One such variation using sequential minimal

optimization (SMO) techniques is the main topic in [Bach et al., 2004]. Applying SMO techniques to

problem (3.1.3) is achieved by deriving Karush-Kuhn-Tucker conditions for optimality and regularizing

the nonsmooth convex objective function with a technique called Moreau-Yosida regularization. This

paper also offers an interesting insight about the relation of problem (3.1.3) to a feature selection prob-

lem: decomposing the data vectors into n blocks and doing L1 regularization. We shall return to this

connection in Section 3.6.

Apart from this method, other approaches that exploit decomposition of regularization problems

into small subproblems have been proposed, for example the semi-infinite programming approach of

[Sonnenburg et al., 2006] – see also Section 3.2.5.

The formulation of combining a finite number of kernels has also appeared, under a different guise,

in the statistical community. An example is the related approach called COSSO [Lin and Zhang, 2003].

The authors consider an RKHS F that can be decomposed into p orthogonal subspaces as follows:

F = {1} ⊕
p⊕

i=1

F i.

The COSSO estimate minimizes

min

{
1

m

∑

i∈Nm

(yi − f(xi))
2 + τ2

m

∑

i∈Np

‖P if‖ : f ∈ F
}

(3.1.4)

where P if is the orthogonal projection of f onto F i and τm a regularization parameter. Problem (3.1.4)

can be reduced to minimizing an equivalent form

min

{
1

m

∑

i∈Nm

(yi − f(xi))
2 + γ0

∑

i∈Np

θ−1
i ‖P if‖2 + γ

∑

i∈Np

θi

: f ∈ F , θi ≥ 0 ∀i ∈ Np

}
(3.1.5)

where γ0 is a fixed positive constant and γ a regularization parameter. This formulation is similar to

the standard smoothing spline method, except for the term
∑

i∈Np
θi. This term encourages zero com-

ponents in the solution. Problem (3.1.5) is also similar to the feature space version of learning convex

3.1. Learning by Integrating Sources 34

combinations of kernels – see Section 3.6 – where instead there is a constraint
∑

i∈Np
θi = 1. Another

similar method to COSSO also originates from the statistical literature and is known as the group lasso

– see [Bakin, 1999, Yuan and Lin, 2006].

In machine learning, another way to formulate model selection in a convex set of kernels has been

proposed in [Ong et al., 2003, 2005]. In this work, the authors define the concept of a hyper reproducing

kernel Hilbert space as a kind of reproducing kernel Hilbert space of functions K : X ×X 7→ R, where

X is the input space. This space is generated by a hyperkernel K̄ : X 2 × X 2 7→ R with the property

that for every x̄ ∈ X 2, K̄(x̄, (·, ·)) is a kernel. The learning algorithm is based on an optimization

problem involving the values of K̄ on the input data. Since the number of these values is O(m4), the

computational task can be much harder than standard regularization and low-rank approximations often

have to be employed.

3.1.2 Model Selection and Kernel Parameter Learning

Apart from the problem of combining kernels, another important problem is how to select the param-

eter(s) of the kernel in an optimal way. In general, the question of model selection is a fundamental

one in any learning method, since there is always the assumption of a model that depends on a number

of hyperparameters. As we have already mentioned, cross validation is a good but inefficient way to

do model selection. However, as in the kernel combinations’ literature, the problem has been recently

viewed in the light of optimization.

Specifically, [Chapelle et al., 2002] have proposed optimizing a variety of bounds on the true error,

thus obtaining a number of possible algorithms based on gradient descent. Other points of view are to

optimize some approximation of maximum likelihood [Gold and Sollich, 2003, Law and Kwok, 2001]; a

method inspired by cross validation [Schittkowski, 2005]; maximizing a measure of alignment between

kernel matrices [Cristianini et al., 2001]. And in Gaussian processes, a variational approximation has

been proposed for optimizing over the hyperparameters of the kernel [Seeger, 2000].

Even though the objectives of learning combined kernels and learning kernel parameters are related,

we would like to point out some differences. In some situations, the prescribed basic kernels capture

different aspects of the problem at hand, so that several kernels can be relevant and they may complement

each other. Then it is natural to learn combinations of these basic kernels.1 In other situations, it may be

expected that a single basic kernel achieves optimal results and then it is more natural to learn the optimal

kernel parameters. Besides this dilemma, it may not even be obvious what the set of basic kernels should

be. Clearly, the choice of basic kernels reflects, to a small or large extent, prior knowledge and beliefs

about the task or practical considerations and influences the resolution of the above dilemma.

Finally, we briefly mention some of the works that attempt to learn a distance for the input space via

learning a kernel matrix. The methodology is different from the works mentioned above but the objective

is similar. One approach is to learn a Mahalanobis distance metric, which can be used in a classification

method such as k-nearest neighbors [Bar-Hillel et al., 2003, Goldberger et al., 2005, Weinberger et al.,

2006, Xing et al., 2003]. To this end, the authors optimize measures combining clustering with label

1We shall see several such examples in the experimental section.

3.2. Parameterized Convex Combinations of Kernels 35

information. In fact, in some cases, the labeled information may be given in the form of constraints

between data points. Another approach is to learn a kernel matrix using some type of information-

theoretic entity subject to linear constraints [Davis et al., 2007, Kulis et al., 2006, Tsuda and Noble,

2004].

3.2 Parameterized Convex Combinations of Kernels

We now present the framework we shall use for learning convex combinations of parameterized basic

kernels. It has initially been proposed and studied for the case of the square loss function in [Micchelli

and Pontil, 2005].

3.2.1 Notation

For the reader’s convenience, we display here the notational conventions used in this chapter.

R+ set of nonnegative real numbers

Nm set {1, . . . ,m}

S
m
+ set of m×m symmetric positive semidefinite matrices

S
m
++ set of m×m symmetric positive definite matrices

X set from which inputs are drawn

x set of inputs {xj : j ∈ Nm} ⊆ X

y vector of outputs (yj : j ∈ Nm)

Q error function R
m → R+

L loss function R× R→ R+

K kernel function

HK Hilbert space associated with kernel K

f function belonging to a Hilbert space

A+(X) set of kernels on X

A++(X) set of positive definite kernels on X

〈·, ·〉K , ‖ · ‖K inner product, norm inHK

〈·, ·〉 , ‖ · ‖ standard inner product, norm in R
m

Eγ regularization functional

Eγ minimum value of the regularization functional

γ regularization parameter

Kx kernel matrix on input data x

dom f domain of convex function f

3.2. Parameterized Convex Combinations of Kernels 36

cl S closure of set S

conv C convex hull of set C

B set of basic kernels

Bi basic kernels in B

K set of convex combinations of basic kernels, conv(B)

Q∗ convex conjugate of function Q

c vector of m variables in the dual of the regularization problem

R minus objective of the dual problem

f ′(x; δ) right directional derivative of function f at x in the direction δ

∂f(x) subdifferential of function f at x

(ĉ, K̂) saddle point of the minimax problem

Ω space of kernel parameters

G continuous mapping of parameters to kernels Ω→ A+(X)

P(Ω) set of probability measures on Ω

K(G) convex set of kernels generated by mapping G

C(Ω) set of continuous real valued functions on Ω

Σ covariance matrix parameter of Gaussian kernel

σ variance parameter of isotropic Gaussian kernel

Φ feature map R
m → R

s

V (P) vertex set of polytope P

G graph

di degree of vertex i

L graph Laplacian

H(G) RKHS on graph G

L+ pseudoinverse of matrix L

3.2.2 Framework for Learning Combinations of Kernels

Let X be a set, from which inputs are drawn. Recall from Section 2.2 the notation Kx := (K(xi, xj) :

i, j ∈ Nm), for every finite set of inputs x = {xj : j ∈ Nm} ⊆ X and every m ∈ N. Also, let A+(X)

denote the set of all kernels on the set X and A++(X) the set of kernels K such that, for each m ∈ N

and each choice of x, Kx ∈ S
m
++.

Let {(xj , yj) : j ∈ Nm} ⊆ X × R be prescribed data and y be the vector (yj : j ∈ Nm). Assume

also a prescribed convex nonnegative error function Q : R
m → R+. For example, we could have, for

w = (wj : j ∈ Nm), that Q(w) =
∑

j∈Nm
L(yj , wj), where L is a loss function. Note that we suppress

the dependence of Q on y as the latter is fixed throughout our discussion. For every kernel K with

3.2. Parameterized Convex Combinations of Kernels 37

associated Hilbert spaceHK and every f ∈ HK , the standard L2 regularization functional is defined as

Eγ(f,K) := Q(Ix(f)) + γ‖f‖2K (3.2.1)

where ‖f‖2K := 〈f, f〉K and γ is a positive constant. Recall that the operator Ix is defined as Ix(f) :=

(f(xj) : j ∈ Nm).

Associated with the functional Eγ and the kernel K is the variational problem

Eγ(K) := min{Eγ(f,K) : f ∈ HK} (3.2.2)

which defines a functional Eγ : A+(X) → R+. We remark, in passing, that all of what we say about

problem (3.2.2) applies to functions Q on R
m which are bounded from below as we can merely adjust the

expression (3.2.1) by a constant independent of f and K. Note that the minimum in (3.2.2) is attained,

as explained in Section 2.2.2. Moreover, if f is a solution to problem (3.2.2) then it has the form

f(x) =
∑

j∈Nm

αjK(xj , x) ∀x ∈ X , (3.2.3)

for some real vector α = (αj : j ∈ Nm). This result is known as the Representer Theorem – see Section

2.2.2. In particular, if Q is convex, the unique minimizer of problem (3.2.2) can be found by replacing

f by the right hand side of equation (3.2.3) in equation (3.2.1) and then optimizing with respect to the

vector α. That is, we have the finite dimensional variational problem

Eγ(K) := min{Q(Kxα) + γ〈α,Kxα〉 : α ∈ R
m} (3.2.4)

where 〈·, ·〉 is the standard inner product on R
m. For example, when Q is the square loss defined for

w = (wj : j ∈ Nm) ∈ R
m as Q(w) = ‖w−y‖2 :=

∑
j∈Nm

(wj−yj)
2, the objective function in (3.2.4)

is quadratic in the vector α and its minimizer is obtained by solving a linear system of equations.

As we have seen in Sections 3.1.1 and 3.1.2, a common approach to selecting good kernels or good

combinations of kernels is to use the functional Eγ in (3.2.2) as a design criterion. That is, one can

perform an optimization over both the kernel K and the regression coefficients in vector α. Theoretical

justifications that the functional Eγ is a good quantity to optimize have appeared in the literature and

will be briefly presented in Section 3.7. Here, we just remark that this optimization is justified provided

that the kernel matrix Kx is bounded, in order to avoid overfitting.

Therefore, we may assume that a convex subset K of A+(X) is given and study the problem

Eγ(K) := inf{Eγ(K) : K ∈ K} . (3.2.5)

We can view the set K as the convex hull of a set of basic kernels B ⊆ A+(X),

K = conv(B) .

This general formulation covers most of the proposed optimization problems in learning convex com-

binations of kernels, as well as hyperkernels, linear combinations of basic kernels (3.1.1), (3.1.2) and

several other methods (see Section 3.2.6). An advantage of this formulation is that it can accommodate

3.2. Parameterized Convex Combinations of Kernels 38

for infinite numbers of basic kernels (either countable or uncountable), for basic kernels defined through

convex constraints etc. As for the necessary constraint on the size of the kernel, it is usually a bound on

the trace of the kernel matrix, but other possibilities are allowed.

Every input set x and convex set K of kernels determines a convex set of matrices in S
m
+ , namely

K(x) := {Kx : K ∈ K}. Obviously, it is this set of matrices that affects the variational problem (3.2.5).

For this reason, we say that the set of kernels K is compact (convex) provided that for all x the set of

matrices K(x) is compact (convex). The following result is taken directly from [Micchelli and Pontil,

2005] with a minor modification.

Lemma 54 If K is a compact and convex subset of A+(X) such that Kx ∈ S
m
++ for every K ∈ K and

Q : R
m → R is continuous then the minimum of (3.2.5) exists.

3.2.3 Convexity of Learning the Kernel

Next, we establish that if the loss function Q : R
m → R is convex then the functional Eγ : A+(X) →

R+ is convex as well, that is, the variational problem (3.2.5) is a convex problem with respect to K. In

this section we present a proof of this fact which expresses the functional as the maximum of functions

convex in the kernel. This expression leads to a dual formulation of the problem and to the theoretical

and algorithmic results of the following sections. An alternative proof, which is simpler but does not

give an expression for Eγ , will be presented in Section 4.9. The significance of that proof lies in that it

reveals connections between learning the kernel and multi-task learning.

To obtain the dual expression, we use the conjugate function of Q. Recall from Section 2.1.6 that

the Fenchel conjugate Q∗ : R
m → R ∪ {+∞} is defined, for every v ∈ R

m, as

Q∗(v) = sup{〈w, v〉 −Q(w) : w ∈ R
m} (3.2.6)

and it follows, for every w ∈ R
m, that

Q(w) = sup{〈w, v〉 −Q∗(v) : v ∈ R
m} . (3.2.7)

Note that Q∗ is lower semicontinuous and convex. Also note that Q∗(0) = − inf{Q(w) : w ∈ R
m} <

+∞ since Q is bounded from below. This observation is used in the proof of the following lemma.

Lemma 55 If K ∈ A+(X), Kx ∈ S
m
++ and Q : R

m → R is a convex function then there holds the

formula

Eγ(K) = max

{
− 1

4γ
〈c,Kxc〉 −Q∗(c) : c ∈ R

m

}
. (3.2.8)

The fact that the maximum above is attained follows from the hypothesis that Kx ∈ S
m
++ and the

fact that Q∗(v) ≥ −Q(0) for all v ∈ R
m, which follows from equation (3.2.6). The proof of this lemma

is based on a version of von Neumann’s minimax theorem (see Appendix A).

We note that Q∗ maps to the extended real line and hence equation (3.2.8) can encapsulate any type

of convex constraints on c. For example, in the case of SVMs, the “box constraints” of the SVM dual

appear as the domain in which Q∗ takes real values.

3.2. Parameterized Convex Combinations of Kernels 39

Equation (3.2.8) expresses Eγ(K) as the maximum of linear functions in the kernel K. Thus, the

above lemma implies convexity in K.

Corollary 56 Let A++(X ,x) := {K : K ∈ A+(X),Kx ∈ S
m
++}. Then the functional Eγ :

A++(X ,x)→ R+ is convex.

3.2.4 Minimax Formulation and its Properties

Gathering the results of the previous section, we see that problem (3.2.5) reduces to the minimax problem

Eγ(K) = −max{min{R(c,K) : c ∈ R
m} : K ∈ K} (3.2.9)

where the function R is defined as

R(c,K) =
1

4γ
〈c,Kxc〉+ Q∗(c) , ∀c ∈ R

m, K ∈ K. (3.2.10)

We now proceed to show that problem (3.2.9) admits a saddle point and hence that the minimum and

maximum in (3.2.9) can be interchanged and describe the properties of this saddle point. We consider

this problem in the general case that B is any compact set of basic kernels. That is, what we say applies

to an infinite, countable or not, set of basic kernels. Thereafter, we specialize our main result to the

well-studied case of a finite set of basic kernels. As an example, we also provide a corollary for the case

of isotropic Gaussian basic kernels whose parameter takes values in R+.

The main theorem states that the minimum and maximum in problem (3.2.9) can be interchanged

and that the “simplest” solution can be represented with at most m + 1 basic kernels. It is an extension

of the theorem in [Argyriou et al., 2005] to more general classes of loss functions. It also extends the

result in [Micchelli and Pontil, 2005] where only the square loss function was studied in detail. Recall

from Section 2.1 the notation f ′(c; δ), c, δ ∈ R
m, for the right directional derivative of function f at c

along direction δ. Let us also define

C := dom Q∗ ,

the set where Q∗ is finite.

Theorem 57 Let B ⊆ A+(X) be a given compact set of basic kernels, such that Bx ∈ S
m
++ for every

B ∈ B, and let K = conv(B). Then there exist µ ≤ m + 1 kernels {Bi, i ∈ Nµ} ⊆ B and coefficients

{λi, i ∈ Nµ} ⊆ (0, 1],
∑

i∈Nµ
λi = 1, such that

R(ĉ, Bi) = max{R(ĉ, B) : B ∈ B} ∀i ∈ Nµ , (3.2.11)

where ĉ ∈ C is the unique solution of the inequalities

1

2γ
〈K̂xĉ, δ〉+ Q∗′

(ĉ; δ) ≥ 0 ∀δ ∈ R
m (3.2.12)

and

K̂ =
∑

i∈Nµ

λiBi . (3.2.13)

3.2. Parameterized Convex Combinations of Kernels 40

Moreover, (ĉ, K̂) is a saddle point, that is, for every c ∈ R
m and K ∈ K,

R(ĉ, K) ≤ R(ĉ, K̂) ≤ R(c, K̂) . (3.2.14)

PROOF. Let us first comment on the nonlinear inequalities (3.2.12). For any kernel K ∈ K the

extremal problem

min{R(c,K) : c ∈ C}

has a unique solution, since the function c 7→ R(c,K) is lower semicontinuous and strictly convex and

lim inf
‖c‖→∞

R(c,K) = +∞. Moreover, if we let cK ∈ C be this minimizer, it satisfies the inequalities

1

2γ
〈KxcK , δ〉+ Q∗′〈cK ; δ〉 ≥ 0 ∀δ ∈ R

m.

This condition is necessary and sufficient and thus equation (3.2.12) states that ĉ minimizes R(·, K̂).

Now let us turn to the existence of the kernel K̂. First, we define the functions ϕB : C → R as

ϕB(c) := R(c,B) ∀c ∈ C, B ∈ B

and the function ϕ : C → R as

ϕ(c) := max{ϕB(c) : B ∈ B} ∀c ∈ C.

Observe that ϕ(c) = max{R(c,K) : K ∈ K}, for every c ∈ C, because R is linear in the kernel. From

the definition it is clear that ϕ is lower semicontinuous and strictly convex and lim inf
‖c‖→∞

ϕ(c) = +∞.

Hence, ϕ has a unique minimizer, which we denote with ĉ.

This minimizer is characterized by the fact that 0 is a subgradient of ϕ at ĉ. Let us define the set B∗

as

B∗ := {B : B ∈ B, ϕB(ĉ) = ϕ(ĉ)} .

Applying Theorem 36 we obtain a first order condition involving the subdifferentials of the functions

ϕB with B ∈ B∗, namely that

0 ∈ clG ,

where

G := conv

(
⋃

B∈B∗

∂ϕB(ĉ)

)
.

For the definition of the subdifferential of a convex function see Section 2.1. Consequently, there is a

sequence

{gn ∈ G : n ∈ N}

such that

gn → 0 . (3.2.15)

3.2. Parameterized Convex Combinations of Kernels 41

By Carathéodory’s theorem (Theorem 24), every vector in G can be expressed as a convex combi-

nation of at most m + 1 of the elements of G. In particular, we have that

gn =
∑

i∈Nµn

λn,i gn,i ∀n ∈ N

for some subgradients gn,i ∈ ∂ϕBn,i
(ĉ), (not necessarily distinct) kernels Bn,i ∈ B∗, λn,i ∈ [0, 1],

∀i ∈ Nµn
, with

∑
i∈Nµn

λn,i = 1 and µn ≤ m + 1,∀n ∈ N. Applying Theorem 32, we obtain that

ϕBn,i

′(ĉ; δ) ≥ 〈gn,i, δ〉 ∀δ ∈ R
m, n ∈ N, i ∈ Nµn

and hence
∑

i∈Nµn

λn,i ϕBn,i

′(ĉ; δ) ≥ 〈gn, δ〉 ∀δ ∈ R
m, n ∈ N .

Now we set

Kn :=
∑

i∈Nµn

λn,iBn,i ∀n ∈ N (3.2.16)

and, because the directional derivative of R with respect to c is linear in the kernel, we obtain that

1

2γ
〈(Kn)xĉ, δ〉+ Q∗′

(ĉ; δ) ≥ 〈gn, δ〉 ∀δ ∈ R
m, n ∈ N . (3.2.17)

Since B is compact, the sets B∗ and convB are compact as well, by Theorem 25. Thus, all the sequences

{Kn : n ∈ N}, {Bn,i : n ∈ N}, {λn,i : n ∈ N}, i ∈ Nm+1

(where we have added arbitrary basic kernels with zero coefficients wherever necessary) have convergent

subsequences. We can extract such subsequences successively to obtain convergent subsequences

{Kn`
: ` ∈ N}, {Bn`,i : ` ∈ N}, {λn`,i : ` ∈ N}, i ∈ Nm+1 .

We are going to show that

K̂ := lim
`→∞

Kn`

is an optimal kernel with the wanted properties. First, taking the limits as ` → ∞ in (3.2.16) and using

the fact that B∗ is closed, we see that K̂ can be written as the convex combination of m + 1 kernels in

B∗,

K̂ =
∑

i∈Nµ

λiBi,

for some Bi ∈ B∗, λi ∈ [0, 1], i ∈ Nµ,
∑

i∈Nµ
λi = 1, µ ≤ m + 1. By definition of B∗, the kernels Bi

also satisfy equation (3.2.11). Next, taking the limits in (3.2.17) as `→∞ and using (3.2.15), it follows

that

1

2γ
〈K̂xĉ, δ〉+ Q∗′

(ĉ; δ) ≥ 0 ∀δ ∈ R
m.

This establishes equation (3.2.12) and implies that

min{R(c, K̂) : c ∈ C} = R(ĉ, K̂) ,

3.2. Parameterized Convex Combinations of Kernels 42

which is the upper inequality in (3.2.14). For the lower inequality we observe that

max{R(ĉ, K) : K ∈ K} = max{R(ĉ, B) : B ∈ B}

and the right hand side equals

ϕ(ĉ) = R(ĉ, Bi) ∀i ∈ Nµ .

Since R is linear in the kernel,

R(ĉ, K̂) =
∑

i∈Nµ

λiR(ĉ, Bi)

and (3.2.14) follows.

In the special case that Q∗ is finite on R
m and differentiable (for example, when Q is the square

loss), the inequalities (3.2.12) become just an equality condition

1

2γ
K̂xĉ +∇Q∗(ĉ) = 0 . (3.2.18)

Unfortunately, for many interesting parameterizations, this condition yields a nonlinear equation in terms

of the parameters of the basic kernels and may be hard to solve.

To summarize, the above theorem states two facts. First, that the minimization and maximization

of the objective R in (3.2.9) can be interchanged and that there is a saddle point. Secondly, the theorem

states that there is an optimal kernel which has a representation of at most m + 1 basic kernels. This is a

consequence of Carathéodory’s Theorem 24, which is a basic fact about convex sets.

We see that the kernel that solves problem (3.2.5) may be a convex combination of complementary

kernels, each giving a higher value of Eγ . Thus, a convex combination of kernels may yield better results

on the data than each of the basic kernels does separately. Note also that while ĉ solves the regularization

problem (SVM, ridge regression etc.) for K̂, the solutions of the problems corresponding to each basic

kernel are, in general, different.

The proof of Theorem 57 we have presented is not the only possible one. An alternative proof using

the Fenchel duality theorem has been proposed in [Rifkin and Lippert, 2007]. Probably the most concise

proof would be one using a minimax theorem like Theorem 43 to show the existence of a saddle point

and a simple argument based on Carathéodory’s Theorem for the representation result. However, we

have opted for a proof that is constructive in order to better illustrate what the set of saddle points is and

how they can be obtained.

Regarding this question, there may exist optimal kernels which can be represented as K̂ =

∑
i∈Nµ

λiBi, with m + 1 < µ ≤ m(m + 1)

2
+ 1. The upper bound of m(m + 1)

2
+ 1 comes from

the dimensionality of the set of kernel matrices {Kx ∈ S
m
++ : K ∈ K}. Theorem 57 merely ensures

that there is at least one kernel with µ ≤ m + 1. At the same time, the proof of this theorem gives a way

to construct any optimal kernel matrix. With this caveat in mind, we now show that the two properties

stated in Theorem 57 are necessary and sufficient.

3.2. Parameterized Convex Combinations of Kernels 43

Theorem 58 Let the assumptions of Theorem 57 hold. Then, a point (ĉ, K̂) ∈ R
m × K is a solution

of problem (3.2.9) if and only if there exist {Bi : i ∈ Nµ} ⊆ B such that µ ≤ m(m+1)
2 + 1, K̂ =

∑
i∈Nµ

λiBi and conditions (3.2.11) and (3.2.12) are satisfied. Moreover, the set of solutions of (3.2.9)

is obtained from the unique ĉ and the convex set of K̂ that solve (3.2.12).

PROOF. If (ĉ, K̂) is a saddle point of (3.2.9) then ĉ is a minimizer of the function R(·, K̂) and hence

satisfies (3.2.12). Moreover, we have that
∑

i∈Nµ
λiR(ĉ, Bi) = R(ĉ, K̂) = max{R(ĉ, K) : K ∈ K}

implying equation (3.2.11). On the other hand, if ĉ satisfies the inequalities (3.2.12) we obtain the upper

inequality in (3.2.14), whereas equation (3.2.11) brings the lower inequality. The uniqueness of ĉ can be

seen from its construction in the proof of Theorem 57.

In general, we are interested in finding concise solutions of the minimax problem (3.2.9) in the sense

of representability with a small number of basic kernels. However, solutions with larger representations

are also valid and could be plausible for the learning task of interest.

We now specialize Theorem 57 to some important cases. The first of them is when B is a finite set

of prescribed basic kernels, B = {B` : ` ∈ Nn}. Below, we use the notation Kx,` for the matrix (K`)x.

Corollary 59 Assume that B = {B` : ` ∈ Nn} ⊆ A+(X) and Bx,` ∈ S
m
++ for every ` ∈ Nn. Then

there exist I ⊆ Nn, a kernel K̂ =
∑

i∈I λiBi, where λi ∈ (0, 1]∀i ∈ I,
∑

i∈I λi = 1, and ĉ ∈ R
m,

such that card(I) ≤ min(m + 1, n),

R(ĉ, Bi) = max{R(ĉ, B`) : ` ∈ Nn} ∀i ∈ I

and

1

2γ
〈K̂xĉ, δ〉+ Q∗′

(ĉ; δ) ≥ 0 ∀δ ∈ R
m .

Moreover, for every c ∈ R
m and K ∈ conv(B) we have that

R(ĉ, K) ≤ R(ĉ, K̂) ≤ R(c, K̂).

Another important case is when each kernel in B is a Gaussian kernel, B(x, z) = e−ω‖x−z‖2

, x, z ∈
R

d, and ω ∈ [ω1, ω2] where 0 < ω1 < ω2. Theorem 57 establishes that a mixture of at most m + 1

Gaussian kernels provides an optimal kernel. What happens if we consider all possible Gaussians, that

is, allow ω ∈ R+? This question is important because Gaussians generate the whole class of radial

kernels. Indeed, we recall a beautiful result by I.J. Schoenberg [Schoenberg, 1938].

Theorem 60 Let h be a real-valued function defined on R+ such that h(0) = 1. We form a kernel K on

R
d ×R

d by setting, for each x, z ∈ R
d, K(x, z) = h(‖x− z‖2). Then K is positive definite for any d if

and only if there is a probability measure p on R+ such that

K(x, z) =

∫

R+

e−ω‖x−z‖2

dp(ω) ∀x, z ∈ R
d.

3.2. Parameterized Convex Combinations of Kernels 44

Note that the set R+ is not compact and the identically one kernel (ω = 0) is not positive definite

on any data x. Therefore, on both accounts Theorem 57 does not apply in this circumstance. In general,

we may overcome this difficulty by a limiting process which can handle locally compact sets of kernels.

This will lead us to an extension of Theorem 57 where B is locally compact. However, we only describe

our approach in detail for the Gaussian case and Ω = R+. An important ingredient in the discussion

presented below is that the limit of the Gaussian kernel as ω → +∞ is ∆, the delta kernel. In other

words, we need to include the delta kernel in the set of basic kernels for the theorem to work.

Theorem 61 Let B = {Γω : ω ∈ R+} ∪ {∆} where Γω ∈ A+(Rd) are defined as

Γω(x, z) = e−ω‖x−z‖2 ∀x, z ∈ R
d, ω ∈ R+.

Then there exist µ ≤ m + 1 kernels {Bi : i ∈ Nµ} ⊆ B and coefficients {λi : i ∈ Nµ}⊆
(0, 1],

∑
i∈Nµ

λi = 1, such that

R(ĉ, Bi) = max{R(ĉ, B) : B ∈ B} ∀i ∈ Nµ, (3.2.19)

for some ĉ ∈ R
m satisfying the inequalities

1

2γ
〈K̂xĉ, δ〉+ Q∗′

(ĉ; δ) ≥ 0 ∀δ ∈ R
m (3.2.20)

and

K̂ =
∑

i∈Nµ

λiBi .

Moreover, (ĉ, K̂) is a saddle point, that is, for every c ∈ R
m and K ∈ K,

R(ĉ, K) ≤ R(ĉ, K̂) ≤ R(c, K̂) . (3.2.21)

PROOF. For every ` ∈ N we consider the Gaussian kernels on the interval Ω` := [`−1, `] and appeal to

Theorem 57 to produce a sequence of kernels K̂` =
∑

i∈Nm+1
λ`,iΓω`,i

and ĉ` ∈ R
m with the properties

described there. Let us examine what happens as ` tends towards infinity. All the kernel matrices on

the data x are bounded since they correspond to Gaussian kernels. Thus, each of the kernel sequences

{Γω`,i
: ` ∈ N} as well as their corresponding weights have subsequences which converge. Some

kernel subsequences may converge to Γ0 while others to ∆. In any case, we can extract convergent

subsequences {λn`,i : ` ∈ N} of coefficients and {Γωn`,i
: ` ∈ N} of kernels, such that lim`→∞ λn`,i =

λ̂i, lim`→∞ K̂n`
= K̂, lim`→∞ Γωn`,i

= B̂i and K̂ =
∑

i∈Nm+1
λ̂iB̂i, with the provision that B̂i may

take the values Γ0 or ∆.

To establish that K̂ is an optimal kernel, we turn our attention to the sequence of vectors ĉn`
. We

claim that this sequence also has a convergent subsequence. Indeed, from inequality (3.2.14), for every

K ∈ K we have that

R(ĉn`
,K) ≤ R(0, K̂n`

) = Q∗(0) < +∞.

3.2. Parameterized Convex Combinations of Kernels 45

Using the fact that the function Q∗ is bounded from below (see our comments after the proof of Lemma

55) we see that the sequence ĉn`
has bounded Euclidean norm independently of `. Hence, it has a

convergent subsequence whose limit we call ĉ. Taking the limits in (3.2.14) as ` → ∞, we obtain

inequality (3.2.21), from which (3.2.19) and (3.2.20) also follow.

3.2.5 Special Cases of Interest

We now consider some possibilities for the set B of basic kernels which give rise to tractable problems.

Finite Number of Basic Kernels
Assume that B = {B` : ` ∈ Nn}. Then from Theorems 57 and 58, we observe that problem (3.2.9) is

equivalent to

Eγ(K) = −min{max{R(c,B`) : ` ∈ Nn} : c ∈ R
m}

or

Eγ(K) = −min{θ : θ ∈ R, c ∈ R
m, θ ≥ R(c,B`) ∀ ` ∈ Nn} . (3.2.22)

Each of the functions R(·, B`) is convex on R
m and hence there is a finite number of convex

constraints in (3.2.22). Thus, we have the following.

Corollary 62 If B is finite then (3.2.5) is a convex optimization problem.

For hinge-like loss functions, formulation (3.2.22) is essentially the same as that derived in [Lanckriet

et al., 2004, Thms. 17 etc.]. In these cases, the optimization problem becomes a quadratic program

which is a type of semidefinite program (SDP). In fact, it is clear from the above that the problem can be

written as an SDP for any semidefinite representable function Q∗.

An approach to solving problem (3.2.22) is by using standard methods for SDPs, quadratic pro-

grams or general constrained convex programs. Such a method gives the optimal values for c and t.

Subsequently, the coefficients λi can be obtained from the primal problem (3.2.4) or from condition

(3.2.12), which require solving a linear system of equations in the smooth case or a linear program in the

case of SVMs.

Another approach, followed in [Sonnenburg et al., 2006], is to use methods (such as column gener-

ation) for semi-infinite programming. This is a direct consequence of the minimax nature of the problem:

Eγ(K) = −max

{
min

{
R

(
c,
∑

`∈Nn

λ`B`

)
: c ∈ R

m

}
: λ` ∈ [0, 1],

∑

i∈Nn

λ` = 1

}

or

Eγ(K) = −max

{
θ :

∑

`∈Nn

λ`R(c,B`) ≥ θ ∀c ∈ R
m,
∑

i∈Nn

λ` = 1, λ` ∈ [0, 1], θ ∈ R

}
.

There is an infinite number of linear constraints above and thus this problem is a semi-infinite linear

program. The algorithm proposed in the aforementioned work is to iteratively select a subset of values

for c, solve for λ` and θ, then, with fixed λ`, minimize R(c,B`) over c and so on.

3.2. Parameterized Convex Combinations of Kernels 46

In Section 3.3, we present another algorithm for solving the problem in the finite setting, which is a

specialization of an algorithm for general families of basic kernels.

There are some cases which appear to be infinite at first sight, but reduce to some finite case. This

happens when the set B is finitely generated by a set of µ basic kernels {Bi : i ∈ Nµ} ⊆ B. Note

that here µ can be larger than the bound m(m+1)
2 + 1 from Carathéodory’s Theorem. In such cases, the

corresponding optimization problems (3.2.9) are again convex. Such an example is the set of polynomial

basic kernels of bounded degree, Bα(x, z) =
∑

i∈Nn
αi〈x, z〉i, ∀x, z ∈ X , where αi ≥ 0 ∀i ∈ Nn and

the parameter space of the α’s is a polytope.

Infinite Number of Basic Kernels
In the more general case when conv(B) has infinitely many extreme points, standard methods for convex

programming are not applicable. Indeed, in such a case there are infinitely many constraints in (3.2.22).

One could conceive a semi-infinite type of iterative algorithm, such as one that selects a finite subset of

the constraints at each iteration. However, a finite-number-of-kernels minimax problem would have to

be solved at each iteration. In the alternate step, the objective R would be maximized over B, which

in many cases is a hard problem. Moreover, after the end of the iterative process, a linear system or

program would be needed to recover the λi in (3.2.13).

There is a more efficient approach we can follow, which we shall present in Section 3.3. Our algo-

rithm constructs the optimal convex combination of kernels iteratively, by adding one kernel at a time.

One advantage is that the optimal kernel is available after the last iteration and no further optimization

is needed. More importantly, it turns out that a 2-kernels minimax problem has to be solved at each

iteration and this is an one-dimensional convex program. Still, the maximization step over B remains

and this is where most of the difficulty of the problem lies. This step is not convex, in general, although

it may be tractable in certain cases, especially if the number of kernel parameters is small.

Finally, there are some classes of basic kernels with infinite cardinality which lead to tractable

optimization problems. We show a few such examples in Section 3.4.1.

3.2.6 Related Problems

We briefly note that a variety of problems which optimize a functional of the kernel can be treated using

the methodology of the previous sections. For instance, the hyperkernels approach (see Section 3.1.1)

optimizes a functional of kernels belonging to a hyper-reproducing kernel Hilbert space and penalizes

their norms in this space. Essentially, this is an optimization problem similar to (3.2.5) with K being a

compact and convex subset of the cone generated by the kernels {K̄(x̄, (·, ·)) : x̄ ∈ X ×X}. Of course,

some type of continuity assumption on K̄ needs to be imposed, to ensure closedness of B.

A possible variation on our optimization framework could be to allow for loss functions Q whose

domain is a closed convex subset of R
m. That is, we could constrain the values that the functions

f ∈ HK in (3.2.2) take on the data. The results of Sections 3.2.3 and 3.2.4 should hold, under the

assumption that Q is lower semicontinuous (see Section 2.1.2).

Our framework of Section 3.2.2 can also be applied as is, or with small modifications, to other

formulations for learning problems. These include, for example, one-class SVM [Tax and Duin, 2004];

3.2. Parameterized Convex Combinations of Kernels 47

kernel PCA [Schölkopf and Smola, 2002]; maximum entropy discrimination [Jaakkola et al., 1999].

Finally, we note that [Kim et al., 2006] have recently established the convexity of selecting a kernel

from a convex set in kernel Fisher discriminant analysis (this situation does not fall under our frame-

work).

3.2.7 Examples of Kernel Parameterizations

Before we describe and study our algorithm for solving problem (3.2.9), it is useful to briefly discuss

what the set of basic kernels B may be in some cases of interest. As we have already mentioned, we are

often interested in sets denser than finite sets of basic kernels.

Frequently, the class of kernels defining our hypothesis space is defined by a parameterization, that

is, a functional form which depends on one or more parameters, along with a range for the values of

these parameters. Formally, we may assume a (locally) compact Hausdorff space of parameters Ω (see,

for example, [Royden, 1988]). The basic kernels are given by a continuous mapping G : Ω → A+(X),

that is,

B = {G(ω) : ω ∈ Ω} .

We also need to assume that the function ω 7→ G(ω)(x, z) is continuous on Ω for each x, z ∈ X . Under

these assumptions the requirements of Theorems 57 and 61 are satisfied.

Note that the (local) compactness of B is a consequence of the weak∗-compactness of the unit ball

in the dual space of C(Ω), the set of all continuous real-valued functions g on Ω with norm ‖g‖Ω :=

max{|g(ω)| : ω ∈ Ω} – see [Royden, 1988]. We can also use K(G) to denote K = conv(B).

For example, the choice of Ω = Nn corresponds to the special case of a finite number of basic

kernels. As other examples, we may choose Ω = [ω1, ω2], where 0 < ω1 < ω2 and G(ω)(x, z) =

e−ω‖x−z‖2 , ∀x, z ∈ R
d, ω ∈ Ω, to obtain radial kernels, or G(ω)(x, z) = eω(x,z) to obtain dot product

kernels. The choice of the mapping G is a matter of a priori knowledge or guesswork that depends on

the learning task to be solved. General-purpose kernels such as the above can be used and these have a

standard form and parameterization. Ad hoc kernels appropriate for the learning task can also be used.

These may be parameterized simply by an index but they may also involve additional parameters that,

for example, balance different effects. Thus, one could even consider infinite numbers of ad hoc basic

kernels.

Finally, let us make a few observations about Gaussian basic kernels with more than one parameters.

Let Σ ∈ S
d
++ be a d× d positive definite matrix. A basic kernel can be built from the Gaussian kernel

G(Σ)(x, z) = e−〈(x−z),Σ−1(x−z)〉 ∀x, z ∈ R
d. (3.2.23)

The case Σ = σI, σ ∈ R++, has already been mentioned above. Clearly, Σ needs to lie in a compact set

and moreover, to ensure that Σ plays the role of a covariance, we must bound its determinant away from

zero. A special case is provided by a block diagonal covariance

Σ = diag(Σ1, . . . ,Σ`),

3.3. Greedy Algorithm for Learning Convex Combinations ofKernels 48

where each Σi is a di × di matrix, i ∈ N`, and
∑

i∈N`
di = d. We write x as x = (xi, i ∈ N`), where

xi ∈ R
di . Thus, we obtain basic kernels of the form

G(Σ)(x, z) =
∏

i∈N`

e−〈(xi−zi),Σ−1
i (xi−zi)〉 ∀x, z ∈ R

d.

Another example is the case of a full two-dimensional covariance. For this purpose, we write

Σ−1 = UMU> where M =
(

µ1 0
0 µ2

)
, 0 < µ2 ≤ µ1 and U is unitary, i.e. U11 = U22 = cos θ, U12 =

−U21 = sin θ. A direct computation gives that

〈x,Σ−1x〉 =
(

µ1 + µ2

2
+

µ2 − µ1

2
cos(2θ − ζ)

)
‖x‖2 ∀x ∈ R

2,

where ζ depends only on x. Using this formula and integrating (3.2.23) over the parameters θ, µ1, µ2

with the measure 1
4W1(

µ1+µ2

2)W2(
µ2−µ1

2)dθdµ1dµ2 and appropriate W1,W2, we obtain that kernels in

K(G) are of the form

K(x, z) = H1(‖x− z‖2)H2(‖x− z‖2) ∀x, z ∈ R
2,

where

H1(t) =

∫ ∞

0

e−tuW1(u)du, H2(t) = π

∫ ∞

0

I0(tv)W2(v)dv

and I0(t) = 1
π

∫ π

−π
e−t cos θdθ, the modified Bessel function of order zero.

3.3 Greedy Algorithm for Learning Convex Combinations of

Kernels
The analysis in Section 3.2.4 establishes necessary and sufficient conditions for a pair (ĉ, K̂) ∈ R

m×K
to be a saddle point of the problem

−Eγ(K) := max {min {R(c,K) : c ∈ R
m} : K ∈ K} .

The main part of this problem is to compute the optimal kernel K̂. Indeed, once K̂ has been computed,

ĉ is obtained as the unique solution of the inequalities (3.2.12).

With this observation in mind, in this section we focus on a computational method for the problem

Eγ(K) = min{Eγ(K) : K ∈ K}

where recall that

Eγ(K) := −min {R(c,K) : c ∈ R
m} ∀K ∈ A+(X).

The method we propose is a greedy algorithm that iteratively builds a convex combination of basic

kernels. The algorithm starts with an initial kernel K(1) ∈ K and computes iteratively a sequence of

kernels K(k) ∈ K and their corresponding vectors c(k) that minimize R(·,K(k)). At each iteration k,

the algorithm searches for a basic kernel B̂ ∈ B, if any, such that

〈c(k), B̂xc(k)〉 (3.3.1)

3.3. Greedy Algorithm for Learning Convex Combinations ofKernels 49

Algorithm 1 Algorithm to compute an optimal convex combination of basic kernels.
Initialization: Choose K(1) ∈ K
Set k = 1

while ‖Eγ(K(k))−Eγ(K(k−1))‖ < tol do

1. Compute c(k) = argmin{R(c,K(k)) : c ∈ R
m}

2. Select B̂ ∈ argmax{〈c(k), Bxc(k)〉 : B ∈ B}.
If ‖〈c(k), B̂xc(k)〉 − 〈c(k),K

(k)
x c(k)〉‖ < tol, terminate.

3. Compute λ̂ = argmin{Eγ(λB̂ + (1− λ)K(k)) : λ ∈ (0, 1]}
4. Set K(k+1) = λ̂B̂ + (1− λ̂)K(k)

Set k = k + 1

end while

is maximized. If such B̂ is found then a new kernel K(k+1) is computed to be the optimal convex

combination of the kernels B̂ and K(k), that is,

Eγ(K(k+1)) = min
{

Eγ(λB̂ + (1− λ)K(k)) : λ ∈ [0, 1]
}

.

If no B̂ ∈ B maximizing (3.3.1) can be found, the algorithm terminates.

We shall see in the next section that, in this way, the values of the objective function Eγ decrease,

as . Moreover, we shall show that the iterates c(k),K(k) concentrate around saddle points of problem

(3.2.9).

Computationally, the hardest part of the algorithm is step 2, which maximizes the quadratic form

(3.3.1). This form depends on the parameterization G of the basic kernels and will not be concave,

in general. Different methods can be applied to this maximization problem, which may have few or

many local maxima (see Section 3.4). Step 3 is a simple minimization problem which can be solved,

for example, using Newton’s method, since the function Eγ(λB̂ + (1 − λ)K(k)) is convex in λ and its

derivative can be computed by applying Theorem 35. We also use tolerance parameters to stop if there

is small change in the quadratic form (3.3.1) or in the value of the objective Eγ(K(k)). A version of

the algorithm for the case of finite B can also be implemented (below we shall refer to this version as

the “finite algorithm”). It only differs from the continuous version at Step 2, in that (3.3.1) needs to be

computed on all the basic kernels of B.

3.3.1 Convergence Properties

It can be shown that the greedy algorithm we have described approaches the optimal value of problem

(3.2.9) at every iteration. This is a consequence of the following lemma.

Lemma 63 Let K1,K2 ∈ A+(X) such that (K1)x, (K2)x ∈ S
m
++. Then λ = 0 is not a solution to the

problem

min {Eγ(λK1 + (1− λ)K2) : λ ∈ [0, 1]}

if and only if R(cK2
,K1) > R(cK2

,K2).

3.3. Greedy Algorithm for Learning Convex Combinations ofKernels 50

PROOF. Follows immediately from Theorem 58.

Applying this lemma to the case that K1 = B̂ and K2 = K(k) we conclude that Eγ(K(k+1)) <

Eγ(K(k)) if and only if B̂ satisfies the inequality R(c(k), B̂) > R(c(k),K(k)), which is established by

step 2. Thus after each iteration, either the objective function Eγ decreases or the algorithm terminates:

Eγ(K(1)) > Eγ(K(2)) > · · · > Eγ(K(kmax)) . (3.3.2)

Not only do the values of the objective converge but they also converge to the optimal value of

(3.2.9). Moreover, the iterates of c and K concentrate near saddle points of the problem.

Theorem 64 There exists a limit point of Algorithm 1 and any limit point (c̄, K̄) is a saddle point of

problem (3.2.9).

PROOF. See Appendix B. The proof is a consequence of the continuity of Eγ .

The assumption that the quadratic form is maximized at step 2 is crucial for optimality to hold.

An implementation that simply finds a larger value of 〈c(k),K
(k)
x c(k)〉 will approach the optimal value

of the problem at every iteration but is not guaranteed to converge to it. Indeed, one could conceive of

an example with, say, 3 basic kernels, B1, B2, B3, and a sequence of steps which converges (without

attainment) to the saddle point of the subproblem defined by B1 and B2. That is, at no iteration is B3

selected for inclusion in the combination of kernels. If B3 is such that (B3)x− (B1)x, (B3)x− (B2)x ∈
S

m
++ then this process will always remain far from the optimal kernel, which is B3.

3.3.2 Implementation Issues

Step 1 in Algorithm 1 is a standard regularization problem in a dual form. In the case that Q∗ is ev-

erywhere finite and differentiable, equation (3.2.18) can be used for computing c(k). In general, a con-

strained optimization problem may need to be solved instead. For example, in the case of SVMs a

standard SVM problem has to be solved. Moreover, step 3 is an one-dimensional maximization problem

that can be solved in a small number of iterations with Newton’s or Brent’s method. However, at each

iteration a regularization problem, such as an SVM, needs to be solved. Thus, the total computational

cost of learning the optimal kernel with an SVM is proportional to the cost of SVM learning. The exper-

imental results in Section 3.5 indicate that kmax is small (usually less than 20). To improve efficiency

one could use heuristics for speeding up each SVM problem. One idea is to use the result of an SVM

run as the starting point for the next one. This should result in large improvements, at step 3 in particu-

lar. Another heuristic implementation could be similar to SVMlight, caching kernel matrix entries (see

[Joachims, 1998]), but also indices of the sets selected by SMO and possibly other information, across

consecutive SVM runs.

In the experiments of Section 3.5, we have verified that the most costly part of the algorithm is

step 2, especially with multiple kernel parameters. To lower this computational cost a heuristic could be

to reuse estimates, under the assumption that the form of the function does not change much between

consecutive iterations.

3.4. Computational Issues 51

3.4 Computational Issues

3.4.1 Tractable Cases

As we pointed out above, a key step in our algorithm is to maximize the objective function

q(ω) = 〈c,Gx(ω)c〉 (3.4.1)

over ω ∈ Ω, where Ω is the parameter space and c is fixed. There are some cases when this optimization

problem is tractable. Clearly, if q is a concave function of the parameters ω and Ω is a convex set, then

the maximization is a convex program.

This situation can indeed arise from some kernel parameterizations. One example is the family of

basic kernels

K(x, z) = 〈x, F (Ψ)z〉 ∀x, z ∈ R
d,

where Ψ ∈ S
d
++ is the parameter matrix (corresponding to ω) and F : Sd

++ → S
d
++ is a spectral matrix

function (see Section 2.3). In this case, q(ω) is equal to 〈Xc, F (Ψ)Xc〉, where X = (x1, · · · , xm) is

the data matrix. It can easily be seen that q is concave (for every c ∈ R
m) if and only if F is induced by a

matrix concave function. For example, linear kernels 〈x,Ψz〉, kernels such as 〈x,Ψ
1
2 z〉, 〈x, log(Ψ+I)z〉

etc. give rise to convex programs. Other similar cases can be kernels corresponding to the matrices

F (X>ΨX), F (X>XΨ) etc.

In fact, the larger optimization problem (3.2.5) is then convex, as a consequence of Theorem 52

and the variable transformation β = Kxα in the primal (3.2.4). Convex optimization packages can be

used for solving this problem, provided that conv(B) can easily be expressed as a finite set of convex

constraints. However, in many situations this is not possible and we need to resort to Algorithm 1 as an

efficient alternative.

3.4.2 Minimizing Sums of Exponentials

Now we present some insights into the case that the basic kernels are exponential functions, namely

G(ω)(x, z) = e−ωd(x,z) ∀x, z ∈ X

for some function d : X 2 → R+ and Ω ⊆ R+. It is well known that G(ω) is a kernel for all ω ∈ R+

if and only if the matrix D = (d(xi, xj) : i, j ∈ Nm) is conditionally negative definite for all data

{xi : i ∈ Nm},m ∈ N, that is, 〈c,Dc〉 ≤ 0 whenever
∑

i∈Nm
ci = 0. For example, in the Gaussian

case, d(xi, xj) = ‖xi − xj‖2 has this property – see, for example, [Schölkopf and Smola, 2002].

We wish to bound the number of local extrema on R+ of the function

q(ω) =
∑

i∈Nm

c2
i + 2

∑

i<j

cicje
−ωd(xi,xj).

For this purpose, let us define the univariate function g(x) =
∑

i∈Nn
aie

bix, x ∈ R, where ai ∈ R, b1 <

· · · < bn. We recall that Laguerre’s rule of signs states that the number of nonnegative zeros of g

(counting multiplicities) does not exceed the number of sign changes in the sequence a1, · · · , an, which

is at most n− 1. Moreover, this result is sharp, see for example [Steinig, 1986].

3.4. Computational Issues 52

In our experiments in Section 3.5 we have observed between two to five local maxima of q with

one-parameter Gaussian kernels. This fact is confirmed by Laguerre’s rule of signs. Indeed, in our

simulations the inputs xi clustered well in two groups, that is, d(xi, xj) is small when yi = yj and

larger when yi 6= yj . Moreover, each ci usually has the same sign as yi (this would always be the case

for support vector machines, see, for example, [Shawe-Taylor and Cristianini, 2004]). Hence, when

we order the d(xi, xj) in a non-decreasing fashion the corresponding ordering of the coordinates of the

vector (cicj : i, j ∈ Nm) exhibits only a few sign changes.

3.4.3 A DC-Programming Approach

As we have already noted, the objective function R(c,G(·)) is not convex, in general. This makes Step 2

of Algorithm 1 a challenging task. In fact, for a wide class of basic kernels, the function R(c,G(·)) be-

longs to the class of DC functions. There are available iterative algorithms for optimizing such functions,

although their theoretical complexity is not polynomial. We first review a few necessary definitions and

results from the theory of DC functions, as presented in [Horst and Thoai, 1999].

Let Ω be a closed convex subset of R
D. A function f : Ω→ R is called DC on Ω if there exist two

convex functions g and h such that

f(ω) = g(ω)− h(ω) ∀ω ∈ Ω.

A remarkable result by [Hartman, 1959] states that locally DC functions are DC. It also implies that

every twice continuously differentiable function on Ω is DC and every continuous function on Ω is the

limit of a sequence of DC functions that converges uniformly on Ω. Moreover, the class of DC functions

is linear and closed under multiplication and the finite min/max operations. Optimization problems of

the type

inf{f(ω) : ω ∈ Ω, fi(ω) ≤ 0, i ∈ Nn}, (3.4.2)

where f and fi, i ∈ Nn, are DC, are called DC programs.

We now derive a DC-programming formulation for the problem of maximizing function (3.4.1).

To this end, we note that, for every c ∈ R
m, the function R(c,G(·)) is the limit of DC functions

since, for every x, z ∈ X , we have assumed continuity of G(·)(x, z). In addition, if G(·)(x, t) is twice

continuously differentiable, maximizing (3.4.1) is a DC program.

Therefore, for most interesting continuous parameterizations, Gx(ω) and hence f(ω) in (3.4.1) are

DC functions. If, furthermore, the DC decomposition of G(·)(x, z) is available, we obtain an optimiza-

tion problem of the form

ϕ̂ = min{f(ω) = g(ω)− h(ω) : ω ∈ Ω}, (3.4.3)

where g, h are convex.

In particular, in the case of Gaussian kernels as in (3.2.23), D = d(d+1)/2, ω consists of the lower

triangular elements of Σ−1 and the DC decomposition is given by

f(ω) = −
∑

{i,j:cicj>0}

cicje
−〈bij ,ω〉 −

∑

{i,j:cicj<0}

cicje
−〈bij ,ω〉,

3.5. Experimental Validation 53

where the indices i, j ∈ Nm and, for every i, j, bij := ((2− δ(k, `))(xik − xjk) (xi` − xj`) : d ≥ k ≥
` ≥ 1). Here, g is the second term in the right hand side of the above equation and h is minus the first

term.

A necessary and sufficient condition for ω̂ to solve problem (3.4.3) is that

min{−h(ω) + t : ω ∈ Ω, t ∈ R, g(ω)− t ≤ g(ω̂)− h(ω̂)}

equals zero, see, for example, [Horst and Thoai, 1999, Proposition 4.4]. This observation has motivated

the cutting plane algorithm proposed by Horst and Thoai, a variant of which we have implemented

[Argyriou et al., 2006a]. The details appear in Algorithm 2. The algorithm works by constructing outer

polytopes P k+1 ⊆ P k which contain the optimal solution (ω̂, t̂ = h(ω̂)). Subsequent polytopes are

defined by cutting out the current vertex (ωk, tk) while keeping the solution inside. In other words, a

hyperplane `k : Ω× R→ R is constructed so that

`k(ωk, tk) > 0,

`k(ω, t) ≤ 0, for all (ω, t) ∈ R
D+1 such that ω ∈ Ω and g(ω)− t ≤ ϕk+1.

One can show that the sequence of function values converges to the optimal one from above, that

is, ϕ̂ ≤ ϕk+1 ≤ ϕk – see [Horst and Thoai, 1999] for a proof and a more detailed explanation of the

algorithm. Although the algorithm is guaranteed to converge in finite time, the worst case convergence

rate is exponential. However, there are practical implementations of this and other DC programming

algorithms which can tackle several hundreds or thousands of variables.

Finally, we should mention that the algorithm of [Horst and Thoai, 1999] is just one possible algo-

rithm for DC problems. There have been several approaches for such types of problems, such as those

in [An and Tao, 1998, Mangasarian, 1997]. Also, see [Yuille and Rangarajan, 2003] for another method,

called concave-convex, which has been applied to several machine learning problems by the authors.

3.5 Experimental Validation

3.5.1 Experiments with the Greedy Algorithm

We have tested Algorithm 1 on eight handwritten digit recognition tasks of varying difficulty from the

MNIST data set2. The data are 28×28 images with pixel values ranging between 0 and 255. We used

Gaussian kernels as the basic kernels, that is, G(σ)(x, z) = exp(−‖x− z‖2/σ2), σ ∈ [σ1, σ2]. In all

the experiments, the test error rates were measured over 1000 points from the MNIST test set.

The continuous and finite algorithms were trained using the square loss and compared to an SVM3.

In all experiments, the training set consisted of 500 points and the test set of 1000 points. For the

finite case, we chose ten Gaussian kernels with σ’s equally spaced in an interval [σ1, σ2]. For both

versions of our algorithm, the starting value of the kernel was the average of these ten kernels. The

performance of the SVM was obtained as the best among the results for the above ten kernels. This

strategy slightly favors the SVM but compensates for the fact that the loss functions are different. The
2Available at: http://yann.lecun.com/exdb/mnist/index.html
3Trained using SVM-light, see: http://www.cs.cornell.edu/People/tj/svm light

3.5. Experimental Validation 54

Algorithm 2 Cutting plane algorithm for DC programming.
Inputs: A point ω0 in the interior of Ω; a simplex S0 ⊇ Ω with vertex set V (S0); a convex function

α : R
D → R such that Ω = {ω ∈ R

D : α(ω) ≤ 0}.

Initialization:

Set ϕ0 = g(ω0)− h(ω0).

Compute a subgradient s ∈ ∂g(ω0).

Choose t̄ > max{g(ω) : ω ∈ V (S0)} − ϕ̄, where

ϕ̄ = min{g(ω) : ω ∈ V (S0)} −max{h(ω) : ω ∈ V (S0)}.

Construct a polytope P 0 from S0, t̄ and ω0.

Set k = 0.

while ‖ϕk+1 − ϕk‖ < tol do

Compute an optimal solution (ω∗, t∗) of the problem min{−h(ω) + t : (ω, t) ∈ V (P k)}.
if −h(ω∗) + t∗ = 0 then

Stop. ωk is an optimal solution to (3.4.3) with optimal value ϕk.

else {−h(ω∗) + t∗ < 0}
Case 1: ω∗ ∈ Ω

Compute sk ∈ ∂g(ω∗).

Case 1a: g(ω∗)− h(ω∗) < ϕk

Set ωk+1 = ω∗.

Case 1b: g(ω∗)− h(ω∗) ≥ ϕk

Set ωk+1 = ωk.

Case 2: ω∗ /∈ Ω

Compute sk ∈ ∂βk(ω∗, t∗), where βk(ω, t) := max{α(ω), g(ω)− t− ϕk}.
Compute the zero (ζ∗, θ∗) of βk(x, t) on the line segment joining (ω∗, t∗) and (ω0, t̄).

Case 2a: g(ζ∗)− h(ζ∗) < ϕk

Set ωk+1 = ζ∗.

Case 2b: g(ζ∗)− h(ζ∗) ≥ ϕk

Set ωk+1 = ωk.

Construct the cutting plane (affine function)

`k(x, t) =




〈ω − ω∗, sk〉+ g(ω∗)− ϕk+1 − t if ω∗ ∈ Ω

〈(ω, t)− (ζ∗, θ∗), sk〉+ βk(ζ∗, θ∗) if ω∗ /∈ Ω.

Set P k+1 = P k ∩ {(ω, t) : `k(ω, t) ≤ 0}.
Set k = k + 1.

end if

end while

regularization parameter was selected with 5-fold cross validation in all cases. The tolerance parameters

of our algorithm were set to be equal to 10−3. Finally, the optimization technique used for step 2 of the

3.5. Experimental Validation 55

5 10 15 20
0.062

0.064

0.066

0.068

0.07

0.072

1 2 3 4 5 6 7
0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

Figure 3.1: Functional Eγ (solid line) and misclassification error (dotted line) after the first iteration of

Algorithm 1 for even vs. odd (left) and 3 vs. 8 (right).

continuous algorithm consisted of local searches covering the whole range of σ.

Table 3.1 shows the results obtained. The range of σ is [75, 25000] in columns 2–4, [100, 10000] in

columns 5–7 and [500, 5000] in columns 8–10. Note that, in most cases, the continuous algorithm finds

a better combination of kernels than the finite version. In general, the continuous algorithm performs

better than the SVM, whereas most of the time the finite algorithm is worse than the SVM. Moreover,

the results indicate that the continuous algorithm is not affected by the range of σ, unlike the other two

methods.

Typically, the continuous algorithm requires less than 20 iterations to terminate whereas the finite

algorithm may require as much as 100 iterations. Figure 3.1 depicts the convergence behavior of the

continuous algorithm on two different tasks. In both cases σ ∈ [100, 10000]. The actual values of Eγ

are six orders of magnitude smaller, but they were rescaled to fit the plot. Note that, in agreement with

inequality (3.3.2), Eγ decreases and eventually converges. The misclassification error also converges to

a lower value, indicating that Eγ provides a good learning criterion.

3.5.2 Experiments with the DC Algorithm

We also performed a series of experiments on the MNIST data set using the greedy algorithm (Algorithm

1) combined with the DC method (Algorithm 2). In Table 3.2, we present the results obtained using the

DC algorithm alongside the previous greedy algorithm, the greedy algorithm for a finite number of basic

kernels and SVM-light. It is clear from this table that the DC approach is as good as the greedy algorithm

for selecting a single variance.

Next, we performed experiments with multiple parameters. In such cases, the standard exhaustive

search methods suffer from the curse of dimensionality, whereas DC approaches are able to tackle opti-

mization problems in several dimensions. In Table 3.3, we show the performance of the DC algorithm

simultaneously learning two isotropic variances, one corresponding to the left and one to the right part

of the image. The performance with two variances significantly improves on that with one variance and

the algorithm remains robust over different ranges of σ1 and σ2, which is evidence that the optimization

3.5. Experimental Validation 56

Table 3.1: Misclassification error percentage for the continuous and finite versions of the algorithm and

the SVM on different handwritten digit recognition tasks.

Method

Task Cont. Finite SVM Cont. Finite SVM Cont. Finite SVM

σ ∈ [75, 25000] σ ∈ [100, 10000] σ ∈ [500, 5000]

odd vs. even 6.6 18.0 11.8 6.6 10.9 8.6 6.5 6.7 6.9

3 vs. 8 3.8 6.9 6.0 3.8 4.9 5.1 3.8 3.7 3.8

4 vs. 7 2.5 4.2 2.8 2.5 2.7 2.6 2.5 2.6 2.3

1 vs. 7 1.8 3.9 1.8 1.8 1.8 1.8 1.8 1.9 1.8

2 vs. 3 1.6 3.9 3.1 1.6 2.8 2.3 1.6 1.7 1.6

0 vs. 6 1.6 2.2 1.7 1.6 1.7 1.5 1.6 1.6 1.5

2 vs. 9 1.5 3.2 1.9 1.5 1.9 1.8 1.5 1.4 1.4

0 vs. 9 0.9 1.2 1.1 0.9 1.0 1.0 0.9 0.9 1.0

subproblem was successfully solved. In the same table, we present the performance of the finite kernels

method mentioned above using grids of 5× 5 and 10× 10 kernels with equally spaced σ’s. This method

succeeds only in the smallest range of σ’s and with the 10 × 10 grid. But in the absence of information

about σ, even with the finer grid the finite kernels method is not competitive. We also performed exper-

iments with four isotropic variances (corresponding to the four quadrants of the image), which did not

further improve the results.

As regards the computational cost, our method using DC programming compares favorably to the

finite method. We implemented both of them in Matlab and performed the experiments on a 1GHz dual-

processor machine running Linux. For the local optimization of −h(x) + t in Algorithm 2, we used

Matlab’s fmincon() routine. We observed that the finite method is much worse in time cost than the DC

algorithm (about 1 hour vs. 5 minutes with 2 parameters). The main computational cost of our algorithm

is incurred by the aforementioned local optimization, whereas the finite method scales polynomially with

the grid size. Still, the running time of our algorithm deteriorates fast with the number of parameters. For

example, it takes 1-2 minutes for learning one parameter, about 5 minutes for 2 parameters and about

1 hour for 4 parameters. We speculate that faster local search exploiting linear programming and the

special nature of the function can lead to further improvements in efficiency. With respect to memory

requirements, our algorithm is clearly more efficient because it only needs to store the linear constraints,

whereas the grid method requires all the kernels to be in memory.

We also observed that the greedy algorithm usually required less than 20 iterations to terminate,

3.5. Experimental Validation 57

Table 3.2: Misclassification error percentage for learning one kernel parameter on the MNIST tasks.

Method

Task greedy finite SVM greedy finite SVM greedy finite SVM

DC local DC local DC local

σ ∈ [75, 25000] σ ∈ [100, 10000] σ ∈ [500, 5000]

odd vs. even 6.5 6.6 18.0 11.8 6.5 6.6 10.9 8.6 6.5 6.5 6.7 6.9

3 vs. 8 3.7 3.8 6.9 6.0 3.9 3.8 4.9 5.1 3.6 3.8 3.7 3.8

4 vs. 7 2.7 2.5 4.2 2.8 2.4 2.5 2.7 2.6 2.3 2.5 2.6 2.3

Table 3.3: Misclassification error percentage of DC algorithm vs. finite grid for 2 parameters on the

MNIST tasks.

Number of kernel parameters

Task greedy- 5 × 5 10 × 10 greedy- 5 × 5 10 × 10 greedy- 5 × 5 10 × 10

DC DC DC

σ ∈ [75, 25000] σ ∈ [100, 10000] σ ∈ [500, 5000]

odd vs. even 5.8 15.8 11.2 5.8 10.1 6.2 5.8 6.8 5.8

3 vs. 8 2.7 6.5 5.1 2.5 4.6 2.5 2.6 3.5 2.5

4 vs. 7 1.8 3.9 2.9 1.7 2.7 2.0 1.8 2.0 1.8

which is evidence in favor of the DC approach. The cutting plane method usually required less than 100

iterations to converge. Thus, the learned convex combination has a small (usually less than 10) number

of kernels.

Finally, in Figure 3.2 we present the learned kernel coefficients for two isotropic variances (left

and right image) in the range [100, 10000]. These indicate that for the odd vs. even task it is better

to combine several complementary kernels focused on different parts of the images than use a single

Gaussian kernel. However, for the 3-8, 4-7 tasks there is a clear winner among the kernels. This conforms

with the intuition that odd vs. even is a more complex task than the binary ones. Moreover, augmenting

the parameter class for odd vs. even results in a more complex (and more effective) representation for the

solution. In order to gain more insight into the nature of this solution, we have plotted the corresponding

variances for odd vs. even in Figure 3.3. It is clear that the learned kernels are either focused exclusively

on each half of the images or operate on the image as a whole.

3.6. Interpretation of Learning the Kernel in the Space of Features 58

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3.2: Learned kernel coefficients for different classification tasks and kernel parameterizations.

Top plots are for odd vs. even (the dimensionality is 1 on the left and 2 on the right). Bottom plots are

for the 3-8 task (left) and the 4-7 task (right), with dimensionality 2.

3.6 Interpretation of Learning the Kernel in the Space of Features

An alternate point of view for learning the kernel focuses on the feature space representation of kernels.

The idea here is to reformulate the variational problem (3.2.5), which has been the focus of our discus-

sion, in the space associated with the features of basic kernels. This issue is investigated in generality in

[Micchelli and Pontil, 2007]. Here, we wish to highlight some of its main observations. To keep the dis-

cussion accessible we restrict ourselves to the case that the parameter set Ω is finite, that is, Ω = Nn and

each of the basic kernels is determined by a finite number of features. Hence, for each ` ∈ Nn, x, z ∈ X
we write G`(x, z) = 〈Φ`(x),Φ`(z)〉, where Φ`(x) ∈ R

s and s is the number of features. With this

representation of the basic kernels, we follow [Micchelli and Pontil, 2007] and consider the variational

problem

Q

(
∑

`∈Nn

w>

` Φ`(x)

)
+ γ

(
∑

`∈Nn

‖w`‖
)2

, (3.6.1)

where Φ`(x) = (Φ`(x1), . . . ,Φ`(xm)). The minimizer (ŵ` : ` ∈ Nn) of this variational problem

provides an optimal kernel based on the features defined above. In particular, the optimal kernel is given

by

K̂ =
∑

`∈Nn

‖w`‖∑
r∈Nn

‖wr‖
G`. (3.6.2)

3.7. Bounds for Learning the Kernel 59

10
2

10
3

10
4

10
2

10
3

10
4

Figure 3.3: Learned [σ1, σ2] parameters of the kernels in the optimal convex combination, for the odd

vs. even task. The parameter range was [100,10000].

A detailed explanation for this fact and its extensions to the continuous case can be found in [Mic-

chelli and Pontil, 2007, Thm. 2.1, Cor. 3.1, Eq. (3.4)]. As pointed out in that paper, when there is

one feature, namely s = 1, equation (3.6.1) reduces to the L1 regularization problem. There has been

renewed interest in this problem because a minimizing solution will often have few nonzero coefficients,

in other words will be sparse. Furthermore, the formula (3.6.2) will appear again in Section 4.3.3, in the

context of learning features for multiple tasks.

3.7 Bounds for Learning the Kernel
In the theoretical study of the optimization problem of learning with convex sets of kernels, we have

postponed the issue of the generalization properties of this formulation. First, the possibility of over-

fitting the data in problem (3.2.5) should be ruled out. This is clearly the case when the set of kernels

K is so rich that the term 〈β,K−1
x

β〉 can become zero for any β ∈ R
m, where β = Kxα in (3.2.4).

Hence the requirement for a constraint that bounds the kernel matrix. The question that arises is what

this constraint may be. The answer given in [Micchelli et al., 2005] is that the kernels in class K should

be uniformly bounded, that is,

sup{K(x, x) : x ∈ X ,K ∈ K} < +∞ ,

and continuous. Then, for a broad class of loss functions, the minimum of the regularization functional,

Eγ(K), is bounded from below by a positive constant that depends on the value of the above supremum.

A second question is how the difference between the empirical error on the data {x, y} and the

optimal expected error over X is bounded. An upper bound on this difference has been shown in [Srebro

and Ben-David, 2006, Thm. 2] using covering numbers. This bound involves the pseudodimension

dφ of the set K, which is a measure of the set’s complexity. It appears as

√
O
(
dφ + 1

η2

)

m
, where η

is the margin of the classifier. In the case of a finite number n of basic kernels, the pseudodimension

dφ is at most n. Also, in the case of Gaussian basic kernels, it is bounded in terms of the size of

the covariance as dφ ≤ d(d+1)
2 . Finally, with isotropic Gaussian kernels, dφ ≤ d and with rank-k

3.8. Convex Combinations of Graph Kernels 60

covariance, dφ ≤ kd log2(8ekd). Thus, as intuitively expected, kernel learning becomes harder the

richer the covariance parameter space.

3.8 Convex Combinations of Graph Kernels

In this section, we show how optimization over convex sets of kernels can be applied to a special setting.

This is the case of semi-supervised learning, which addresses classification problems with few labeled

data (see Section 2.2.3). The semi-supervised learning methods we have mentioned exploit the structure

of a prescribed graph for separating the data.

The construction of this graph usually consists of two stages, first selection of a distance function

and then application of it to determine the graph’s edges (or weights). For example, below we shall

consider distances between images based on the Euclidean distance, Euclidean distance combined with

image transformations, and the related tangent distance [Hastie and Simard, 1998]; we shall determine

the edge set of the graph with k-nearest neighbors. Another common choice is to weight edges by a

decreasing function of the distance d(vi, vj) between vertices vi, vj such as e−βd(vi,vj)
2 .

Although a surplus of unlabeled data may improve the quality of the empirical approximation of

the manifold (via the graph) leading to improved performances, practical experience with these methods

indicates that their performance significantly depends on how the graph is constructed. Hence, it is

necessary to address the model selection problem, that is, selection of the distance function and the

parameters k or β used in the graph building process described above. A diversity of methods have

been proposed for graph construction. In contrast, the method we propose combines a number of graphs

via their Laplacians and the corresponding kernels. For a given data set each combination of distance

functions and edge set specifications from the distance will lead to a specific graph. Each of these graphs

may then be associated with a kernel and we will learn the optimal convex combination of these kernels.

This approach is further motivated by the fact that, unlike in the supervised case, cross validation is not

an option here. Indeed, all labeled vertices must be conserved for training since their number is small.

Figure 3.5 in Section 3.8.2 illustrates our algorithm on a simple example. There, three different

distances for 400 images of the digits ‘six’ and ‘nine’ are depicted, namely, the Euclidean distance, a

distance invariant under small centered image rotations from [−10◦, 10◦] and a distance invariant under

rotations from [−180◦, 180◦]. Clearly, the last distance is problematic as sixes become similar to nines.

The performance of the graph regularization algorithm with these distances is reported below each plot;

as expected, this performance is much lower in the case that the third distance is used. Moreover, the

algorithm which we shall describe in Section 3.8.1 performs optimally and combines only the two “good”

graphs.

3.8.1 Combining Graph Laplacians

We now describe our framework for learning with multiple graph Laplacians. We assume that we are

given n graphs G`, ` ∈ Nn, all having m vertices, with corresponding Laplacians L`, kernel matrices

B` = (L`)
+, Hilbert spacesH` := H(G`) and norms ‖v‖2` := v

>
L`v, v ∈ H`. We propose to learn an

3.8. Convex Combinations of Graph Kernels 61

optimal convex combination of graph kernels, that is, we solve the optimization problem

min
{

Q(v̄) + γ‖v‖2
K(λ) : λ ∈ Λ, v ∈ HK(λ)

}
. (3.8.1)

Here, we have defined v̄ to be the labeled part of v, the set Λ := {λ ∈ [0, 1]n :
∑

`∈Nn
λ` = 1} and,

for each λ ∈ Λ, the kernel matrix K(λ) :=
∑

`∈Nn
λ`B` and the RKHSHK(λ) to be the range of K(λ)

with inner product 〈·, ·〉
K(λ), norm ‖ · ‖K(λ) induced by the corresponding Laplacian.

Solving problem (3.8.1) for fixed λ in the cases of square loss regularization [Belkin and Niyogi,

2004] and minimal norm interpolation [Zhu et al., 2003] requires solving a linear system of m and m−`

equations respectively. Instead, we choose to use the representer theorem to express v as

v =


∑

j∈N`

L+
ijαj : i ∈ Nm


 .

This approach is advantageous if L
+ can be computed off-line because, typically, ` � m. A further

advantage of this approach is that multiple problems may be solved with the same Laplacian kernel. The

coefficients αj are obtained by solving problem (3.8.1) with K = (L+
ij)i,j∈N`

. For example, for square

loss regularization the computation of the parameter vector α = (αj : j ∈ N`) involves solving a linear

system of ` equations, namely

(K + γI)α = y . (3.8.2)

Problem (3.8.1) is clearly a special case of (3.2.5). Using (3.2.8), we can rewrite problem (3.8.1) as

max

{
min

{
1

4γ
c>

K(λ)c + Q∗(c) : c ∈ R
`

}
: λ ∈ Λ

}
. (3.8.3)

As we have already discussed, this problem is simpler to solve than the original problem (3.8.1) since its

objective function is linear in λ. Thus, Algorithm 1 of Section 3.3 can be used for computing a saddle

point (ĉ, λ̂) ∈ R
` × Λ.

When solving problem (3.8.1) it is important to require that the kernel matrices B` satisfy a nor-

malization condition such as that they all have the same trace or the same Frobenius norm (see Section

3.7). We also note that the above analysis naturally extends to the case that L is replaced by any positive

semidefinite matrix. In particular, in our experiments below we will use the normalized Laplacian matrix

given by D
− 1

2 LD
− 1

2 , where D is the diagonal matrix of the degrees of the vertices.

3.8.2 Experiments

We have performed experiments with our algorithm for combining graphs on optical character recogni-

tion. In these, we observed the following. First, the optimal convex combination of graph kernel matrices

computed by our algorithm is competitive with the best basic kernel matrices. Second, by observing the

‘weights’ of the convex combination we can distinguish the strong from the weak candidate graph ker-

nels and hence the weight matrices as well. We proceed by discussing the details of the experimental

design interleaved with our results.

We used the USPS dataset4 of 16×16 images of handwritten digits with pixel values ranging be-

tween -1 and 1. We present the results for 5 pairwise classification tasks of varying difficulty and for odd
4Available at: http://www-stat-class.stanford.edu/∼tibs/ElemStatLearn/data.html

3.8. Convex Combinations of Graph Kernels 62

Euclidean Transformation Tangent distance All

(10 kernels) (10 kernels) (10 kernels) (30 kernels)

Labels % 1% 2% 3% 1% 2% 3% 1% 2% 3% 1% 2% 3%

Task

1 vs. 7 1.55 1.53 1.50 1.45 1.45 1.38 1.01 1.00 1.00 1.28 1.24 1.20

0.08 0.05 0.15 0.10 0.11 0.12 0.00 0.09 0.11 0.28 0.27 0.22

2 vs. 3 3.08 3.34 3.38 0.80 0.85 0.82 0.73 0.19 0.03 0.79 0.25 0.10

0.85 1.21 1.29 0.40 0.38 0.32 0.93 0.51 0.09 0.93 0.61 0.21

2 vs. 7 4.46 4.04 3.56 3.27 2.92 2.96 2.95 2.30 2.14 3.51 2.54 2.41

1.17 1.21 0.82 1.16 1.26 1.08 1.79 0.76 0.53 1.92 0.97 0.89

3 vs. 8 7.33 7.30 7.03 6.98 6.87 6.50 4.43 4.22 3.96 4.80 4.32 4.20

1.67 1.49 1.43 1.57 1.77 1.78 1.21 1.36 1.25 1.57 1.46 1.53

4 vs. 7 2.90 2.64 2.25 1.81 1.82 1.69 0.88 0.90 0.90 1.04 1.14 1.13

0.77 0.78 0.77 0.26 0.42 0.45 0.17 0.20 0.20 0.37 0.42 0.39

Labels 10 20 30 10 20 30 10 20 30 10 20 30

odd vs. even 18.6 15.5 13.4 15.7 11.7 8.52 14.66 10.50 8.38 17.07 10.98 8.74

3.98 2.40 2.67 4.40 3.14 1.32 4.37 2.30 1.90 4.38 2.61 2.39

Table 3.4: Misclassification error percentage (top) and standard deviation (bottom) for the best convex

combination of kernels on different handwritten digit recognition tasks, using different distances. See

text for description.

vs. even digit classification. For pairwise classification, the training set consisted of the first 200 images

for each digit in the USPS training set and the number of labeled points was chosen to be 4, 8 or 12 (with

equal numbers for each digit). For odd vs. even digit classification, the training set consisted of the first

80 images per digit in the USPS training set and the number of labeled points was 10, 20 or 30, with

equal numbers for each digit. Performance was averaged over 30 random selections, each with the same

number of labeled points.

In each experiment, we constructed n = 30 graphs G` (` ∈ Nn) by combining k-nearest neigh-

bors (k ∈ N10) with three different distances (described below). Then, n corresponding Laplacians

were computed together with their associated kernels. We chose as the loss function Q the square loss.

Since kernels obtained from different types of graphs can vary widely, it was necessary to renormalize

3.8. Convex Combinations of Graph Kernels 63

them. Hence, we chose to normalize each kernel during the training process by the Frobenius norm of its

submatrix corresponding to the labeled data. We also observed that similar results were obtained when

normalizing with the trace of this submatrix. The regularization parameter was set to 10−5 in all algo-

rithms. As the starting kernel in Algorithm 1 we always used the average of the n kernels. We observed

that the number of iterations needed was usually about 30.

Table 3.4 shows the results obtained using three distances combined with k-NN (k ∈ N10). The first

distance is the Euclidean distance between images. The second method is transformation, where the dis-

tance between two images is given by the smallest Euclidean distance between any pair of transformed

images as determined by applying a number of affine transformations and a thickness transformation5,

see [Hastie and Simard, 1998] for more information. The third distance is tangent distance, as described

in [Hastie and Simard, 1998], which is a first-order approximation to the above transformations. For the

first three columns in the table the Euclidean distance was used, for columns 4–6 the image transforma-

tion distance was used, for columns 7–9 the tangent distance was used. Finally, in the last three columns

all three methods were jointly compared.

As the results indicate, when combining different types of kernels, the algorithm tends to select the

most effective ones (in this case the tangent distance kernels and to a lesser degree the transformation

distance kernels, which did not work very well because of the Matlab optimization routine we used). We

also observed that within each of the methods the performance of the convex combination is comparable

to that of the best kernels. Figure 3.4 reports the weight of each individual kernel learned by our algo-

rithm when 2% labels are used in the pairwise tasks and 20 labels are used for odd vs. even. With the

exception of the easy 1 vs. 7 task, the large weights are associated with the graphs/kernels built with the

tangent distance.

The effectiveness of our algorithm in selecting the good graphs/kernels is better demonstrated in

Figure 3.5, where the Euclidean and the transformation kernels are combined with a “low-quality” ker-

nel. This “low-quality” kernel is induced by considering distances invariant over rotation in the range

[−180◦, 180◦], so that the image of a 6 can easily have a small distance from an image of a 9. That is, if

x and t are two images and Tθ(x) is the image obtained by rotating x by θ degrees, we set

d(x, t) = min{‖Tθ(x)− Tθ′(t)‖ : θ, θ′ ∈ [−180◦, 180◦]}.

The figure shows the distance matrix on the set of labeled and unlabeled data for the Euclidean, trans-

formation and “low-quality distance” respectively. The best error among 15 different values of k within

each distance, the error of the learned convex combination and the total learned weights for each distance

are shown below each plot. It is clear that the solution of the algorithm is dominated by the good kernels

and is not influenced by the ones with low performance. As a result, the error of the convex combination

is comparable to that of the Euclidean and transformation distances. The final experiment (see Figure

3.6) demonstrates that availability of unlabeled data improves the performance of our method.

5This distance was approximated using Matlab’s constrained minimization function.

3.8. Convex Combinations of Graph Kernels 64

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12 1 vs. 7

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 2 vs. 3

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 2 vs. 7

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 vs. 8

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 4 vs. 7

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

odd−even

Figure 3.4: Kernel weights for Euclidean (first 10), Transformation (middle 10) and Tangent (last 10).

0 100 200 300 400

0

50

100

150

200

250

300

350

400

Euclidean

0 100 200 300 400

0

50

100

150

200

250

300

350

400

Transformation

0 100 200 300 400

0

50

100

150

200

250

300

350

400

Low−quality distance

error = 0.24% error = 0.24% error = 17.47%

∑15
i=1 λi = 0.553

∑30
i=16 λi = 0.406

∑45
i=31 λi = 0.041

convex combination error = 0.26%

Figure 3.5: Similarity matrices and corresponding learned coefficients of the convex combination for the

6 vs. 9 task.

0 500 1000 1500 2000
0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28
Euclidean
transformation
tang. dist.

0 500 1000 1500 2000
0.1

0.12

0.14

0.16

0.18

0.2

0.22
Euclidean
transformation
tang. dist.

Figure 3.6: Misclassification error vs. number of training points for odd vs. even classification. The

number of labeled points is 10 on the left and 20 on the right.

65

Chapter 4

Multi-Task Feature Learning

This chapter addresses some fundamental issues on how to simultaneously learn multiple tasks. Multi–

task learning has recently been recognized as an important objective in machine learning, one reason

being that it is directly motivated by human intelligence. From an early age, infants learn how to recog-

nize similarities among related tasks and subsequently apply any previously learned knowledge to new

tasks. Similarly, our aim is to develop algorithms which exploit the similarities among given tasks. This

contrasts with the traditional approach in machine learning, which treats different tasks in isolation and

ignores any connections, structural or of any other kind.

We take a first step towards this goal by viewing the multi–task question as one of comparing

feature representations. Given a set of tasks which are somehow related, is there a way to learn features

which are common to all the tasks? An answer can be provided in the form of an optimization problem

which extends standard L2 regularization using a suitably defined mixed norm. Solving this and similar

problems is the main object of this chapter.

Our approach can also be viewed as a generalization of previous work on feature selection and basis

pursuit. We briefly review some of this work, as well as related multi–task learning work, and discuss the

connections to our own work. We then show that our optimization problem can be reduced to a convex

one. This implies that the optimal solution can be efficiently determined by a simple algorithm with an

interesting interpretation. It alternately performs a supervised and an unsupervised step, where in the

latter step we learn common-across-tasks representations and in the former step we learn task-specific

functions using these representations. As a special case, the algorithm can also be used for selecting (not

learning) features among multiple tasks.

Since in many cases the features of interest can be nonlinear or high-dimensional, we also develop

an algorithm which only depends on knowledge of a kernel function. This algorithm is motivated by a

representer theorem but makes further improvements in efficiency.

Finally, in the remainder of the chapter we discuss how multi–task feature learning relates to learn-

ing from different sources, especially in the context of learning convex combinations of kernels. Both

problems can be viewed as generalizations of feature selection and in fact it can be shown that multi–task

feature learning is a special case of learning the kernel.

4.1. Prior Work 66

4.1 Prior Work

The problem of learning common data representations across multiple related tasks appears in many

research areas. For example, in computer vision or multimedia search, images (or video, audio, text,

etc.) of different objects may share a common underlying representation [Heisele et al., 2002, Serre

et al., 2005] – much like in human vision common features (e.g. wavelet like) are used to represent and

recognize different objects. In this case, recognizing a particular object is considered to be a single task.

Moreover, a number of recent works in computer vision have successfully exploited similarities in object

recognition tasks to learn new related tasks, sometimes even from a single example [Bart and Ullman,

2005, Ferencz et al., 2005, Fink, 2005, Miller et al., 2000, Torralba et al., 2004].

In modeling users/consumers’ preferences (conjoint analysis) [Evgeniou et al., 2007, Kim et al.,

2004, Lenk et al., 1996], there are common products of a particular type (such as books, music, web-

pages, consumer electronics etc.) with standard product attributes (such as size, color, price). Usually,

there are features that are considered to be important by a number of people and often combine different

attributes. That is, modeling an individual’s preferences corresponds to a task. Also, in reinforcement

learning, exploiting similarities between different tasks or environments has been recognized to enhance

learning performance [Madden and Howley, 2004, Marthi et al., 2005].

The main insights about learning multiple tasks were set out in [Baxter, 2000] (and in [Baxter,

1997] from a Bayesian/information theoretic perspective). The distinction was made therein between

simultaneous learning of a number T of tasks versus learning by transfer of knowledge from T tasks to

a new one. The term multi-task learning usually refers to the former, whereas the latter is also known by

the names learning to learn and inductive transfer.

Baxter views multi-task learning as a manifestation of inductive bias. A learning task can be thought

of as a probability distribution on the input/output space X × Y . For the purpose of learning multiple

tasks, we may assume that they are obtained by a probability distribution which favors tasks related in

some sense. On the algorithmic side, the learning algorithms for the T tasks are biased by the choice of

a common hypothesis space (a space of functions from which to select a good solution for each task).

Therefore, algorithms for multi-task learning can be considered to learn the bias, in other words, the

hypothesis space is not fixed but belongs to a family H of hypothesis spaces.

Within this model, it was shown that the generalization error can be bounded in terms of the em-

pirical error over a certain hypothesis space, if the number of tasks T and the number of examples per

task m are sufficiently large. As the number of tasks T increases the required number of examples m

decreases, which means that less data per task are needed to learn more tasks. In particular, the upper

bound on m/T is better for multiple tasks than for learning a single task. Another result from [Baxter,

2000] is that it is possible to transfer bias to a new task after having learned a hypothesis spaceH based

on T tasks. Indeed, the number of examples needed for the novel task depends on the capacity of H
and not on that of the whole family H. A necessary caveat is that H should be sufficiently related to the

new task so that the empirical error overH is small. According to an empirical observation by [Caruana,

1997], pooling unrelated tasks may hurt performance – however we shall provide some experimental

4.1. Prior Work 67

evidence to the contrary in Section 4.7.

An example of bias onH is to assume that tasks share a common set of features. Low-dimensional

feature representations have long been assumed to underly many learning problems [Vapnik, 2000].

In the multi-task case, a common set of features corresponds to a hypothesis space, that is, it induces

relations across the tasks. The goal is then to learn the common features instead of a priori assuming a

given set. This intuition, that inductive transfer may take place through a shared representation, is also

advanced by [Caruana, 1997]. Moreover, sample complexity is related to the complexity of the space of

features [Baxter, 2000] or to data compressibility [Juba, 2006]. In particular, [Maurer, 2006a,b] showed

that, in the case that these feature maps are bounded linear operators, the sample complexity depends

on their Hilbert-Schmidt norm. In general, common features may not be shared equally across tasks but

their relevance may vary depending on groupings or hierarchical structures of tasks – see, for example,

[Bakker and Heskes, 2003, Torralba et al., 2004].

A number of multi-task algorithms that have been proposed use neural networks. As already men-

tioned, [Baxter, 2000, Caruana, 1997, Silver and Mercer, 1996] impose a small number of common

features to be learned jointly for all the tasks. This is ensured through a hidden layer with few nodes and

through a set of network weights “shared” by all the tasks.

Another popular approach involves hierarchical Bayesian models [Bakker and Heskes, 2003,

Bonilla et al., 2007, Dominici et al., 1997, Kim et al., 2004, Mallick and Walker, 1997, Raina et al.,

2006, Xue et al., 2007, Yu et al., 2005, Zhang et al., 2006]. In general, these models enforce task relat-

edness through a common prior probability distribution on the tasks’ parameters. The prior is learned

as part of the training process and different variations using Gaussian mixtures, Gaussian processes,

Independent Component Analysis, Dirichlet process priors etc. have been applied. Some of this work

has been developed in statistics, where the problem of meta-analysis has long been considered [Glass,

1976]. Meta-analysis is concerned with combining data from different experiments that address related

problems.

Recently, an approach within the framework of regularization has been proposed [Evgeniou et al.,

2005, Micchelli and Pontil, 2005]. It allows for “coupling”of the tasks through the regularizer, which

is a function of all the task parameters. Equivalently, this can be viewed as regularization in the joint

input/task space with a multi-task kernel. Also, some specific regularizers that penalize deviation from

the mean of the task parameters or cluster the tasks are suggested.

Another recent algorithm for finding common structures shared across tasks alternates between

regression and singular value decomposition of the tasks’ parameters [Ando and Zhang, 2005]. The

motivation of this algorithm is that shared structure can be encoded as a structural matrix parameter,

essentially corresponding to a linear feature map, which can be learned from the data.

We mention in passing a few other of the many works on the topic, such as estimating gradients

within multi-task regularization [Guinney et al., 2007]; multi-task feature selection with support vector

machines [Jebara, 2004]; co-regularization for semi-supervised learning [Rosenberg and Bartlett, 2007];

learning a nearest neighbor distance metric while clustering tasks [Thrun and O’Sullivan, 1996]; a boost-

4.2. Feature Selection and Learning 68

ing algorithm combined with a hierarchical structure of features [Torralba et al., 2004]. In [Ben-David

and Schuller, 2003] a specific multi-task paradigm, in which task relatedness is due to transformations

of the input, is analyzed and improved multi-task bounds are obtained for some cases. In the aforemen-

tioned and other works, empirical studies typically indicate that simultaneously learning multiple related

tasks significantly improves performance relative to learning each task independently.

The multi-task learning problem is also related to collaborative filtering. Collaborative filtering

seeks to predict a consumer’s preference to products, such as films or books, based on the choices of

other consumers, especially when preferences are only partially known. As in multi-task learning, there

is common structure that can be exploited since many consumers share opinions about certain types

of products. One way to rephrase this question is matrix factorization – see, for example, [Abernethy

et al., 2006, Ding et al., 2006, Lee and Seung, 2001, Srebro et al., 2005]. In matrix factorization, the

objective is to compute two factors of a given target matrix which have a fixed (or low) rank. There is

a clear analogy to multi-task learning without attributes, where the rows of the target matrix correspond

to tasks and its columns to input coordinates. In addition, the low rank assumption translates to that of a

small feature representation, which we have already discussed. Later, in Section 4.5, we will discuss the

connection of some matrix factorization methods with the method we propose for multi-task learning.

In statistics, an approach that is often applied to problems with multiple related tasks is multilevel

modeling [Gelman and Hill, 2007, Goldstein, 1991, Kreft and Leeuw, 1998]. It is a hierarchical type of

method, in that it models both the data and the regression parameters. Other related statistical approaches

include multivariate linear models such as reduced rank regression [Izenman, 1975], partial least squares

[Wold et al., 1984] and canonical correlation analysis [Breiman and Friedman, 1997, Hotelling, 1936].

These methods are based on generalized eigenvalue problems – see, for example, [Borga, 1998, Chapter

4] for a nice review. They have also been extended to an RKHS setting – see, for example, [Bennett and

Embrechts, 2003, Hardoon et al., 2004] and references therein.

4.2 Feature Selection and Learning

The problem of selecting or learning sparse representations has been extensively studied, either for sin-

gle supervised tasks or for unsupervised learning. We briefly review two well studied methods which

are related to our presentation in the following sections. Several other methods, such as Independent

Component Analysis, dimensionality reduction methods etc., exist but they are outside the scope of this

thesis.

Supervised feature selection is often performed with L1 regularization. Like L2 regularization, it

balances an error term that fits the data and a smoothness term that favors simpler solutions:

min
{
Q(X>v) + γ‖v‖21 : v ∈ R

d
}

, (4.2.1)

where Q is a convex, nonnegative loss function, X ∈ R
d×m is the data matrix and γ > 0. The regularizer

‖v‖1 =
∑

i∈Nd
|vi| is the L1 norm of v. Unlike the L2 norm, this regularizer favors sparse solutions,

that is, vectors v for which “many” components vi are zero. In fact, problem (4.2.1) is a very common

4.3. Multi-Task Feature Learning 69

convex relaxation of L0 regularization,

min
{
Q(X>v) + γ‖v‖20 : v ∈ R

d
}

, (4.2.2)

where ‖v‖0 equals the cardinality of vector v, that is, the number of nonzero components.

There have been some theoretical results which confirm the above intuitions about sparsity. Accord-

ing to [Donoho, 2004], for losses like the square loss, there is high probability that the solution of (4.2.1)

approximates well that of (4.2.2) whenever the L0 norm of the latter is small (compared to the size of the

data). Moreover, in most cases the L0 norm is a nonincreasing function of the regularization parameter γ

[Micchelli and Pinkus, 1994]. It has also been confirmed from experimental work that optimal L1 norm

solutions approximate well optimal L0 solutions.

Among other fields, L1 regularization has been studied in the statistics community under the name

of “lasso” [Hastie et al., 2001], in signal processing as “basis pursuit” [Chen et al., 2001], in feature

selection with support vector machines [Fung and Mangasarian, 2004] and in function approximation

[Poggio and Girosi, 1998]. Such problems are usually solved with linear programs obtained by a suitable

change of variables.

Regarding learning features from unsupervised data, a popular method with a long history is princi-

pal component analysis (PCA) – see, for example, [Duda and Hart, 1973, Schölkopf and Smola, 2002].

PCA finds those k orthogonal directions (principal components) whose subspace best aligns with the

data. The number k is prescribed in advance or determined ad hoc. The algorithm is simple and first

centers the data, then computes the covariance matrix C = XX> and performs an eigendecomposition

of C. The principal components are the eigenvectors of C corresponding to the k highest eigenvalues.

There is also a version with kernels (kernel PCA) that involves only inner products of the data. We will

observe some similarities of the method we propose in the following sections to PCA, since our method

learns orthogonal features as well and involves an eigendecomposition of a covariance matrix.

4.3 Multi-Task Feature Learning

4.3.1 Overview

As mentioned in the previous section, the problem of learning (or selecting) sparse representations has

been extensively studied either for single-task supervised learning (for example, using L1 regularization)

or for unsupervised learning – for example, using principal component analysis (PCA) or independent

component analysis (ICA). In contrast, there has been only limited work [Ando and Zhang, 2005, Baxter,

2000, Jebara, 2004, Zhang et al., 2006] in the multi-task supervised learning setting.

In the following sections, we present a novel method for learning sparse representations common

across many supervised learning tasks. In particular, we develop a novel multi-task generalization of

the L1 regularization, which is known to provide sparse variable selection in the single-task case. Our

goal is to learn a few features common across the tasks using a regularizer which both couples the tasks

and enforces sparsity. These features are orthogonal functions in a prescribed reproducing kernel Hilbert

space. The number of common features learned is controlled, as we empirically show, by a regularization

parameter – much like sparsity is controlled in the case of single-task L1 regularization. Moreover, the

4.3. Multi-Task Feature Learning 70

method can be used, as a special case, for variable selection. We call “learning features” to be the

estimation of new features which are functions of the input variables, like the features learned in the

unsupervised setting by methods such as PCA. We call “selecting variables” to be simply the selection

of some of the input variables (or prescribed features).

The objective of sparsity is a desirable one because of the intuition that related tasks should share

representations (or parts thereof) and these representations should be as simple as possible. Thus, there

is an “Ockham’s razor” assumption of few features and an assumption that task relatedness is due to

the sharing of these features among the tasks. Of course, not all situations in which we wish to learn

multiple tasks fit in this framework, but we claim that it can be useful in a large number of cases. Other

multi-task assumptions could be made and have been proposed in the literature (Section 4.1), and may

be suitable for different situations.

Although the novel regularized problem we shall propose is not convex, we are going to show that

it is equivalent to another optimization problem which is convex. To solve the latter we use an iterative

algorithm which simultaneously learns both the features and the task functions through two alternating

steps. The first step consists in independently learning the parameters of the tasks’ regression or clas-

sification functions. The second step consists in learning, in an unsupervised way, a low-dimensional

representation for these task parameters. This alternating algorithm will be shown to converge to an op-

timal solution of the convex and the (equivalent) original non-convex problem. Finally, we shall develop

a nonlinear generalization of the proposed method using kernels.

The discussion of the following sections has appeared in [Argyriou et al., 2007a,b,c].

4.3.2 Learning Sparse Multi-Task Representations

Notation
We follow the same notational conventions as in Section 3.2 with the few additions below.

R
µ×ν set of real µ× ν matrices

‖w‖p , p ≥ 1 Lp norm of w :

(
∑

i∈Nd

|wi|p
) 1

p

ai i-th row of matrix A

at t-th column of matrix A

‖A‖r,p , r, p ≥ 1

(
∑

i∈Nd

‖ai‖pr

) 1
p

trace(X) trace of matrix X

Diag(w) the diagonal matrix having the components of vector w on the diagonal

Diag (wi)i∈Nµ
the diagonal matrix having {wi : i ∈ Nµ} on the diagonal

range(X) , X ∈ R
µ×ν range of matrix X : {x ∈ R

µ : x = Xz for some z ∈ R
ν}

null(X) , X ∈ R
µ×ν null space of matrix X : {x ∈ R

ν : Xx = 0}

4.3. Multi-Task Feature Learning 71

O
µ set of µ× µ orthogonal matrices

We shall call ‖A‖r,p the (r, p)-norm of A.

Problem Formulation
Assume that we are given T supervised learning tasks. For every t ∈ NT , the corresponding task is

identified by a function ft : R
d → R (for example, a regressor or margin classifier). For each task, we

are given a data set of m input/output data examples {(xti, yti) : i ∈ Nm} ⊆ R
d×R. For simplicity, we

assume that each data set contains the same number of examples; however, our treatment in the following

sections applies equally to the case that the number of data per task varies. Moreover, the data may be

common to all (or some of) the tasks, or not. Also, it is possible that the y data are partially known, as in

collaborative filtering.

We wish to design an algorithm which, based on the data above, computes all the functions ft,

t ∈ NT . We would also like such an algorithm to be able to uncover particular relationships across the

tasks. Specifically, we study the case that the tasks are related in the sense that they all share a small set

of features. Formally, our hypothesis is that the functions ft can be represented as

ft(x) =
∑

i∈NI

aithi(x) ∀t ∈ NT , x ∈ R
d,

where hi : R
d → R, i ∈ NI , are the I features and ait ∈ R the regression parameters.

Our goal is to learn the features hi, the parameters ait and the number of features I from the data.

For simplicity, we first consider the case that the features are linear homogeneous functions, that is, they

are of the form hi(x) = 〈ui, x〉, where ui ∈ R
d. In Section 4.6, we will extend our formulation to the

case that the hi are elements of a reproducing kernel Hilbert space, hence in general nonlinear functions.

We make only one assumption about the features, namely that the vectors ui are orthogonal. Thus,

we may consider only up to d of those vectors for the linear case. This assumption, which is similar in

spirit to that of unsupervised methods such as PCA, will enable us to develop a convex learning method

in the next section. We leave extensions to other cases for future research.

Thus, if we denote by U ∈ O
d the matrix whose columns are the vectors ui, the task functions can

be written as

ft(x) =
∑

i∈Nd

ait〈ui, x〉 = 〈at, U
>x〉 ∀t ∈ NT , x ∈ R

d.

We use A to denote the matrix (ait : i ∈ Nd, t ∈ Nt) , at, t ∈ NT , its columns and ai, i ∈ Nd, its

rows. Our assumption that the tasks share a “small” set of features I ≤ d means that the matrix A has

“many” rows which are identically equal to zero and for these rows the corresponding features (columns

of matrix U) will not be used by any task. Rather than learning the number of features I directly, we

introduce a regularization which favors a small number of nonzero rows in the matrix A.

Specifically, we introduce the regularization error function

E(A,U) =
∑

t∈NT

∑

i∈Nm

L(yti, 〈at, U
>xti〉) + γ‖A‖22,1 ∀A ∈ R

d×T , U ∈ O
d, (4.3.1)

4.3. Multi-Task Feature Learning 72

2 4 6 8 10 12 14

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14

2

4

6

8

10

12

14

16

18

20

√
T

√
T − 1 + 1 T

Figure 4.1: Values of the (2, 1)-norm of a matrix containing T nonzero entries, equal to 1. When the

norm increases, the level of sparsity along the rows decreases.

where γ > 0 is a regularization parameter. The first term in (4.3.1) is the average of the error across the

tasks, measured according to a prescribed loss function L : R×R→ R+ which is convex in the second

argument.1 The second term is a regularization term which penalizes the (2, 1)-norm of matrix A,

‖A‖2,1 :=
∑

i∈Nd

‖ai‖2 .

It is obtained by first computing the 2-norms of the (across the tasks) rows ai (corresponding to feature

i) and then the 1-norm of the vector b(A) = (‖a1‖2, . . . , ‖ad‖2). The magnitudes of the components of

the vector b(A) indicate how important each feature is.

The (2, 1)-norm favors a small number of nonzero rows in the matrix A, in a way similar to the

L1 norm, thereby ensuring that common features will be selected across the tasks. This point is further

illustrated in Figure 4.1, where we consider the case that the entries of matrix A take binary values and

that there are exactly T entries which equal 1. The minimum value of the (2, 1)-norm equals
√

T and

is obtained when the “1” entries are all aligned along one row. Instead, the maximum value equals T

and is obtained when each “1” entry is placed in a different row (we assume here that d ≥ T). This

example also illustrates why plain L1 or L2 regularizers on the entries of matrix A are inappropriate

for our purposes. Such regularizers cannot distinguish between the three matrices depicted in the figure.

The standard L1 norm, in particular, favors sparsity over the matrix but does not induce any structure

aligning similar values on the same row.

When the feature matrix U is prescribed and Â minimizes the convex function E(·, U) the number

of nonzero components of the vector b(Â) will typically be nonincreasing with γ. This sparsity property

can be better understood by considering the case that there is only one task, say task t. In this case,

function (4.3.1) is given by

E(at, U) =
∑

i∈Nm

L(yti, 〈at, U
>xti〉) + γ‖at‖21 . (4.3.2)

It is well known that using the L1 norm leads to sparse solutions, that is, many components of the

learned vector at are zero (see Section 4.2). Moreover, the number of nonzero components of a solution

of problem (4.3.2) is typically a nonincreasing function of γ.
1We remark in passing that any convex function of inner products could be used in the error term. However, when the error

term separates across tasks, like in (4.3.1), the computational task is easier (see Algorithm 3).

4.3. Multi-Task Feature Learning 73

Since we do not simply want to select the features but also learn them, we further minimize the

function E over U . Therefore, our approach for multi-task feature learning is to solve the optimization

problem

min
{
E(A,U) : U ∈ O

d, A ∈ R
d×T

}
. (4.3.3)

This method learns a low-dimensional representation which is shared across the tasks. As in the single-

task case, the number of features learned will be typically nonincreasing with the regularization param-

eter γ – we will present experimental evidence of this in Section 4.7.

We note that solving problem (4.3.3) is challenging for two main reasons. First, it is a non-convex

problem, although it is separately convex in each of the variables A and U . Secondly, the regularizer

‖A‖22,1 is not smooth, which makes the optimization problem more difficult. In the next section, we

shall show how to find a global optimal solution of this problem through solving an equivalent convex

optimization problem. From this point on we assume that A = 0 does not minimize problem (4.3.3),

which would clearly be a case of no practical interest.

We conclude by noting that when matrix U is not learned and we set U = Id×d, problem (4.3.3)

selects a “small” set of variables, common across the tasks. In this case, we have the following convex

optimization problem

min

{
∑

t∈NT

∑

i∈Nm

L(yti, 〈at, xti〉) + γ‖A‖22,1 : A ∈ R
d×T

}
. (4.3.4)

We are interested in this problem as well and will specialize our results and algorithms to it, during our

discussion.2

4.3.3 Equivalent Convex Optimization Problem

In this section, we show that the non-convex problem (4.3.3) can be transformed into an equivalent

convex problem. To this end, for every W ∈ R
d×T with columns wt and D ∈ S

d
+, we define the

function

R(W,D) =
∑

t∈NT

∑

i∈Nm

L(yti, 〈wt, xti〉) + γ
∑

t∈NT

〈wt, D
+wt〉. (4.3.5)

Under certain constraints, this objective function gives rise to a convex optimization problem, as we will

see. Furthermore, even though the regularizer in R is still nonsmooth, in Appendix C we show that

partial minimization with respect to D has a closed-form solution. This fact leads naturally to a globally

convergent optimization algorithm that is discussed in Section 4.4.

Theorem 65 Problem (4.3.3) is equivalent to the problem

min
{
R(W,D) : W ∈ R

d×T , D ∈ S
d
+, trace(D) ≤ 1,

range(W) ⊆ range(D)
}
. (4.3.6)

In particular, if (Â, Û) is an optimal solution of (4.3.3) then

(Ŵ , D̂) =

(
Û Â , Û Diag

(
‖âi‖2
‖Â‖2,1

)

i∈Nd

Û>

)

2A similar regularization function was also independently developed by [Obozinski et al., 2006] for the purpose of multi-task

feature selection.

4.3. Multi-Task Feature Learning 74

is an optimal solution of problem (4.3.6); conversely, if (Ŵ , D̂) is an optimal solution of problem (4.3.6)

then any (Â, Û), such that the columns of Û form an orthonormal basis of eigenvectors of D̂ and Â =

Û>Ŵ , is an optimal solution of problem (4.3.3).

To prove the theorem, we first introduce the following lemma which will be useful in our analysis.

Lemma 66 For any b = (b1, . . . , bd)
> ∈ R

d such that bi 6= 0,∀i ∈ Nd, we have that

min

{
∑

i∈Nd

b2
i

λi

: λi > 0,
∑

i∈Nd

λi ≤ 1

}
= ‖b‖21 (4.3.7)

and the minimizer is λ̂i = |bi|
‖b‖1

, i ∈ Nd.

PROOF. From the Cauchy-Schwarz inequality we have that

‖b‖1 =
∑

i∈Nd

λ
1
2
i λ

− 1
2

i |bi| ≤
(
∑

i∈Nd

λi

) 1
2
(
∑

i∈Nd

λ−1
i b2

i

) 1
2

≤
(
∑

i∈Nd

λ−1
i b2

i

) 1
2

.

The minimum is attained if and only if λ
1
2
i

λ
− 1

2
i |bi|

=
λ

1
2
j

λ
− 1

2
j |bj |

for all i, j ∈ Nd and
∑

i∈Nd
λi = 1. Hence

the minimizer satisfies λi = |bi|
‖b‖1

.

We can now prove Theorem 65.

Proof of Theorem 65. First suppose that (A,U) belongs to the feasible set of problem (4.3.3). Let

W = UA and D = U Diag
(

‖ai‖2

‖A‖2,1

)
i∈Nd

U>. Then

∑

t∈NT

〈wt, D
+wt〉 = trace(W>D+W)

= trace
(
A>U>U Diag

(
‖A‖2,1 ‖ai‖+2

)
i∈Nd

U>UA
)

= ‖A‖2,1 trace
(
A>Diag

(
‖ai‖+2

)
i∈Nd

A
)

= ‖A‖2,1

∑

i∈Nd

‖ai‖+2 ‖ai‖22 = ‖A‖22,1.

Therefore, R(W,D) = E(A,U). Moreover, notice that W is a matrix multiple of the submatrix of

U which corresponds to the nonzero ai and hence to the nonzero eigenvalues of D. Thus, we obtain

the range constraint in problem (4.3.6). Therefore, the infimum (4.3.6) (we will show below that the

infimum is attained) does not exceed the minimum (4.3.3). Conversely, suppose that (W,D) belongs

to the feasible set of problem (4.3.6). Let D = UDiag (λi)i∈Nd
U> be an eigendecomposition and

A = U>W . Then

∑

t∈NT

〈wt, D
+wt〉 = trace

(
A>Diag

(
λ+

i

)
i∈Nd

A
)

=
∑

i∈Nd

λ+
i ‖ai‖22.

4.3. Multi-Task Feature Learning 75

If λi = 0 for some i ∈ Nd, then ui ∈ null(D), thus using the range constraint and W = UA we deduce

that ai = 0. Consequently,

∑

i∈Nd

λ+
i ‖ai‖22 =

∑

ai 6=0

‖ai‖22
λi

≥


∑

ai 6=0

‖ai‖2




2

= ‖A‖22,1 ,

where we have used Lemma 66. Therefore, E(A,U) ≤ R(W,D) and the minimum (4.3.3) does not

exceed the infimum (4.3.6). Because of the above application of Lemma 66, we see that the infimum

(4.3.6) is attained. Finally, the condition for the minimizer in Lemma 66 yields the relationship between

the optimal solutions of problems (4.3.3) and (4.3.6).

In problem (4.3.6) we have bounded the trace of matrix D from above, because otherwise the

optimal solution would be to simply set D = ∞ and only minimize the empirical error term in the

right hand side of equation (4.3.5). Similarly, we have imposed the range constraint to ensure that the

penalty term is bounded from below and away from zero. Indeed, without this constraint, it may be

possible that DW = 0 when W does not have full rank, in which case there is a matrix D for which
∑

t∈NT
〈wt, D

+wt〉 = trace(W>D+W) = 0.

In fact, the presence of the range constraint in problem (4.3.6) is due to the presence of the pseu-

doinverse in R. As the following corollary shows, it is possible to eliminate this constraint and obtain

the smooth regularizer 〈wt, D
−1wt〉 at the expense of not always attaining the minimum.

Corollary 67 Problem (4.3.6) is equivalent to the problem

inf
{
R(W,D) : W ∈ R

d×T , D ∈ S
d
++, trace(D) ≤ 1

}
. (4.3.8)

In particular, any minimizing sequence of problem (4.3.8) converges to a minimizer of problem (4.3.6).

PROOF. The corollary follows immediately from Theorem 65 and the equality of the min and inf

values in Appendix C.

Returning to the discussion of Section 4.3.2 on the (2, 1)-norm, we note that the rank of the optimal

matrix D indicates how many common relevant features the tasks share. Indeed, it is clear from Theorem

65 that the rank of matrix D̂ equals the number of nonzero rows of matrix Â.

We also note that problem (4.3.6) is similar to that in [Evgeniou et al., 2007], where the regularizer

is
∑

t∈NT
〈(wt −w0), D

+(wt −w0)〉 instead of
∑

t∈NT
〈wt, D

+wt〉 – that is, in our formulation we do

not penalize deviations from a common “mean” w0. However, the regularization problem including the

tasks’ mean can easily be rephrased to a problem like (4.3.6) but with an error term that mixes the tasks.

The next proposition establishes that problem (4.3.6) is convex.

Proposition 68 Problem (4.3.6) is a convex optimization problem.

4.3. Multi-Task Feature Learning 76

PROOF. Let us define the function f : R
d × S

d → R ∪ {+∞} as

f(w,D) :=





w>D+w if D ∈ S
d
+ and w ∈ range(D)

+∞ otherwise
.

With this definition, problem (4.3.6) is identical to minimizing the sum of T such functions plus the error

term in (4.3.5), subject to the trace constraint. This is indeed true because the constraint range(W) ⊆
range(D) is equivalent to the T constraints wt ∈ range(D), t ∈ NT . Also, the trace constraint is linear

and hence convex. Thus, to show that problem (4.3.6) is convex, it suffices to show that f is convex. We

show this by expressing f as a supremum of convex functions, more specifically as

f(w,D) = sup{w>v + trace(ED) : E ∈ S
d, v ∈ R

d, 4E + vv> ∈ S
d
−} ∀w ∈ R

d, D ∈ S
d.

To prove this equation, we first consider the case D /∈ S
d
+. We let u be an eigenvector of D corresponding

to a negative eigenvalue and set E = auu>, a ≤ 0, v = 0 to obtain that the supremum on the right equals

+∞. Next, we consider the case that w /∈ range(D). We can write w = Dz+n, where z, n ∈ R
d, n 6= 0

and n ∈ null(D). Thus,

w>v + trace(ED) = z>Dv + n>v + trace(ED)

and setting E = − 1
4vv>, v = an, a ≥ 0 we obtain +∞ as the supremum. Finally, we assume that

D ∈ S
d
+ and w ∈ range(D). Combining with E + 1

4vv> ∈ S
d
− we get that trace((E + 1

4vv>)D) ≤ 0.

Therefore

w>v + trace(ED) ≤ w>v − 1

4
v>Dv

and the expression on the right is maximized for w = 1
2Dv and obtains the maximal value

1

2
v>Dv − 1

4
v>Dv =

1

4
v>Dv =

1

4
v>DD+Dv = w>D+w.

This completes the proof.

Alternatively, the proposition can be seen to be a direct consequence of Theorem 52. Thus, problem

(4.3.6) can be readily generalized to a family of regularization problems involving spectral regularizers,

which will be discussed in Section 4.8.

We conclude this section by noting that when matrix D in problem (4.3.6) is additionally con-

strained to be diagonal, we obtain a problem equivalent to the variable selection problem (4.3.4). For-

mally, we have the following corollary.

Corollary 69 Problem (4.3.4) is equivalent to the problem

min

{
R(W,Diag(λ)) : W ∈ R

d×T , λ ∈ R
d
+,

∑

i∈Nd

λi ≤ 1,

wi = 0 whenever λi = 0

}
(4.3.9)

4.4. Alternating Minimization Algorithm 77

and the optimal λ̂ is given by

λ̂i =
‖ŵi‖2
‖Ŵ‖2,1

∀i ∈ Nd. (4.3.10)

4.4 Alternating Minimization Algorithm
In this section, we propose an algorithm for solving the convex optimization problem (4.3.6) which, as

we prove, converges to an optimal solution. By Theorem 65 above this algorithm also provides a solution

for the multi-task feature learning problem (4.3.3).

The main idea is to alternately minimize function R with respect to D and W . However, the

correctness of such a scheme is not guaranteed in theory, because the ranges of W and D remain equal

and constant throughout the algorithm (see Algorithm 3). In the step of learning W , it is easy to see that

each wt should belong in the range of D, by the Representer Theorem (2.2.3). In the step of learning

D, the closed form implies that the eigenvectors of D coincide with the left singular vectors of W . For

instance, if we start with D = Id, the identity matrix, then at the next step the learned wt will be the

solutions of T independent ridge regressions, SVMs or similar and the algorithm will converge inside

the range of this W . Thus, the outcome of Algorithm 3 with ε = 0 depends on the choice of the initial

value for D.

Consequently, we choose instead to minimize a perturbation of the objective function R with a

small parameter ε > 0. The perturbed objective can be minimized with an alternating algorithm, which

converges to the optimal solution as we show in the next section. This allows us to prove convergence

to an optimal solution of problem (4.3.6) by letting ε → 0. However, in practice we have observed that

alternating minimization of the unperturbed objective function R converges to an optimal solution of

(4.3.6).3

More specifically, Algorithm 3 minimizes the functionRε : R
d×T × S

d
++ → R, given by

Rε(W,D) =
∑

t∈NT

∑

i∈Nm

L(yti, 〈wt, xti〉) + γ trace(D−1(WW> + εId)) ,

which keeps D nonsingular. The regularizer in this function is smooth and strictly convex, henceRε has

a unique minimizer.

We now describe the two steps of Algorithm 3 for minimizingRε. In the first step (we call this the

W -step), we keep D fixed and minimize over W , that is, we solve the problem

min

{
∑

t∈NT

∑

i∈Nm

L(yti, 〈wt, xti〉) + γ
∑

t∈NT

〈wt, D
−1wt〉 : W ∈ R

d×T

}
,

where, recall, wt are the columns of matrix W . This minimization can be carried out independently

across the tasks since the regularizer decouples when D is fixed. More specifically, introducing new

variables for D− 1
2 wt yields a standard L2 regularization problem for each task with the same kernel

K(x, z) = 〈x,Dz〉, ∀x, z ∈ R
d.

3This is probably due to round-off effects that act in a way similar to perturbation.

4.4. Alternating Minimization Algorithm 78

Algorithm 3 Multi-Task Feature Learning
Input: training sets {(xti, yti) : i ∈ Nm}, t ∈ NT

Parameters: regularization parameter γ, tolerances ε, tol

Output: d× d matrix D, d× T regression matrix W = (w1, . . . , wT)

Initialization: set D = Id

d

while ‖W −Wprev‖ > tol do

for t = 1, . . . , T do

compute wt = argmin
{∑

i∈Nm
L(yti, 〈w, xti〉) + γ〈w,D−1w〉 : w ∈ R

d
}

end for

set D = (WW>+εId)
1
2

trace(WW>+εId)
1
2

end while

In the second step (we call this the D-step), we keep matrix W fixed, and minimizeRε with respect

to D. To this end, we solve the problem

min

{
∑

t∈NT

〈wt, D
−1wt〉+ ε trace(D−1) : D ∈ S

d
++, trace(D) ≤ 1

}
. (4.4.1)

The term trace(D−1) keeps the D-iterates of the algorithm at a certain distance from the boundary of

S
d
+ and plays a role similar to that of the barrier used in interior-point methods. In Appendix C, we show

that the optimal solution of problem (4.4.1) is given by

Dε(W) =
(WW> + εId)

1
2

trace(WW> + εId)
1
2

(4.4.2)

and the optimal value equals
(
trace(WW> + εId)

1
2

)2

. In the same appendix, we also show that for

ε = 0, equation (4.4.2) gives the minimizer of the functionR(W, ·) subject to the constraints in problem

(4.3.6).

Algorithm 3 can be interpreted as alternately performing a supervised and an unsupervised step. In

the supervised step we learn task-specific functions (namely the vectors wt) using a common representa-

tion across the tasks. This is because D encapsulates the features ui and thus the feature representation

is kept fixed. In the unsupervised step, the regression functions are fixed and we learn the common rep-

resentation. In effect, the (2, 1)-norm criterion favors the most concise representation which “models”

the regression functions through W = UA. Moreover, the matrix D learned in this step is a function of

the covariance of the task parameters, WW >.

We conclude this section with the case of variable selection, problem (4.3.4). Using Corollary 69,

we can make a simple modification to Algorithm 3 so that it can be used to solve problem (4.3.9). Specifi-

cally, we modify the D-step to be D = Diag(λ), where the vector λ = (λ1, . . . , λd)
> is computed using

equation (4.3.10).

4.5. Relation to Trace Norm Regularization 79

4.4.1 Convergence

We now briefly mention some convergence properties of Algorithm 3. We state here only the main

results and postpone their proofs to Appendix D. Let us denote the value of W at the n-th iteration by

W (n). First, we observe that, by construction, the values of the objective are nonincreasing, that is,

Rε(W
(n+1), Dε(W

(n+1))) ≤ Rε(W
(n+1), Dε(W

(n))) ≤ Rε(W
(n), Dε(W

(n))) .

These values are also bounded, since L is bounded from below, and thus the iterates of the objective

function converge. Moreover, the iterates W (n) also converge as stated in the following theorem.

Theorem 70 If ε > 0 then the sequence {(W (n), Dε(W
(n)) : n ∈ N} converges to the minimizer ofRε

subject to the constraints in (4.4.1).

Algorithm 3 minimizes the perturbed objective Rε. In order to obtain a minimizer of the original

objective R, we can employ a modified algorithm in which ε is reduced towards zero whenever W (n)

has stabilized near a value. Our next theorem shows that the limiting points of such an algorithm are

optimal.

Theorem 71 Consider a sequence {ε` > 0 : ` ∈ N} which converges to zero. Let (W`, Dε`
(W`)) be

the minimizer ofRε`
subject to the constraints in (4.4.1), for every ` ∈ N. Then any limiting point of the

sequence {(W`, Dε`
(W`)) : ` ∈ N} is an optimal solution to problem (4.3.6).

4.5 Relation to Trace Norm Regularization
We proceed with a few remarks on an alternative formulation for problem (4.3.6). By substituting equa-

tion (4.4.2) with ε = 0 in the equation (4.3.5) for R, we obtain a regularization problem in W only,

which is given by

min

{
∑

t∈NT

∑

i∈Nm

L(yti, 〈wt, xti〉) + γ‖W‖2tr : W ∈ R
d×T

}
. (4.5.1)

where we have defined ‖W‖tr := trace(WW>)
1
2 .

The expression ‖W‖tr in the regularizer is called the trace norm. It can also be expressed as the

sum of the singular values of W . As shown in [Fazel et al., 2001], the trace norm is the convex envelope

of rank(W) in the unit ball, which gives another interpretation of the relationship between the rank and

γ in our experiments. We also note that a similar problem has been studied in [Srebro et al., 2005] for

the particular case of an SVM loss function. It was shown there that the optimization problem in the

SVM case can be solved through an equivalent semidefinite programming problem.

Thus, one possible approach is to solve problem (4.5.1) directly, using a matrix optimization

method. This can be costly if dT is large and hard to implement because the trace norm is nonsmooth.

The other strategy, which we have opted for in Algorithm 3, is to use singular value decompositions (D-

step) and smaller-size vector problems (W -step). This approach also has the advantage of simplicity and

a natural interpretation. A similar algorithm is to smoothen the trace norm and optimize using gradient

descent. However, as demonstrated in the experiments of Section 4.8.3, gradient descent is significantly

slower than alternating minimization.

4.6. Learning Nonlinear Features 80

4.6 Learning Nonlinear Features
In this section, we consider the case that the features are associated to a kernel and hence that they are

in general nonlinear functions of the input variables. First, in Section 4.6.1 we use a representer theorem

for any optimal solution of problem (4.3.6), in order to obtain an optimization problem of bounded

dimensionality. Then, in Section 4.6.2 we show how to solve this problem using an algorithm which is a

variation of Algorithm 3.

4.6.1 A Representer Theorem

We begin by restating our optimization problem when the functions learned belong to a reproducing

kernel Hilbert space (see Section 2.2). Formally, we now wish to learn T regression functions ft, t ∈ NT ,

of the form

ft(x) = 〈at, U
>ϕ(x)〉 = 〈wt, ϕ(x)〉 ∀x ∈ R

d,

where ϕ : R
d → R

M is a prescribed feature map. This map will, in general, be nonlinear and its

dimensionality M may be large. In fact, the theoretical and algorithmic results which follow apply to

the case of an infinite dimensionality as well. As typical, we assume that the kernel function K(x, x′) =

〈ϕ(x), ϕ(x′)〉 is given. As before, in the following we will use the subscript notation for the columns of

a matrix, for example wt denotes the t-th column of matrix W .

We begin by recalling that Appendix C applied to problem (4.3.6) leads to a problem in W with the

trace norm as the regularizer. Modifying slightly to account for the feature map, we obtain the problem

min

{
∑

t∈NT

∑

i∈Nm

L(yti, 〈wt, ϕ(xti)〉) + γ‖W‖2tr : W ∈ R
d×T

}
. (4.6.1)

This problem can be viewed as a generalization of the standard L2 regularization problem. Indeed,

in the case t = 1 the trace norm ‖W‖tr is simply equal to ‖w1‖2. In this case, it is well known that an

optimal solution ŵ ∈ R
d of such a problem is in the span of the training data, that is

ŵ =
∑

i∈Nm

ci ϕ(xi)

for some {ci ∈ R : i ∈ Nm}. This result is known as the Representer Theorem – see Section 2.2.2. We

now extend this result to the more general form (4.6.1). 4

Theorem 72 If Ŵ is an optimal solution of problem (4.6.1) then for every t ∈ NT there exists a vector

ct ∈ R
mT such that

ŵt =
∑

s∈NT

∑

i∈Nm

(ct)siϕ(xsi). (4.6.2)

PROOF. Let L = span{ϕ(xsi) : s ∈ NT , i ∈ Nm}. We can write wt = pt + nt , t ∈ NT , where

pt ∈ L and nt ∈ L⊥. Hence W = P + N , where P is the matrix with columns pt and N the matrix

with columns nt. Moreover we have that P >N = 0. From Lemma 79 in Appendix E, we obtain that
4A representer theorem for a similar problem has been proven in [Abernethy et al., 2006]. Here, we give an alternative proof

connected to the theory of matrix monotone functions. We also note that this theorem can be extended to a general family of

spectral norms [Argyriou et al., 2007d].

4.6. Learning Nonlinear Features 81

‖W‖tr ≥ ‖P‖tr. We also have that 〈wt, ϕ(xti)〉 = 〈pt, ϕ(xti)〉. Thus, we conclude that whenever W is

optimal, N must be zero.

An alternative way to write (4.6.2), using matrix notation, is to express Ŵ as a multiple of the

input matrix. The latter is the matrix Φ ∈ R
M×mT whose (t, i)-th column is the vector ϕ(xti) ∈ R

M ,

t ∈ NT , i ∈ Nm. Hence, denoting with C ∈ R
mT×T the matrix with columns ct, equation (4.6.2)

becomes

Ŵ = ΦC. (4.6.3)

We now apply Theorem 72 to problem (4.6.1) in order to obtain an equivalent optimization problem

in a number of variables independent of M . This theorem implies that we can restrict the feasible set of

(4.6.1) only to matrices W ∈ R
d×T satisfying (4.6.3) for some C ∈ R

mT×T .

Let L = span{ϕ(xti) : t ∈ NT , i ∈ Nm} as above and let δ its dimensionality. In order to exploit

the orthogonal invariance of the trace norm, we consider a matrix V ∈ R
M×δ whose columns form an

orthogonal basis of L. Equation (4.6.3) implies that there is a matrix Θ ∈ R
δ×T , whose columns we

denote by ϑt, t ∈ NT , such that

W = V Θ . (4.6.4)

Substituting equation (4.6.4) in the objective of (4.6.1) yields the objective function

∑

t∈NT

∑

i∈Nm

L(yti, 〈V ϑt, ϕ(xti)〉) + γ
(
trace(V ΘΘ>V >)

1
2

)2

=

∑

t∈NT

∑

i∈Nm

L(yti, 〈ϑt, V
>ϕ(xti)〉) + γ

(
trace(ΘΘ>)

1
2

)2

=

∑

t∈NT

∑

i∈Nm

L(yti, 〈ϑt, V
>ϕ(xti)〉) + γ‖Θ‖2tr .

Thus, we obtain the following proposition.

Proposition 73 Problem (4.6.1) is equivalent to

min

{
∑

t∈NT

∑

i∈Nm

L(yti, 〈ϑt, zti〉) + γ‖Θ‖2tr : Θ ∈ R
δ×T

}
, (4.6.5)

where

zti = V >ϕ(xti) ∀t ∈ NT , i ∈ Nm. (4.6.6)

Moreover, there is an one-to-one correspondence between optimal solutions of (4.6.1) and those of

(4.6.5), given by Ŵ = V Θ̂.

Problem (4.6.5) is a problem in δT variables, where δT ≤ mT 2, and hence it can be tractable

regardless of the dimensionality M of the original feature map.

4.6. Learning Nonlinear Features 82

Algorithm 4 Multi-Task Feature Learning with Kernels

Input: training sets {(xti, yti) : i ∈ Nm}, t ∈ NT

Parameters: regularization parameter γ, tolerances ε, tol

Output: δ × T coefficient matrix B = (b1, . . . , bT), indices {(tν , iν) : ν ∈ Nδ} ⊆ NT × Nm

Initialization:

• using only the kernel values, find a matrix R ∈ R
δ×δ and indices {(tν , iν) : ν ∈ Nδ} such

that
{∑

ν∈Nδ
ϕ(xtν iν

)rνµ : µ ∈ Nδ

}
form an orthogonal basis for the space generated by the

feature map applied on the training data

• compute the modified inputs zti = R>

(
K(xtν iν

, xti) : ν ∈ Nδ

)
,∀t ∈ NT , i ∈ Nm

• set ∆ = Iδ

δ

while ‖Θ −Θprev‖ > tol do

for t = 1, . . . , T do

compute ϑt = argmin
{∑

i∈Nm
L(yti, 〈ϑ, zti〉) + γ〈ϑ,∆−1ϑ〉 : ϑ ∈ R

δ
}

end for

set ∆ = (ΘΘ>+εIδ)
1
2

trace(ΘΘ>+εIδ)
1
2

end while

return B = RΘ and {(tν , iν) : ν ∈ Nδ}

4.6.2 An Alternating Algorithm for Nonlinear Features

We now address how to solve problem (4.6.5) by applying the same strategy as in Algorithm 3. It is clear

from the discussion in Section 4.4 that (4.6.5) can be solved with an alternating minimization algorithm,

which we present as Algorithm 4.

In the initialization step, Algorithm 4 computes a matrix R ∈ R
δ×δ which relates the orthogonal

basis V of L with a basis {ϕ(xtν iν
) : ν ∈ Nδ, tν ∈ NT , iν ∈ Nm} from the inputs. We can write this

relation as

V = Φ̃R (4.6.7)

where Φ̃ ∈ R
M×δ is the matrix whose ν-th column is the vector ϕ(xtν iν

).

To compute R using only Gram matrix entries, one approach is Gram-Schmidt orthogonalization.

At each step, we consider an input xti and determine whether it enlarges the current subspace or not by

computing kernel values with the inputs forming the subspace. However, Gram-Schmidt orthogonaliza-

tion is sensitive to round-off errors, which can affect the accuracy of the solution (see [Golub and van

Loan, 1996, Sec. 5.2.8]). A more stable but computationally less appealing approach is to compute an

eigendecomposition of the mT ×mT Gram matrix Φ>Φ. A middle strategy may be preferable, namely,

randomly select a reasonably large number of inputs and compute an eigendecomposition of their Gram

matrix; obtain the basis coefficients; complete the vector space with a Gram-Schmidt procedure.

After the computation of R, the algorithm computes the inputs in (4.6.6), which by (4.6.7) equal

zti = V >ϕ(xti) = R>Φ̃>ϕ(xti) = R>K̃(xti), where K̃(x) denotes the δ-vector with entries

4.6. Learning Nonlinear Features 83

K(xtν iν
, x), ν ∈ Nδ . In the main loop, there are two steps. The first one (Θ-step) solves T inde-

pendent regularization problems using the Gram entries z>
ti∆ztj , i, j ∈ Nm, t ∈ NT . The second one

(∆-step) is the computation of a δ × δ matrix square root.

Finally, the output of the algorithm, matrix B, satisfies that

W = Φ̃B (4.6.8)

by combining equations (4.6.4) and (4.6.7). Thus, a prediction on a new input x ∈ R
d is computed as

ft(x) = 〈wt, ϕ(x)〉 = 〈bt, K̃(x)〉 ∀t ∈ NT .

One can also express the learned features in terms of the input basis {ϕ(xtν iν
) : ν ∈ Nδ}. To do

this, we need to compute an eigendecomposition of BΦ̃>Φ̃B. Indeed, we know that

W = ŪΣQ> , (4.6.9)

where Ū ∈ R
M×δ′ is orthogonal, Σ ∈ S

δ′

++ diagonal, Q ∈ R
T×δ′ orthogonal, δ′ ≤ δ, and the columns

of Ū are the significant features learned. From this and (4.6.8) we obtain that Ū = Φ̃BQΣ−1 and Σ, Q

can be computed from

QΣ2Q> = W>W = B>Φ̃>Φ̃B .

Finally, the coefficient matrix5 A can be computed from W = UA (Theorem 65) and (4.6.9), yielding

A =




ΣQ>

0


 .

The computational cost of Algorithm 4 depends mainly on the dimensionality δ. Note that kernel

evaluations using K appear only in the initialization step. There are O(δmT) kernel computations

during the orthogonalization process and O(δ2mT) additional operations for computing the vectors zti.

However, these costs are incurred only once. Within each iteration, the cost of computing the Gram

matrices in the Θ-step is O(δ2mT) and the cost of each learning problem depends on δ. The matrix

square root computation in the ∆-step involves O(δ3) operations. Thus, for most commonly used loss

functions, the overall expected cost of the algorithm is O(δ2mT) operations. In particular, in several

cases of interest, such as when all tasks share the same training inputs, δ can be small and Algorithm 4

can be particularly efficient. We would also like to note here that experimental trials, which are reported

in Section 4.7, showed that usually between 20 and 100 iterations were sufficient for Algorithms 3 and 4

to converge.

As a final remark, we note that an algorithm similar to Algorithm 4 would not work for variable

selection. This is true because Representer Theorem 72 does not apply to the optimization problem

(4.3.9), where matrix D is constrained to be diagonal. Thus, multi-task variable selection – and in

particular L1 regularization – with kernels is not feasible. Nevertheless, this fact does not seem to be
5Recall that all simultaneous permutations of the columns of U and rows of A give valid solutions.

4.7. Experiments 84

significant in the multi-task context of this thesis. As we will discuss in Section 4.7, variable selection

was outperformed by feature learning in our experimental trials. However, variable selection could still

be important in a different setting, when a set including some “good” features is a priori given and the

question is how to select exactly these features.

4.7 Experiments

In this section, we present experiments with our methods, both the linear Algorithm 3 and the nonlinear

Algorithm 4. We have used both synthetic (where we know what the underlying features used in all

tasks are) and real datasets. The results show that, in agreement with previous work (Section 4.1), multi-

task learning improves performance relative to single-task learning when the tasks are related. More

importantly, the results confirm that when the tasks are related in the way we have defined our algorithm

learns a small number of features which are common across the tasks. In all experiments, we used

the square loss function and automatically tuned the regularization parameter γ by selecting among the

values {10r : r ∈ {−6, . . . , 3}} with 5-fold cross-validation.

4.7.1 Synthetic Data

We first used synthetic data to test the ability of the algorithms to learn the common across tasks features.

This setting makes it possible to evaluate the quality of the features learned, as in this case we know what

the common across tasks features are.

Linear Synthetic Data
We consider the case of regression and a number of up to T = 200 tasks. Each of the wt parameters

of these tasks was selected from a 5-dimensional Gaussian distribution with zero mean and covariance

Cov = Diag(1, 0.64, 0.49, 0.36, 0.25). To these 5-dimensional wt’s we kept adding up to 10 irrelevant

dimensions which are exactly zero. The training and test data were generated uniformly from [0, 1]d

where d ranged from 5 to 15. The outputs yti were computed from the wt and xti as yti = 〈wt, xti〉+n,

where n is zero-mean Gaussian noise with standard deviation equal to 0.1. Thus, the true features 〈ui, x〉
we wish to learn were in this case just 5 of the input variables. However, we did not a priori assume this

and we let our algorithm learn – not select – the features. That is, we used Algorithm 3 to learn the

features, not its variant which performs variable selection (see our discussion at the end of Section 4.4).

The desired result is a feature matrix U which is close to the identity matrix (on 5 columns) and a matrix

D approximately proportional to the covariance Cov used to generate the task parameters (on a 5 × 5

principal submatrix). In this experiment, we did not use a bias term.

We generated 5 and 20 examples per task for training and testing, respectively. To test the effect

of the number of jointly learned tasks on the test performance and (more importantly) on the quality of

the features learned, we used our methods with T = 10, 25, 100, 200 tasks. For T = 10, 25 and 100, we

averaged the performance metrics over randomly selected subsets of the 200 tasks, so that our estimates

have comparable variance. We also estimated each of the 200 tasks independently using standard ridge

regressions.

We present, in Figure 4.2, the impact of the number of simultaneously learned tasks on the test

4.7. Experiments 85

5 10 15
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22
T = 200
T = 100
T = 25
T = 10
independent

5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
T = 200
T = 100
T = 25
T = 10
independent

Figure 4.2: Linear synthetic data. Left: test error versus the number of irrelevant variables, as the number

of tasks changes. Right: Frobenius norm of the difference of the learned and actual matrices D versus

the number of irrelevant variables, as the number of tasks changes. This is a measure of the quality of

the learned features.

10
−2

10
−1

10
0

10
1

1

2

3

4

5

6

7

8

9

10

11

20 40 60 80 100 120 140 160 180 200

1

2

3

4

5

6

7

8

9

10

11

Figure 4.3: Linear synthetic data. Left: number of features learned versus the regularization parameter

γ for 6 irrelevant variables. Right: matrix A learned, indicating the importance of the learned features

– the first 5 rows correspond to the true features (see text). The color scale ranges from yellow (low

values) to purple (high values).

performance as well as the quality of the features learned, as the number of irrelevant variables increases.

First, as the left plot shows, in agreement with past empirical and theoretical evidence – see Section 4.1

– learning multiple tasks together significantly improves on learning the tasks independently, as the tasks

are indeed related in this case. Moreover, performance improves as the number of tasks increases. More

important, this improvement increases with the number of irrelevant variables.

The plot on the right of Figure 4.2 is the most relevant one for our purposes. It shows the distance

of the learned features from the actual ones used to generate the data. More specifically, we depict the

Frobenius norm of the difference of the learned 5 × 5 principal submatrix of D and the actual Cov

matrix (normalized to have trace 1). We observe that adding more tasks leads to better estimates of the

underlying features. Moreover, as for the test performance, the relative (as the number of tasks increases)

quality of the features learned increases with the number of irrelevant variables.

We also tested the effect of the regularization parameter γ on the number of learned features (as

measured by rank(D)) for 6 irrelevant variables. We show the results on the left plot of Figure 4.3. As

4.7. Experiments 86

5 6 7 8 9 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

T = 200
T = 100
T = 25
T = 10
independent

5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

quadratic + linear
homogeneous quadratic
linear

Figure 4.4: Nonlinear synthetic data. Left: test error versus number of variables as the number of

simultaneously learned tasks changes, using a quadratic + linear kernel. Right: test error versus number

of variables for 200 tasks, using three different kernels (see text).

expected, the number of features learned decreases with γ. Finally, the right plot in Figure 4.3 shows

the absolute values of the elements of the matrix A learned using the parameter γ selected by cross-

validation. This is the resulting matrix for 6 irrelevant variables and all 200 simultaneously learned

tasks. This plot indicates that our algorithm learns a matrix A with the expected structure: there are only

five important features. The (normalized) 2-norms of the corresponding rows are 0.31, 0.21, 0.12, 0.10

and 0.09 respectively, while the true values (diagonal elements of Cov scaled to have trace 1) are

0.36, 0.23, 0.18, 0.13 and 0.09 respectively.

Nonlinear Synthetic Data

Next, we tested whether our nonlinear method (Algorithm 4) can outperform the linear one when the

true underlying features are nonlinear. For this purpose, we created a new synthetic data set in a similar

way as before, but this time we used a feature map φ : R
5 → R

7. More specifically, we have 6

relevant linear and quadratic features and a bias term: ϕ(x) =
(
x2

1, x
2
4, x1x2, x3x5, x2, x4, 1

)
. That is,

the outputs were generated as yti = 〈wt, ϕ(xti)〉 + n, with the task parameters wt corresponding to

the features above selected from a 7-dimensional Gaussian distribution with zero mean and covariance

equal to Diag(0.5, 0.25, 0.1, 0.05, 0.15, 0.1, 0.15). All other components of each wt were 0. The training

and test sets were selected randomly from [0, 1]d with d ranging from 5 to 10, and each contained 20

examples per task. Since there are more task parameters to learn than in the linear case, we used more

data per task for training in this simulation. In the execution of our method, we did not augment the input

with a bias term.

We report the results in Figure 4.4. As for the linear case, the left plot in the figure shows the test

performance versus the number of simultaneously learned tasks, as the number of irrelevant variables

increases. Note that the dimensionality of the feature map scales quadratically with the input dimen-

sionality shown on the x-axis of the plot. The kernel used for this plot was Kql(x, x′) := (x>x′ + 1)2.

This is a “good” kernel for this data set because the corresponding features include all of the monomials

of ϕ. The results are qualitatively similar to those in the linear case. Learning multiple tasks together

4.7. Experiments 87

20 40 60 80 100 120 140 160 180 200

2

4

6

8

10

12

14

16

18

20

Figure 4.5: Matrix A learned in the nonlinear synthetic data experiment. The first 7 rows correspond to

the true features (see text).

improves on learning the tasks independently. In this experiment, a certain number of tasks (greater than

10) is required for improvement over independent learning.

Next, we tested the effects of using the “wrong” kernel, as well as the difference between us-

ing a nonlinear kernel versus using a linear one. We used three different kernels. One is the sum of

the quadratic and linear kernels defined above, the second is Kq(x, x′) := (x>x′)2 and the third is

Kl(x, x′) := x>x′ + 1. The results are shown on the right plot of Figure 4.4. First, notice that since

the underlying feature map involves both quadratic and linear features, it would be expected that the first

kernel gives the best results, and this is indeed true. Second, notice that using a linear kernel (and the

linear Algorithm 3) leads to poorer test performance. Thus, our nonlinear Algorithm 4 can exploit the

higher approximating power of the most complex kernel in order to obtain better performance.

Finally, Figure 4.5 contains the plot of the matrix A learned for this experiment using kernel Kql, no

irrelevant variables and all 200 tasks simultaneously, as we did in Figure 4.3 for the linear case. Similarly

to the linear case, our method learns a matrix A with the desired structure: only the first 7 rows have

large entries. Note that the first 7 rows correspond to the monomials of ϕ, while the remaining 14 rows

correspond to the other monomial components of the feature map associated with the kernel.

4.7.2 Real Data

Conjoint Analysis Experiment
Next, we tested our algorithms using a real data set from [Lenk et al., 1996] about people’s ratings of

products.6 The data was taken from a survey of 180 persons who rated the likelihood of purchasing

one of 20 different personal computers. Here the persons correspond to tasks and the computer models

to examples. The input is represented by the following 13 binary attributes: telephone hot line (TE),

amount of memory (RAM), screen size (SC), CPU speed (CPU), hard disk (HD), CD-ROM/multimedia

(CD), cache (CA), color (CO), availability (AV), warranty (WA), software (SW), guarantee (GU) and

price (PR). We also added an input component accounting for the bias term. The output is an integer
6We would like to thank Peter Lenk for kindly sharing this data set with us.

4.7. Experiments 88

20 40 60 80 100 120 140 160 180
1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

Figure 4.6: Conjoint experiment with computer survey data: average root mean square error vs. number

of tasks.

10
−1

10
0

10
1

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Figure 4.7: Conjoint experiment with computer survey data: number of features learned (with 180 tasks)

versus the regularization parameter γ.

rating on the scale 0 − 10. As in one of the cases in [Lenk et al., 1996], for this experiment we used

the first 8 examples per task as the training data and the last 4 examples per task as the test data. We

measured the root mean square error of the predicted from the actual ratings for the test data, averaged

across the people.

We show results for the linear Algorithm 3 in Figure 4.6. In agreement with the simulations results

above and past empirical and theoretical evidence – see Section 4.1 – the performance of Algorithm 3

improves as the number of tasks increases. It also performs better (for all 180 tasks) – test error is 1.93 –

than independent ridge regressions, whose test error is equal to 3.88. Moreover, as shown in Figure 4.7,

the number of features learned decreases as the regularization parameter γ increases, as expected.

This data has also been used in [Evgeniou et al., 2007]. One of the empirical findings of [Evgeniou

et al., 2007, Lenk et al., 1996], a standard one regarding people’s preferences, is that estimation improves

when one also shrinks the individual wt’s towards a “mean of the tasks”, for example the mean of all the

wt’s. Hence, it may be more appropriate for this data set to use the regularization term
∑

t∈NT
〈(wt −

w0), D
+(wt − w0)〉 as in [Evgeniou et al., 2007] instead of

∑
t∈NT

〈wt, D
+wt〉 which we use here.

Indeed, test performance is better with the former than the latter. The results are summarized in Table

4.1. We also note that the hierarchical Bayes method of [Lenk et al., 1996], similar to that of [Bakker and

Heskes, 2003], also shrinks the wt’s towards a mean across the tasks. Algorithm 3 performs similarly

4.7. Experiments 89

20 40 60 80 100 120 140 160 180

2

4

6

8

10

12

14

TE RAM SC CPU HD CD CA CO AV WA SW GU PR
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 4.8: Conjoint experiment with computer survey data. Left: matrix A learned, indicating the im-

portance of features learned for all 180 tasks simultaneously. Right: the most important feature learned,

common across the 180 people/tasks.

to hierarchical Bayes (despite not shrinking towards a mean of the tasks) but worse than the method

of [Evgeniou et al., 2007]. However, we are mainly interested here in learning the common across

people/tasks features. We discuss this next.

We investigate which features are important to all consumers as well as how these features weight

the 13 computer attributes. We demonstrate the results in the two adjacent plots of Figure 4.8, which

were obtained by simultaneously learning all 180 tasks. The plot on the left shows the absolute values of

matrix A of feature coefficients learned for this experiment. This matrix has only a few large rows, that

is, only a few important features are learned. In addition, the coefficients in each of these rows do not

vary significantly across tasks, which means that the learned feature representation is shared across the

tasks. The plot on the right shows the weight of each input variable in the most important feature. This

feature seems to weight the technical characteristics of a computer (RAM, CPU and CD-ROM) against

its price. Note that this is different from selecting the most important variables. In particular, in this case

the relative “weights” of each of the 4 variables used in this feature (RAM, CPU, CD-ROM and price)

have similar values across all tasks/people.

We also tested our multi-task variable selection method, which constrains matrix D in Algorithm

3 to be diagonal. This method led to inferior performance. Specifically, for T = 180, multi-task vari-

able selection had test error equal to 2.01, which is worse than the 1.93 error achieved with multi-task

feature learning. This supports the argument that “good” features should combine multiple attributes in

this problem. Finally, we tested Algorithm 4 with a Gaussian kernel, achieving a slight improvement

in performance – see Table 4.1. By considering radial kernels of the form K(x, x′) = e−ω‖x−x′‖2 and

selecting ω through cross-validation, we obtained a test error of 1.85 for all 180 tasks. However, inter-

preting the features learned is more complicated in this case, because of the infinite dimensionality of

the feature map for the Gaussian kernel.

Finally, we present preliminary results on transfer learning. We trained our method on 150 ran-

domly selected tasks and then used the learned structure matrix D for training 30 ridge regressions on

the remaining tasks. We obtained an RMSE of 1.98 on these 30 “new” tasks, which is not much worse

4.7. Experiments 90

Table 4.1: Comparison of different methods for the computer survey data. MTL-FEAT is the method

developed in this thesis.

Method RMSE

Independent 3.88

Hierarchical Bayes [Lenk et al., 1996] 1.90

RR-Het [Evgeniou et al., 2007] 1.79

MTL-FEAT (linear kernel) 1.93

MTL-FEAT (Gaussian kernel) 1.85

MTL-FEAT (variable selection) 2.01

than an RMSE of 1.88 on the 150 tasks. In comparison, when using the raw data (D = I
d

) on the 30

tasks we obtained an RMSE of 3.83.

School Data
We have also tested our algorithms on the data from the Inner London Education Authority7. This

data set has been used in previous work on multitask learning, for example in [Bakker and Heskes,

2003, Evgeniou et al., 2005, Goldstein, 1991]. It consists of examination scores of 15362 students from

139 secondary schools in London during the years 1985, 1986 and 1987. Thus, there are 139 tasks,

corresponding to predicting student performance in each school. The input consists of the year of the

examination (YR), 4 school-specific and 3 student-specific attributes. Attributes which are constant in

each school in a certain year are: percentage of students eligible for free school meals, percentage of

students in VR band one (highest band in a verbal reasoning test), school gender (S.GN.) and school

denomination (S.DN.). Student-specific attributes are: gender (GEN), VR band (can take the values 1,2

or 3) and ethnic group (ETH). Following [Evgeniou et al., 2005], we replaced categorical attributes (that

is, all attributes which are not percentages) with one binary variable for each possible attribute value. In

total, we obtained 27 attributes. We also found that results were similar with and without a bias term.

We generated the training and test sets by 10 random splits of the data, so that 75% of the examples

from each school (task) belong to the training set and 25% to the test set. We note that the number

of examples (students) differs from task to task (school). On average, the training set includes about

80 students per school and the test set about 30 students per school. To account for different school

populations, we computed the cross-validation error within each task and then normalized according to

school population. The overall mean squared test error was computed by normalizing for each school

in a similar way. In order to compare with previous work on this data set, we used the measure of

7Available at http://www.mlwin.com/intro/datasets.html.

4.7. Experiments 91

Table 4.2: Comparison of different methods for the school data.

Method Explained variance

Aggregate 22.7± 1.3%

Independent 23.8 ±2.1%

MTL-FEAT (variable selection) 24.8± 2.0%

MTL-FEAT (linear kernel) 26.7± 2.0%

Bayesian MTL [Bakker and Heskes, 2003] 29.5± 0.4%

percentage explained variance from [Bakker and Heskes, 2003]. Explained variance is defined as one

minus the mean squared test error over the total variance of the data (computed within each task) and

indicates the percentage of variance explained by the prediction model.

The results for this experiment are shown in Table 4.2. The “independent” result is the one obtained

by training 139 ridge regressions on each task separately (this also means learning the regularization

parameters independently). The “aggregate” result is the one obtained by training one ridge regression

on the whole data, as though all students belonged to the same school. A first observation is that training

independently does at least as well as aggregate training. This is reinforced when computing the across-

tasks standard deviation of explained variance, which is 30% for independent and 26% for aggregate

learning. Therefore, there is high variance across the tasks and it seems that they are not concentrated

around one prototype task.

Results on this data set have also been obtained in [Bakker and Heskes, 2003] using a hierarchical

Bayesian multi-task method and in [Evgeniou et al., 2005] using a multi-task regularization method

with 〈wt − 1
T

∑
s∈NT

ws, wt − 1
T

∑
s∈NT

ws〉 in the regularizer (unlike our method, no matrix D was

included and estimated). It is difficult to compare with these results because of the more elaborate

objective functions used there. Moreover, the data splits used in [Bakker and Heskes, 2003] are not

available and may affect the result because of the high variance across the tasks. We report however the

best result from [Bakker and Heskes, 2003] as an indication.

From the table we see that our MTL-FEAT algorithm improves upon both independent and aggre-

gate single task learning. Our result is also comparable but not as good as that of [Bakker and Heskes,

2003], even though our regularizer is much simpler. We also found that variable selection performs

worse than feature learning and not clearly better than independent learning.

This data set seems well-suited to the approach we have proposed, as one may expect the learning

tasks to be very related without being the same – as also discussed in [Bakker and Heskes, 2003, Evge-

niou et al., 2005] – in the sense assumed in this chapter. Indeed, one may expect that academic achieve-

ment should be influenced by the same variables across schools, if we exclude statistical variation of the

4.7. Experiments 92

20 40 60 80 100 120

2

4

6

8

10

12

14

<YR> GEN <VR> < ETH > S.GN.S.DN.
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 4.9: School data. Left: matrix A learned for the school data set using a linear kernel. For clarity,

only the 15 most important learned features/rows are shown. Right: The most important feature learned,

common across all 139 schools/tasks.

student population within each school. This is confirmed in Figure 4.9, where the learned coefficients

and the most important feature are shown. As expected, the predicted examination score depends very

strongly on the student’s VR band. The other variables are much less significant. Ethnic background

(primarily British-born, Carribean and Indian) and gender have the next largest influence. What is most

striking perhaps is that none of the school-specific attributes has any noticeable significance.

The effects of the number of tasks on the test performance and of the regularization parameter γ on

the number of features learned are similar to those for the conjoint and synthetic data: as the number of

tasks increases, test performance improves and as γ increases sparsity increases. These plots are similar

to Figures 4.6 and 4.7 and are not shown for brevity.

Finally, we performed a transfer learning experiment like that for the computer survey data. We

first trained on a random subset of 110 schools and then transferred D to the remaining 29 schools. We

obtained an explained variance of 19.2% on the new tasks. This was worse than the explained variance of

24.8% on the 110 tasks but still better than the explained variance of 13.9% with the raw representation.

Dermatology Data
Finally, we show a real-data experiment where it seems (as these are real data, we cannot know for sure

whether this is the case indeed) that the tasks are unrelated, in the way that we view task relatedness

through common features. In this case, our methods find features which are different across the tasks,

and do not improve or decrease performance relative to learning each task independently.

We used the UCI dermatology data set8 as in [Jebara, 2004]. The problem is a multi-class one,

namely to diagnose one of six dermatological diseases based on 33 clinical and histopathological at-

tributes (and an additional bias component). As in the aforementioned paper, we obtained a multi-task

problem from the six binary classification tasks. We divided the data set into 10 random splits of 200

training and 166 testing points and measured the average test error across these splits.

We report the misclassification test error in Table 4.3. Algorithm 3 gives similar performance to

8Available at http://www.ics.uci.edu/mlearn/MLSummary.html.

4.7. Experiments 93

Table 4.3: Performance of the algorithms for the dermatology data.

Method Misclassifications

Independent (linear) 16.5± 4.0

MTL-FEAT (linear) 16.5± 2.6

Independent (Gaussian) 9.8± 3.1

MTL-FEAT (Gaussian) 9.5± 3.0

1 2 3 4 5 6

5

10

15

20

25

30

Figure 4.10: Dermatology data. Feature coefficients matrix A learned, using a linear kernel.

that obtained in [Jebara, 2004] with joint feature selection and linear SVM classifiers. However, similar

performance is also obtained by training 6 independent classifiers. The test error decreased when we ran

Algorithm 4 with a single-parameter Gaussian kernel, but it is again similar to that obtained by training

6 independent classifiers with a Gaussian kernel. Hence one may conjecture that these tasks are weakly

related to each other or unrelated in the way we have defined.

To further explore this point, we show the matrix A learned by Algorithm 3 in Figure 4.10. This

figure indicates that different tasks (diseases) are explained by different features. These results reinforce

the conjecture that these tasks may be independent. They indicate that in such a case our methods do not

“hurt” performance by simultaneously learning all tasks. In other words, in this problem our algorithms

did learn a “sparse common representation” but did not – and probably should not – force each feature

learned to be equally important across the tasks.

4.8. Generalization to Matrix Concave Functions 94

4.8 Generalization to Matrix Concave Functions

4.8.1 Modeling Tasks’ Structure

Our goal in the previous sections has been to learn task parameters w1, . . . , wT , as well as common fea-

tures/structure underlying the tasks, from data examples. This structure across tasks is summarized by a

positive definite matrix D which is linked to the covariance matrix of the tasks, WW >, through equation

(4.4.2). Thus, a natural generalization of this framework is to obtain D as some spectral function of the

covariance.

For this purpose, we now consider the regularization functional Reg : R
d×T × S

d
++ → R,

Reg(W,D) := Err(W) + γ Penalty(W,D) , (4.8.1)

where the regularizer has the form

Penalty(W,D) = trace(W >F (D)W) =
∑

t∈NT

w>

t F (D)wt . (4.8.2)

Here, F : Sd
++ → S

d
++ is a prescribed spectral matrix function (see Section 2.3). This is to say that

F is induced by applying a real function f : R++ → R++ to the eigenvalues of its argument. Thus, for

every D ∈ S
d
++ we write D = UΛU>, where U ∈ O

d, Λ = Diag(λj)j∈Nd
, and define

F (D) = U Diag (f(λj))j∈Nd
U> .

As before, the error term Err in (4.8.1) may be any bounded from below and convex function

evaluated at the values w>
t xti, t ∈ NT , i ∈ Nm. Typically, it will be the average error on the tasks,

namely, Err(W) =
∑

t∈NT

∑
i∈Nm

L(yti, w
>
t xti) and L is a prescribed loss function (such as quadratic,

SVM, logistic etc.).

Minimization of the function Reg allows us to learn the tasks and at the same time a good repre-

sentation for them which is summarized by the eigenvectors and eigenvalues of the matrix D. Different

choices of the function f reflect different properties which we would like the tasks to share. In the special

case that f is a constant, the tasks are totally independent and the regularizer (4.8.2) is a sum of T inde-

pendent L2 regularizers. In the special case f(λ) = λ−1, we obtain problem (4.3.6) which has been the

subject of discussion in the previous sections. More generally, functions of the form f(λ) = λ−α, α ≥ 0,

allow for combining shared features and task-specific features to some degree tuned by the exponent α.

Thus, we propose to solve the minimization problem

inf
{
Reg(W,D) : W ∈ R

d×T , D ∈ S
d
++, trace D ≤ 1

}
(4.8.3)

for appropriate prescribed functions f . By Theorem 52, this formulation is convex if and only if 1
f

is matrix concave of order d. We may also consider non-convex regularizers, like the ones inducing

Schatten Lp prenorms which we discuss in the next section.

Since the first term in (4.8.1) is independent of D, we can first optimize the second term with respect

to D. That is, we can compute the infimum

Ωf (W) := inf
{
trace(W>F (D)W) : D ∈ S

d
++, trace D ≤ 1

}
.

4.8. Generalization to Matrix Concave Functions 95

Moreover, this can be reduced to the vector problem

Ωf (W) = inf

{
∑

i∈Nd

f(δi)σ
2
i : δi > 0 ∀i ∈ Nd,

∑

i∈Nd

δi ≤ 1

}
, (4.8.4)

where {σi : i ∈ Nd} are the singular values of matrix W , by using the following lemma.

Lemma 74 Let F : S
d → S

d be a spectral function, B ∈ S
d and {βi : i ∈ Nd} the eigenvalues of B.

Then

inf{trace(F (D)B) : D ∈ S
d
++, trace D ≤ 1} = inf

{
∑

i∈Nd

f(δi)βi : δi > 0 ∀i ∈ Nd,
∑

i∈Nd

δi ≤ 1

}
.

Moreover, for the infimum on the left to be attained, F (D) has to share a set of eigenvectors with B so

that the corresponding eigenvalues are in the reverse order as the βi.

PROOF. We use an inequality of Von Neumann (Lemma 53) to obtain, for all X,Y ∈ S
d, that

trace(XY) ≥
∑

i∈Nd

λiµi

where {λi : i ∈ Nd} and {µi : i ∈ Nd} are the eigenvalues of X and Y in nonincreasing and nonde-

creasing order, respectively. The equality is attained whenever X = UDiag(λ)U>, Y = UDiag(µ)U>

for some U ∈ O
d. Applying this inequality for X = F (D), Y = B and denoting f(δi) = λi,∀i ∈ Nd,

the result follows.

Thus, Ωf is a function of the singular values of W only. A first observation is that, even though the

infimum in (4.8.4) above is not attained in general, the optimization problem in W obtained from (4.8.3)

after partial minimization over D admits a minimizer. The reason is that Ωf is bounded from below and

grows at infinity.

Secondly, the optimization problem (4.8.4) may or may not have a closed form solution, but in

all cases it is a d-dimensional vector problem. Therefore, we can solve problem (4.8.3) by alternately

minimizing over D and W with an algorithm similar to Algorithm 3. The only matrix operation required

by such an algorithm is singular value decomposition and the rest are relatively easy vector problems

(if the error term decomposes across the tasks). The algorithm can also be extended naturally to a

reproducing kernel Hilbert space setting, like Algorithm 4.

In the case of Penalty(W,D) = trace(W >D−1W) studied in detail up to now, it was observed

that the trace constraint prevents this quantity from being zero, which would lead to overfitting (see

Section 4.3.3). This is also true in the general case, provided that f is bounded away from zero in the

interval (0, 1]. In particular, in the case that 1
f

is matrix concave (which corresponds to jointly convex

regularizers) this condition is satisfied. It is also satisfied in the case of negative power functions, which

give rise to Schatten Lp prenorms (Section 4.8.2). This allows one to be confident that overfitting does

not occur with a broad class of choices for f . Finally, generalization error bounds have been derived for

the case of Schatten Lp norm regularization by [Maurer, 2006a].

4.8. Generalization to Matrix Concave Functions 96

4.8.2 Regularization with Schatten Lp Prenorms

In this section, we focus on the family of negative power functions f and, using Lemma 74, we obtain

that function Ωf in (4.8.4) relates to the Schatten Lp prenorms. 9

Proposition 75 Let B ∈ S
d
+ and s ∈ (0, 1]. Then

(trace Bs)
1
s = inf

{
trace(D

s−1
s B) : D ∈ S

d
++, trace D ≤ 1

}
.

Moreover, if B ∈ S
d
++ the infimum is attained and the minimizer is given by D =

Bs

trace Bs
.

PROOF. By Lemma 74, it suffices to show the analogous statement for vectors, namely that
(
∑

i∈Nd

βs
i

) 1
s

= inf

{
∑

i∈Nd

δ
s−1

s

i βi : δi > 0, i ∈ Nd,
∑

i∈Nd

δi ≤ 1

}

where βi ≥ 0,∀i ∈ Nd. To this end, we apply Hölder’s inequality with p = 1
s

and q = 1
1−s

:

∑

i∈Nd

βs
i =

∑

i∈Nd

(
δ

s−1
s

i βi

)s

δ1−s
i ≤

(
∑

i∈Nd

δ
s−1

s

i βi

)s(∑

i∈Nd

δi

)1−s

≤
(
∑

i∈Nd

δ
s−1

s

i βi

)s

.

When βi > 0,∀i ∈ Nd, the equality is attained for δi =
βs

i∑
j∈Nd

βs
j

,∀i ∈ Nd. To show that the inequal-

ity is sharp in all other cases, we replace βi by βi,ε := βi+ε, ∀i ∈ Nd, ε > 0, define δi,ε :=
βs

i,ε∑
j∈Nd

βs
j,ε

and take the limit of the right hand side of the inequality as ε→ 0.

The above result implies that the regularization problem (4.8.3) is conceptually equivalent to regu-

larization with a Schatten Lp prenorm of W , when the coupling function f takes the form f(x) = x1− 2
p

with p ∈ (0, 2] (obtained by letting p = 2s in the proposition). The Schatten Lp prenorm is the Lp

prenorm of the singular values of a matrix. Such regularizers are convex (strictly convex) if and only

if p ≥ 1 (p > 1). In particular, our formulation in Section 4.3 as well as trace norm regularization

[Abernethy et al., 2006, Srebro et al., 2005] correspond to the case p = 1.

4.8.3 Experiments

In this section, we first report a comparison of the computational cost between the alternating minimiza-

tion algorithm and the gradient descent algorithm. We then study how performance varies for different

Lp regularizers on the computer survey data and the school data set of Section 4.7.

In the first experiment, we study the computational cost of the alternating minimization algorithm

against the gradient descent algorithm, both implemented in Matlab, for the Schatten L1.5 norm. The left

plot in Figure 4.11 shows the value of the objective function (4.8.1) versus the number of iterations, on

the computer survey data. The curves for different learning rates η are shown, whereas for rates greater

than 0.05 gradient descent diverges. The curve for the alternating Algorithm 3 with ε = 10−16 is also

shown. We further note that for both data sets our algorithm typically needed less than 30 iterations
9A prenorm is a function satisfying the properties of a norm except the triangle inequality – see [Horn and Johnson, 1985, Sec.

5.4].

4.8. Generalization to Matrix Concave Functions 97

0 20 40 60 80 100
24.5

25

25.5

26

26.5

27

27.5

28

28.5

iterations

Reg

η = 0.05
η = 0.03
η = 0.01
Alternating

50 100 150 200
0

1

2

3

4

5

6

tasks

seconds

Alternating

η = 0.05

Figure 4.11: Comparison between the alternating algorithm and the gradient descent algorithm.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
1.5

2

2.5

3

3.5

4

p

RMSE

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.235

0.24

0.245

0.25

0.255

0.26

0.265

0.27

p

expl. variance

Figure 4.12: Performance versus p for the computer survey data (left) and the school data (right).

to converge. The right plot depicts the CPU time (in seconds) needed to reach a value of the objective

function which is less than 10−5 away from the minimum, versus the number of tasks. It is clear that our

algorithm is at least an order of magnitude faster than gradient descent with the optimal learning rate and

scales better with the number of tasks. We note that the computational cost of our method is mainly due

to the T ridge regressions in the supervised step (learning W) and the singular value decomposition in

the unsupervised step (learning D). A singular value decomposition is also needed in gradient descent,

for computing the gradient of the Schatten Lp norm. We have observed that the cost per iteration is

smaller for gradient descent but the number of iterations is at least an order of magnitude larger, leading

to the large difference in time cost.

In the second experiment we study the statistical performance of our method as the spectral function

changes. Specifically, we choose functions giving rise to Schatten Lp prenorms, as discussed in Section

4.8.2. The results, shown in Figure 4.12, indicate that the trace norm is the best norm on these data sets.

However, on the computer survey data a value of p less than one gives the best result overall. From this

we speculate that our method can even approximate well the solutions of certain non-convex problems.

In contrast, on the school data the trace norm gives the best result.

4.9. Connection between Multi-Task Learning and Learning the Kernel 98

4.9 Connection between Multi-Task Learning and Learning the

Kernel

In this section, we bring together the multi-task framework built in this chapter and the framework for

learning the kernel from Chapter 3. To this end, we define the kernel Kf (D)(x, z) = x>(F (D))−1z,

x, z ∈ R
d, the set of kernels Kf = {Kf (D) : D ∈ S

d
++, trace D ≤ 1} and, for every kernel K, the task

kernel matrices Kt = (K(xti, xtj) : i, j ∈ Nm), t ∈ NT . It is easy to prove, using Weyl’s monotonicity

theorem [Horn and Johnson, 1985, Sec. 4.3] and [Bhatia, 1997, Thm. V.2.5], that the set Kf is convex

if and only if 1
f

is matrix concave. By the Representer Theorem (see Section 2.2.2), problem (4.8.3) is

equivalent to

min

{
∑

t∈NT

(
∑

i∈Nm

L(yti, (Ktct)i) + γ c>

t Ktct

)
: ct ∈ R

m,K ∈ Kf

}

It is apparent that this objective function is not jointly convex in ct and K. However, minimizing each

t-term over the vector ct gives a convex function of K.

Proposition 76 Let K be the set of all reproducing kernels on R
d. If L(y, ·) is convex for any y ∈ R

then the function Et : K → R+ defined for every K ∈ K as

Et(K) = min

{
∑

i∈Nm

L(yti, (Ktc)i) + γ c>Ktc : c ∈ R
m

}

is convex.

PROOF. Without loss of generality, we can assume that Kt is invertible for every t ∈ NT . For every

a ∈ R
m and K ∈ K , we define the function Gt(a,K) =

∑
i∈Nm

L(yti, ai) + γ a>K−1
t a, which is

jointly convex by Theorem 52. Clearly, Et(K) = min{Gt(a,K) : a ∈ R
m}. Recalling that the partial

minimum of a jointly convex function is convex (Theorem 15), we obtain the convexity of Et.

The fact that function Et is convex has already been proven as Corollary 56 using a minimax

theorem and the convex conjugate. Here, we were able to simplify the proof of this result by appealing

to the joint convexity property stated in Theorem 52.

Some further insight about the connection between multi-task learning and learning the kernel in a

convex set can be gained by comparing our formulation (4.3.1)-(4.3.3) to the feature map interpretation

of (3.6.1). To be able to do this comparison, we need to determine the appropriate multi-task kernels,

in the sense defined in [Evgeniou et al., 2005]. These act on the joint input-task space and, in this case,

induce block diagonal Gram matrices:

Ki((x, t), (x′, t′)) = δt,t′〈hi(x), hi(x
′)〉 ∀x, x′ ∈ R

d, t, t′ ∈ NT , i ∈ Nd.

4.9. Connection between Multi-Task Learning and Learning the Kernel 99

The corresponding feature maps in the input-task space are Ψi : R
d × NT → R

T with

Ψi(x, t) =




0

...

hi(x)

...

0




t ∀x ∈ R
d, t ∈ NT , i ∈ Nd.

Thus, learning a number of tasks together is equivalent to learning a number of features together. The

feature maps Ψi, i ∈ Nd, in the multi-task setup correspond to the feature maps Φ`, ` ∈ Nn, in kernel

learning. Visually, the analogy is as follows

k t

`




. . .
... . .

.

· · · (w`)k · · ·

. .
. ...

. . .




←→ i




. . .
... . .

.

· · · ait · · ·

. .
. ...

. . .




,

where ` ∈ Nn, k ∈ Ns,i ∈ Nd, t ∈ NT index the feature map Φ`, the feature within Φ`, the feature map

Ψi and the task, respectively. The property that all tasks share a small set of feature maps corresponds

to the property that a small set of kernels are involved in the optimal combination. These properties are

induced by the appearance of a (2, 1)-norm in both (4.3.1) and (3.6.1).

Another conclusion obtained is that the variable selection method described in this chapter can be

seen as learning convex combinations of the multi-task kernels Ki. Regarding the multi-task feature

learning method, which has been the main focus of this chapter, it corresponds to learning a single linear

kernel (described by matrix D) whose trace is bounded. The orthogonality assumption for the features

is automatically implied since any linear kernel can be written as a convex combination of linear kernels

whose matrices have rank one and are mutually orthogonal.

100

Chapter 5

Conclusion

In Chapter 3, we have studied the problem of learning a kernel which minimizes a convex error functional

over the convex hull of prescribed basic kernels. A substantial innovation of our approach is that it avoids

deciding on a finite subset of basic kernels in advance. The main contribution of the chapter is a general

analysis of this problem when the basic kernels are continuously parameterized by a compact set. In

particular, we have shown that there always exists an optimal kernel which is a finite combination of the

basic kernels and presented a greedy algorithm for learning it. This algorithm is simple to implement

and is based on standard kernel methods such as SVMs. We have also proven the convergence of this

algorithm to the optimal kernel. To tackle the main computational problem involved, we have used a

recently developed technique for global optimization.

We have provided experimental results where the basic kernels are Gaussians with constrained

diagonal covariance matrices. These computational results indicate the advantage of working with a

continuous parameterization as opposed to an a priori choice of a finite number of basic kernels. The

method is robust because the choice of the optimal kernel is insensitive to the range of the continuous

parameters. These preliminary findings indicate that the algorithm typically converges in a small number

of iterations to a kernel with a competitive statistical performance.

There remain several issues about this framework that need to be addressed in the future. One has

to do with generalization error bounds for important classes of basic kernels and for these the method-

ology followed in [Srebro and Ben-David, 2006] could be used. Other future work could apply new

optimization techniques to our greedy algorithm, especially to the DC problem involved. There are

also implementation issues with large data sets which may be very important in the context of some

applications. We believe that our approach is a good starting point for learning large data sets with com-

binations of parameterized kernels. In such practical scenarios, a variety of heuristics could be used to

make implementations more efficient.

Another important question is under which conditions the optimization problem (3.3.1) is tractable.

As already observed, this is true in the case of a finite number of basic kernels, linear and polynomial

kernels, certain spectral functions of the Gram matrix (see Sections 3.2.5, 3.4.1), but in general it is a DC

problem. More investigation is required to determine whether any other useful parameterizations lead to

tractable problems.

101

Other future directions are towards extending the framework we have proposed by minimizing other

criteria instead of the combination of training error and regularizer. Some candidates are the bounds on

the generalization error mentioned in [Chapelle et al., 2002]. Another one is the cross-validation error

whose optimization is studied, for example, in [Bennett et al., 2006]. One would expect that some of

these measures are statistically more robust than the regularization functional. However, the convex

property (Corollary 56) we have shown does not hold in general. Thus a more thorough theoretical and

algorithmic study is needed, for which our treatment may provide a good starting basis. The performance

of different functionals should be assessed using error bounds and empirical trials and should be balanced

against the computational cost.

In the second part of this thesis (Chapter 4), we have presented an algorithm which learns common

sparse representations across a pool of related tasks. These representations are assumed to be orthonor-

mal functions in a reproducing kernel Hilbert space. Our method is based on a regularization problem

with a novel type of regularizer, which is a mixed (2, 1)-norm.

We showed that this problem, which is non-convex, can be reformulated as a convex optimization

problem. This result makes it possible to compute the optimal solutions using a simple alternating

minimization algorithm, whose convergence we have proven. For the case of a high-dimensional feature

map, we have developed a variation of the algorithm which uses kernel functions. We have also proposed

a variation of the first algorithm for solving the problem of multi-task feature selection with a linear

feature map.

We have reported experiments with our method on synthetic and real data. They indicate that our

algorithms learn sparse feature representations common to all the tasks whenever this helps improve per-

formance. In such cases, the performance obtained is better than that of training the tasks independently.

Moreover, when applying our algorithm on a data set with weak task interdependence, performance

does not deteriorate and the learned representation reflects the lack of task relatedness. As indicated

in one such experiment, the estimated matrix A can be used to visualize task relatedness. Finally, our

experiments have shown that learning orthogonal features improves on just selecting input variables.

To our knowledge, our approach provides the first convex optimization formulation for multi-task

feature learning. Although convex optimization methods have been derived for the simpler problem

of feature selection [Jebara, 2004], prior work on multi-task feature learning has been based on more

complex optimization problems which are not convex [Ando and Zhang, 2005, Baxter, 2000, Caruana,

1997] and, so, these methods are not guaranteed to converge to a global optimum. In particular, in

[Baxter, 2000, Caruana, 1997] different neural networks with one or more hidden layers are trained for

each task and they all share the same hidden weights. These common hidden layers and weights act as

an internal representation (like the features in our formulation) which is shared by all the tasks.

Our algorithm also shares some similarities with recent work in [Ando and Zhang, 2005] where

they also alternately update the task parameters and the features. Two main differences are that their

formulation is not convex and that, in our formulation, the number of learned features is not fixed in

advance but is controlled by a regularization parameter. Other relevant work is [Raina et al., 2006],

102

which also proposes an alternate update algorithm, inspired from a maximum a posteriori perspective.

As noted in Section 4.5, our work relates to [Abernethy et al., 2006, Srebro et al., 2005], which

investigate regularization with the trace norm in the context of collaborative filtering. In fact, the sparsity

assumption which we have made in our work, starting with the (2, 1)-norm, connects to the low rank

assumption in those works. Hence, it may be possible that our alternating algorithm, or some variation

of it, could be used to solve the optimization problems of [Abernethy et al., 2006, Srebro et al., 2005,

etc.]. An additional benefit, as the experiments in Section 4.8.3 demonstrate, is that our alternating

algorithm converges faster than gradient descent. Our work also relates to partial least squares methods

(see, for example, [Bennett and Embrechts, 2003, Wold et al., 1984]). Although these methods have

proved useful in practical applications, they require that the same input examples are shared by all the

tasks. On the contrary, our approach does not rely on this assumption.

Our work may be extended in different directions. First, it would be interesting to carry out a

learning theory analysis of the algorithms presented. Results in [Caponnetto and De Vito, 2006, Maurer,

2006b] may be useful for this purpose. Another interesting question is to study how the solution of

our algorithms depends on the regularization parameter and investigate conditions which ensure that

the number of features learned decreases with the degree of regularization, as we have experimentally

observed in this thesis. Results in [Micchelli and Pinkus, 1994] may be useful for this purpose.

Some experimental and theoretical investigation could be devoted to formulations with spectral

functions other than the Lp prenorms considered here. There are some candidates, like the relative

entropy of W and D, which make intuitive sense and satisfy the matrix concavity condition of Theorem

52. The choice of a specific spectral regularizer should also depend on the tasks at hand, so that certain

problems may call for assumptions other than L1-type sparsity.

Another promising research direction is to explore whether different assumptions about the features

(other than the orthogonality one which we have made) can still lead to different convex optimization

methods. More specifically, it would be interesting to study whether non-convex models for learning

structures across the tasks, like those in [Zhang et al., 2006] where ICA type features are learned, or

hierarchical features models like in [Torralba et al., 2004], can be reformulated in a framework similar

to ours. Yet another variation could be to introduce additional constraints which have some practical

interpretation. For example, we would like to study the problem under the constraint that the task coeffi-

cients are nonnegative. This problem is motivated by many situations in which we want to mix features,

not weigh them against each other. It also relates to previous work on nonnegative matrix factorization,

such as [Lee and Seung, 2001].

It would also be interesting to explore whether our formulation can be extended to transformations

parameterized by the task – which can be orthogonal, as in our presentation, or other. This assumption

has been advanced by [Ben-David and Schuller, 2003] and covers a wider class of problems than the

ones which we have studied. It is a realistic assumption in many situations where there exist underlying

invariances and the data lies on a low-dimensional manifold.

An important practical issue in the development of any regularization-based algorithm is the choice

103

of the regularization parameter γ. The regularization parameter plays an important role in our approach,

since it affects the sparsity of the common-across-tasks feature representation. Thus, it should not be

fixed a priori but should be determined from the data. The most standard technique, which we have

also used in our experiments, is cross-validation. This technique is computationally taxing, however,

and a few other approaches, such as the regularization path [Hastie et al., 2004], have been proposed.

Therefore, a future theoretical question in multi–task feature learning would be to describe the statistical

behavior of the obtained solution as a function of the regularization parameter.

Finally, at the end of Chapter 4, we have shown a connection between the two formulations for

learning in a convex set of kernels and learning common features for multiple tasks. There is a mapping

between the basic feature maps in the former and the multi-task feature maps in the latter. Clearly, this

analogy may inspire one to transfer results and methods from one problem to the other. For example, it

could lead to more complex regularization-based formulations for multi-task learning. Also, it may be

possible to translate results about the generalization error from one problem to the other.

104

Appendix A

Proof of Lemma 55

PROOF. Theorem 43 applies. Indeed, we let f(α, z) = 〈Kxα, z〉 − Q∗(z) + γ〈α,Kxα〉, C = R
m,

Z = dom Q∗ and z0 = 0. Then, Z is convex and, for any a ∈ R, the set {α : α ∈ C, f(α, z0) ≤ a} is

compact. Therefore, all the hypotheses of Theorem 43 hold. Consequently, using (3.2.7) in (3.2.4) we

have that

Eγ(K) = sup{min{〈Kxα, z〉 −Q∗(z) + γ〈α,Kxα〉 : α ∈ R
m} : z ∈ dom Q∗}.

For each z ∈ dom Q∗, the minimum over α satisfies the equation Kxz + 2γKxα = 0, implying that

min{〈Kxα, z〉 −Q∗(z) + γ〈α,Kxα〉 : α ∈ R
m} = −〈z,Kxz〉

4γ
−Q∗(z)

and the result follows. The attainment of the supremum follows from closedness of Q∗ and the facts that

lim inf
‖z‖→∞

〈z,Kxz〉 → +∞ and Q∗ is bounded from below.

105

Appendix B

Convergence of Algorithm 1

PROOF. First, from (3.3.2) and the boundedness property Eγ(K) ≥ −R(0,K) = −Q∗(0) > −∞,

it is clear that the sequence {Eγ(K(k)) : k ∈ N} converges to a real number. Moreover, observe that

the sequence {K(k)
x : k ∈ N} is bounded, that R(c(k),K(k)) ≤ R(0,K(k)) = Q∗(0) < +∞ and

that Q∗ is bounded from below by −Q(0). Therefore, there are convergent subsequences {K (k`)
x : ` ∈

N}, {〈c(k`),K
(k`)
x c(k`)〉 : ` ∈ N},

{
c(k`)

‖c(k`)‖
: ` ∈ N

}
, or alternatively {c(k`) = 0 : ` ∈ N}. In the former

case, the sequence ‖c(k`)‖2 =

D

c(k`),K
(k`)
x

c(k`)
E

fi

c(k`)

‖c(k`)‖
,K

(k`)
x

c(k`)

‖c(k`)‖

fl is also convergent. This shows the existence of a

limit point.

Consider now any limiting subsequence {(c(k`),K(k`)) : ` ∈ N} and let (c̄, K̄) be its limit. First,

we observe that the function

M ∈ S
m
++ 7→ min

{
1

4γ
〈c,Mc〉+ Q∗(c) : c ∈ R

m

}

is concave as the minimum of concave functions and hence continuous (by Theorem 22). Thus,

R(c(k`),K(k`)) = −Eγ(K(k`))→ −Eγ(K̄) as `→∞.

Therefore, c̄ minimizes R(·, K̄) and the upper inequalities in (3.2.14) are satisfied. To show that (c̄, K̄)

is a saddle point it suffices to show the lower inequalities. Let us assume the opposite and try to obtain a

contradiction. That is, assume that

〈c̄, B∗
x

c̄〉 > 〈c̄, K̄x c̄〉

for some B∗ ∈ B. Also, let B̂(k), λ̂(k) be the iterates computed in steps 2 and 3, respectively, of

Algorithm 1. Since B is compact, the corresponding sequences have convergent subsequences. Without

loss of generality, assume that

{K(k`+1)
x

: ` ∈ N}, {B̂(k`)
x

: ` ∈ N}, {λ̂(k`) : ` ∈ N}

are convergent (since there exist simultaneously convergent subsequences). Let K̄+
x

, B̄x, λ̄ be their

limits, respectively. From continuity and step 4 we obtain that

Eγ(λ̄B̄ + (1− λ̄)K̄) = Eγ(K̄+) .

106

We have already observed that {Eγ(K(k)) : k ∈ N} converges, thus

Eγ(λ̄B̄ + (1− λ̄)K̄) = Eγ(K̄) . (B.0.1)

Because of the maximization in step 2, we have that

〈c(k`), B̂(k`)
x

c(k`)〉 ≥ 〈c(k`), B∗
x
c(k`)〉 ∀` ∈ N

and, taking the limits, that

〈c̄, B̄xc̄〉 ≥ 〈c̄, B∗
x
c̄〉

and hence

〈c̄, B̄xc̄〉 > 〈c̄, K̄xc̄〉 .

By Lemma 63, there exists λ ∈ (0, 1] such that

Eγ(λB̄ + (1− λ)K̄) < Eγ(K̄) .

On the other hand, by step 3,

Eγ(λ(k`)B̂(k`) + (1− λ(k`))K(k`)) ≤ Eγ(λB̂(k`) + (1− λ)K(k`)) ∀` ∈ N ,

which yields a contradiction when the limits are taken and (B.0.1) is taken into account.

107

Appendix C

Proof of Equation (4.4.2)

PROOF. Consider a matrix C ∈ S
d
+. We will compute inf{trace(D−1C) : D ∈ S

d
++, trace(D) ≤

1}. From the Cauchy-Schwarz inequality for the Frobenius norm, we obtain

trace(D−1C) ≥ trace(D−1C) trace(D)

= trace
((

D− 1
2 C

1
2

)(
C

1
2 D− 1

2

))
trace

(
D

1
2 D

1
2

)

≥
(
trace

(
D

1
2

(
C

1
2 D− 1

2

)))2

=
(
trace C

1
2

)2

.

The equality is attained if and only if trace(D) = 1 and C
1
2 D− 1

2 = aD
1
2 for some a ∈ R, or equiva-

lently for D =
C

1
2

trace C
1
2

.

Using similar arguments as above, it can be shown that min{trace(D+C) : D ∈ S
d
+, trace(D) ≤

1, range(C) ⊆ range(D)} also equals
(
traceC

1
2

)2.

108

Appendix D

Convergence of Algorithm 3

In this appendix, we present the proofs of Theorems 70 and 71. For this purpose, we substitute equation

(4.4.2) in the definition ofRε obtaining the objective function

Sε(W) := Rε(W,Dε(W))

=

T∑

t=1

m∑

i=1

L(yti, 〈wt, xti〉) + γ
(
trace(WW> + εId)

1
2

)2

.

Moreover, we define the following function which formalizes the supervised step of the algorithm,

gε(W) := min{Rε(V,Dε(W)), : V ∈ R
d×T } .

Since Sε(W) = Rε(W,Dε(W)) and Dε(W) minimizesRε(W, ·), we obtain that

Sε(W
(n+1)) ≤ gε(W

(n)) ≤ Sε(W
(n)) . (D.0.1)

We begin by observing that Sε has a unique minimizer. This is a direct consequence of the following

proposition.

Proposition 77 The function Sε is strictly convex for every ε > 0.

PROOF. It suffices to show that the function

W 7→
(
trace(WW> + εId)

1
2

)2

is strictly convex. But this is simply a function of the singular values of W . By [Lewis, 1995, Sec. 3],

strict convexity follows directly from strict convexity of the real function σ 7→
(∑

i

√
σ2

i + ε
)2

. This

function is strictly convex because it is the square of a positive strictly convex function.

We note that when ε = 0, the function Sε is regularized by the trace norm squared which is not a strictly

convex function. Thus, in many cases of interest S0 may have multiple minimizers. For instance, this is

true if the loss function L is not strictly convex, which is the case with SVMs.

Next, we show the following continuity property which underlies the convergence of Algorithm 3.

Lemma 78 The function gε is continuous for every ε > 0.

109

PROOF. We first show that the function Gε : Sd
++ → R defined as

Gε(D) := min
{
Rε(V,D) : V ∈ R

d×T
}

is convex. Indeed, Gε is the minimal value of T separable regularization problems with a common kernel

function determined by D and Corollary 56 can be used. Since the domain of this function is open, Gε

is also continuous (see Theorem 22).

In addition, the matrix-valued function W 7→ (WW > + εId)
1
2 is continuous. To see this, we recall

the fact that the matrix-valued function Z ∈ S
d
+ 7→ Z

1
2 is continuous.

Combining, we obtain that gε is continuous, as the composition of continuous functions.

Proof of Theorem 70. By inequality (D.0.1) the sequence {Sε(W
(n)) : n ∈ N} is nonin-

creasing and, since L is bounded from below, it is bounded. As a consequence, as n → ∞,

Sε(W
(n)) converges to a number, which we denote by S̃ε. We also deduce that the sequence{

trace
(
W (n)W (n)> + εId

) 1
2

: n ∈ N

}
is bounded and hence so is the sequence {W (n) : n ∈ N}.

Consequently there is a convergent subsequence {W (n`) : ` ∈ N}, whose limit we denote by W̃ .

Since Sε(W
(n`+1)) ≤ gε(W

(n`)) ≤ Sε(W
(n`)), gε(W

(n`)) converges to S̃ε. Thus, by Lemma

78 and the continuity of Sε, gε(W̃) = Sε(W̃). This implies that W̃ is a minimizer of Rε(·, Dε(W̃)),

becauseRε(W̃ ,Dε(W̃)) = Sε(W̃).

Moreover, recall that Dε(W̃) is the minimizer of Rε(W̃ , ·) subject to the constraints in (4.4.1).

Since the regularizer in Rε is smooth, any directional derivative of Rε is the sum of its directional

derivatives with respect to W and D. Hence, (W̃ ,Dε(W̃)) is the minimizer ofRε.

We have shown that any convergent subsequence of {W (n) : n ∈ N} converges to the minimizer

ofRε. Since the sequence {W (n) : n ∈ N} is bounded it follows that it converges to the minimizer as a

whole.

Proof of Theorem 71. Let
{(

W`n
, Dε`n

(W`n
)
)

: n ∈ N
}

be a limiting subsequence of the min-

imizers of {Rε`
: ` ∈ N} and let (W̃ , D̃) be its limit as n → ∞. From the definition of

Sε it is clear that min{Sε(W) : W ∈ R
d×T } is a decreasing function of ε and converges to

S̄ = min{S0(W) : W ∈ R
d×T } as ε → 0. Thus, Sε`n

(W`n
) → S̄ . Since Sε(W) is continuous

in both ε and W (see proof of Lemma 78), we obtain that S0(W̃) = S̄ .

110

Appendix E

Proof of Lemma 79

Lemma 79 Let P,N ∈ R
d×T such that P>N = 0. Then ‖P + N‖tr ≥ ‖P‖tr. The equality is attained

if and only if N = 0.

PROOF. We use the fact that, for matrices A,B ∈ S
n
+, A � B implies that traceA

1
2 ≥ traceB

1
2 . This

is true because the square root function on the reals, t 7→ t
1
2 , is matrix monotone – see Section 2.3. We

apply this fact to the matrices P >P + N>N and N>N to obtain that

‖P + N‖tr = trace((P + N)>(P + N))
1
2 = trace(P>P + N>N)

1
2 ≥

trace(P>P)
1
2 = ‖P‖tr.

The equality is attained if and only if the spectra of P >P + N>N and P>P are equal, whence

trace(N>N) = 0, that is N = 0.

BIBLIOGRAPHY 111

Bibliography

J. Abernethy, F. Bach, T. Evgeniou, and J-P. Vert. Low-rank matrix factorization with attributes. Tech-

nical Report 2006/68/TOM/DS, INSEAD, 2006. Working paper.

L. T. H. An and P. D. Tao. A branch-and-bound method via d.c. optimization algorithm and ellipsoidal

technique for box constrained nonconvex quadratic programming problems. Journal of Global Opti-

mization, 13:171–206, 1998.

R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and

unlabeled data. Journal of Machine Learning Research, 6:1817–1853, 2005.

A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 2007a.

In press.

A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In B. Schölkopf, J. Platt, and

T. Hoffman, editors, Advances in Neural Information Processing Systems 19. MIT Press, 2007b.

A. Argyriou, R. Hauser, C. A. Micchelli, and M. Pontil. A DC-programming algorithm for kernel

selection. In Proceedings of the Twenty-Third International Conference on Machine Learning, 2006a.

A. Argyriou, M. Herbster, and M. Pontil. Combining graph Laplacians for semi–supervised learning. In

Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems 18,

pages 67–74. MIT Press, 2006b.

A. Argyriou, C. A. Micchelli, and M. Pontil. Learning convex combinations of continuously parameter-

ized basic kernels. In Proceedings of the Eighteenth Conference on Learning Theory, pages 338–352,

2005.

A. Argyriou, C. A. Micchelli, M. Pontil, and Y. Ying. A spectral regularization framework for multi-task

structure learning. In Advances in Neural Information Processing Systems, 2007c. To appear.

A. Argyriou, C.A. Micchelli, and M. Pontil. Regularizers which admit a linear representer theorem.

Working paper, Dept. of Computer Science, University College London, 2007d.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society, 686:

337–404, 1950.

BIBLIOGRAPHY 112

J. P. Aubin. Mathematical Methods of Game and Economic Theory, volume 7 of Studies in Mathematics

and its applications. North-Holland, 1982.

F. R. Bach, G. R. G Lanckriet, and M. I. Jordan. Multiple kernels learning, conic duality, and the smo

algorithm. In Proceedings of the Twenty-First International Conference on Machine Learning, 2004.

S. Bakin. Adaptive regression and model selection in data mining problems. PhD thesis, Australian

National University, Canberra, 1999.

B. Bakker and T. Heskes. Task clustering and gating for bayesian multi–task learning. Journal of

Machine Learning Research, 4:83–99, 2003.

A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning distance functions using equivalence

relations. In Proceedings of the Twentieth International Conference on Machine Learning, 2003.

E. Bart and S. Ullman. Cross-generalization: Learning novel classes from a single example by feature

replacement. In Conference on Computer Vision and Pattern Recognition, 2005.

J. Baxter. A bayesian/information theoretic model of learning to learn via multiple task sampling. Ma-

chine Learning, 28:7–39, 1997.

J. Baxter. A model for inductive bias learning. Journal of Artificial Intelligence Research, 12:149–198,

2000.

M. Belkin and P. Niyogi. Semi–supervised learning on Riemannian manifolds. Machine Learning, 56:

209–239, 2004.

S. Ben-David and R. Schuller. Exploiting task relatedness for multiple task learning. In Proceedings

of the Sixteenth Annual Conference on Learning Theory, volume 2777 of LNCS, pages 567–580.

Springer, 2003.

K. P. Bennett and M. J. Embrechts. An optimization perspective on partial least squares. In J. A. K.

Suykens, G. Horvath, S. Basu, C. Micchelli, and J. Vandewalle, editors, Advances in Learning Theory:

Methods, Models and Applications, volume 190 of NATO Science Series III: Computer & Systems

Sciences, pages 227–250. IOS Press Amsterdam, 2003.

K. P. Bennett, J. Hu, G. Kunapuli, and J.-S. Pang. Model selection via bilevel optimization. In Interna-

tional Joint Conference in Neural Networks, Vancouver, 2006.

K. P. Bennett, M. Momma, and M. J. Embrechts. Mark: a boosting algorithm for heterogeneous kernel

models. In Proceedings of the 8th SIGKDD International Conference on Knowledge Discovery and

Data Mining, 2002.

R. Bhatia. Matrix analysis. Graduate texts in Mathematics. Springer, 1997.

BIBLIOGRAPHY 113

J. Bi, T. Zhang, and K. P. Bennett. Column-generation boosting methods for mixture of kernels. In

Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 521–526. ACM Press, 2004.

A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts. In Proceedings

of the Eighteenth International Conference on Learning Theory, 2001.

E. V. Bonilla, F. Agakov, and C. Williams. Kernel multi-task learning using task-specific features. In

Eleventh International Conference on Artificial Intelligence and Statistics, 2007.

M. Borga. Learning multidimensional signal processing. PhD thesis, Dept. of Electrical Engineering,

Linköping University, Sweden, 1998.

J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization: Theory and Examples.

CMS Books in Mathematics. Springer, 2005.

L. Breiman and J. H. Friedman. Predicting multivariate responses in multiple linear regression. Journal

of the Royal Statistical Society, Series B, 59(1):3–54, 1997.

A. Caponnetto and E. De Vito. Optimal rates for the regularized least-squares algorithm. Foundations

of Computational Mathematics, August 2006.

R. Caruana. Multi–task learning. Machine Learning, 28:41–75, 1997.

O. Chapelle, V. N. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support

vector machines. Machine Learning, 46(1):131–159, 2002.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM Review,

43(1):129–159, 2001.

F. R. Chung. Spectral Graph Theory, volume 92 of Regional Conference Series in Mathematics. Amer-

ican Mathematical Society, 1997.

K. Crammer, J. Keshet, and Y. Singer. Kernel design using boosting. In S. Becker, S. Thrun, and

K. Obermayer, editors, Advances in Neural Information Processing Systems, volume 15, pages 537–

544. MIT Press, 2003.

N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola. On kernel-target alignment. In T. G. Di-

etterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems,

volume 14. MIT Press, 2001.

F. Cucker and S. Smale. On the mathematical foundations of learning. Bulletin of the American Mathe-

matical Society, 39(1):1–49, 2001.

G. Dai and D.-Y. Yeung. Kernel selection for semi-supervised kernel machines. In Proceedings of the

Twenty-Fourth International Conference on Machine Learning, 2007.

BIBLIOGRAPHY 114

J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon. Information-theoretic metric learning. In Proceedings

of the Twenty-Fourth International Conference on Machine Learning, 2007.

C. Ding, T. Li, and W. Peng. Nonnegative matrix factorization and probabilistic latent semantic indexing:

Equivalence, chi-square statistic, and a hybrid method. In Proceedings of the National Conference on

Artificial Intelligence (AAAI-06), 2006.

F. Dominici, G. Parmigiani, K. H. Reckhow, and R. L. Wolpert. Combining information from related

regressions. Journal of Agricultural, Biological and Environmental Statistics, 2(3):313–332, 1997.

D. Donoho. For most large underdetermined systems of linear equations, the minimal l1-norm near-

solution approximates the sparsest near-solution. Preprint, Dept. of Statistics, Stanford University,

2004.

R. O. Duda and P. E. Hart. Pattern classification and scene analysis. Wiley, 1973.

T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning multiple tasks with kernel methods. Journal of

Machine Learning Research, 6:615–637, 2005.

T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines. Advances

in Computational Mathematics, 13(1):1–50, 2000.

T. Evgeniou, M. Pontil, and O. Toubia. A convex optimization approach to modeling consumer hetero-

geneity in conjoint estimation. Forthcoming at Marketing Science, 2007.

M. Fazel, H. Hindi, and S. P. Boyd. A rank minimization heuristic with application to minimum order

system approximation. In Proceedings, American Control Conference, volume 6, pages 4734–4739,

2001.

A. Ferencz, E. G. Learned-Miller, and J. Malik. Building a classification cascade for visual identification

from one example. In Proceedings of the Tenth IEEE International Conference on Computer Vision,

pages 286–293, 2005.

M. Fink. Object classification from a single example utilizing class relevance metrics. In L. K. Saul,

Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems, volume 17,

pages 449–456. MIT Press, 2005.

G. M. Fung and O. L. Mangasarian. A feature selection newton method for support vector machine

classification. Computational Optimization and Applications, 28(2):185–202, 2004.

A. Gelman and J. Hill. Data Analysis Using Regression and Multilevel/Hierarchical Models. Analytical

Methods for Social Research. Cambridge University Press, 2007.

M. Girolami and S. Rogers. Hierarchic Bayesian models for kernel learning. In Proceedings of the

Twenty-Second International Conference in Machine Learning, 2005.

BIBLIOGRAPHY 115

M. Girolami and M. Zhong. Data integration for classification problems employing Gaussian process

priors. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing

Systems, volume 19, pages 465–472. MIT Press, 2007.

G. V. Glass. Primary, secondary, and meta-analysis of research. Educational Researcher, 5(10):3–8,

1976.

I. Gohberg, S. Goldberg, and M. A. Kaashoek. Basic Classes of Linear Operators. Birkhäuser, 2003.

C. Gold and P. Sollich. Model selection for support vector machine classification. Neurocomputing, 55:

221–249, 2003.

J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neighbourhood components analysis. In

L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems,

volume 17, pages 513–520. MIT Press, 2005.

H. Goldstein. Multilevel modelling of survey data. The Statistician, 40:235–244, 1991.

G. H. Golub and C. F. van Loan. Matrix Computations. The Johns Hopkins University Press, 1996.

J. Guinney, Q. Wu, and S. Mukherjee. Estimating variable structure and dependence in multi-task learn-

ing via gradients. Working paper, 2007.

D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis: An overview with

application to learning methods. Neural Computation, 16(12):2639–2664, 2004.

P. Hartman. On functions representable as a difference of convex functions. Pacific Journal of Mathe-

matics, 9:707–713, 1959.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the support vector

machine. The Journal of Machine Learning Research, 5:1391 – 1415, 2004.

T. Hastie and P. Simard. Models and metrics for handwritten character recognition. Statistical Science,

13(1):54–65, 1998.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference

and Prediction. Springer Verlag Series in Statistics, 2001.

B. Heisele, T. Serre, M. Pontil, T. Vetter, and T. Poggio. Categorization by learning and combining object

parts. In Advances in Neural Information Processing Systems 14, pages 1239–1245. MIT Press, 2002.

M. Herbster, M. Pontil, and L. Wainer. Online learning over graphs. In Proceedings of the Twenty-Second

International Conference on Machine Learning, 2005.

J-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms, volume I.

Springer-Verlag, 1996.

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

BIBLIOGRAPHY 116

R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press, 1991.

R. Horst and N. V. Thoai. DC programming: overview. Journal of Optimization Theory and Applications,

103:1–41, 1999.

H. Hotelling. Relations between two sets of variates. Biometrika, 28:321–377, 1936.

A. J. Izenman. Reduced-rank regression for the multivariate linear model. Journal of Multivariate

Analysis, 5:248–264, 1975.

T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy discrimination. Technical Report No. AITR-

1668, MIT, Cambridge, MA, 1999.

T. Jebara. Multi-task feature and kernel selection for SVMs. In Proceedings of the Twenty-First Inter-

national Conference on Machine Learning, 2004.

T. Joachims. Making large-scale support vector machine learning practical. In B. Schlkopf, C. J. C.

Burges, and A. J. Smola, editors, Advances in Kernel Methods: Support Vector Learning. MIT Press,

Cambridge, USA, 1998.

T. Joachims. Transductive learning via spectral graph partitioning. In Proceedings of the Twentieth

International Conference on Learning Theory, 2003.

B. Juba. Estimating relatedness via data compression. In Proceedings of the Twenty-Third International

Conference on Machine learning, 2006.

J. G. Kim, U. Menzefricke, and F. M. Feinberg. Assessing heterogeneity in discrete choice models using

a Dirichlet process prior. Review of Marketing Science, 2, 2004. Article 1.

S.-J. Kim, A. Magnani, and S. Boyd. Optimal kernel selection in kernel Fisher discriminant analysis. In

Proceedings of the Twenty-Third International Conference on Machine Learning, 2006.

R. Kondor and T. Jebara. Gaussian and wishart hyperkernels. In B. Schölkopf, J. Platt, and T. Hoffman,

editors, Advances in Neural Information Processing Systems 19. MIT Press, 2007.

R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete input spaces. In Proceedings

of the Nineteenth International Conference on Machine Learning, 2002.

I. Kreft and J. Leeuw. Introducing multilevel modeling. Sage, London, 1998.

B. Kulis, M. Sustik, and I. Dhillon. Learning low-rank kernel matrices. In Proceedings of the Twenty-

Third International Conference on Machine Learning, 2006.

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan. Learning the kernel

matrix with semidefinite programming. In Proceedings of the Nineteenth International Conference on

Machine Learning, 2002.

BIBLIOGRAPHY 117

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan. Learning the kernel matrix

with semi-definite programming. Journal of Machine Learning Research, 5:27–72, 2004.

M. H. Law and J. T. Kwok. Bayesian support vector regression. In Proceedings of the Eighth Interna-

tional Workshop on Artificial Intelligence and Statistics, pages 239–244, 2001.

D. Lee and H. Seung. Algorithms for non-negative matrix factorization. In Advances in Neural Infor-

mation Processing Systems, volume 13, pages 556–562. MIT Press, 2001.

P. J. Lenk, W. S. DeSarbo, P. E. Green, and M. R. Young. Hierarchical Bayes conjoint analysis: recovery

of partworth heterogeneity from reduced experimental designs. Marketing Science, 15(2):173–191,

1996.

A. S. Lewis. The convex analysis of unitarily invariant matrix functions. Journal of Convex Analysis, 2

(1/2):173–183, 1995.

Y. Lin and H. H. Zhang. Component selection and smoothing in smoothing spline analysis of variance

models – COSSO. Technical Report 2556, Institute of Statistics Mimeo Series, NCSU, 2003.

M. G. Madden and T. Howley. Transfer of experience between reinforcement learning environments

with progressive difficulty. Artificial Intelligence Review, 21(3):375–398, 2004.

B. K. Mallick and S. G. Walker. Combining information from several experiments with nonparameter

priors. Biometrika, 84(3):697–706, 1997.

O. L. Mangasarian. Solution of general linear complementarity problems via nondifferentiable concave

minimization. Acta Mathematica Vietnamica, 22(1):199–205, 1997.

B. Marthi, S. Russell, D.Latham, and C. Guestrin. Concurrent hierarchical reinforcement learning. In

Proceedings of the Twentieth International Joint Conference on Artificial Intelligence, 2005.

A. Maurer. Bounds for linear multi-task learning. Journal of Machine Learning Research, 7:117–139,

2006a.

A. Maurer. The Rademacher complexity of linear transformation classes. In Proceedings of the 19th

Annual Conference on Learning Theory (COLT), volume 4005 of LNAI, pages 65–78. Springer, 2006b.

C. A. Micchelli and A. Pinkus. Variational problems arising from balancing several error criteria. Ren-

diconti di Matematica, Serie VII, 14:37–86, 1994.

C. A. Micchelli and M. Pontil. Kernels for multi-task learning. In L. K. Saul, Y. Weiss, and L. Bottou,

editors, Advances in Neural Information Processing Systems, volume 17, pages 921–928. MIT Press,

2005.

C. A. Micchelli and M. Pontil. Learning the kernel function via regularization. Journal of Machine

Learning Research, 6:1099–1125, 2005.

BIBLIOGRAPHY 118

C. A. Micchelli and M. Pontil. Feature space perspectives for learning the kernel. Machine Learning,

66:297–319, 2007. See also: Technical Report RN/05/11, Dept. of Computer Science, UCL.

C. A. Micchelli, M. Pontil, Q. Wu, and D-X. Zhou. Error bounds for learning the kernel. Technical

Report RN/05/09, Dept. of Computer Science, UCL, 2005.

E. Miller, N. Matsakis, and P. Viola. Learning from one example through shared densities on transforms.

In Conference on Computer Vision and Pattern Recognition, 2000.

G. Obozinski, B. Taskar, and M.I. Jordan. Multi-task feature selection. Technical report, Dept. of

Statistics, UC Berkeley, June 2006.

C. S. Ong, A. J. Smola, and R. C. Williamson. Hyperkernels. In S. Becker, S. Thrun, and K. Obermayer,

editors, Advances in Neural Information Processing Systems, volume 15, pages 478–485. MIT Press,

2003.

C. S. Ong, A. J. Smola, and R. C. Williamson. Learning the kernel with hyperkernels. Journal of

Machine Learning Research, 6:1043–1071, 2005.

E. Parrado-Hernández, J. Arenas-Garcı́a, I. Mora-Jiménez, and A. Navia-Vázquez. On problem-oriented

kernel refining. Neurocomputing, 55:135–150, 2003.

K. Pelckmans. Primal-Dual Kernel Machines. PhD thesis, Katholieke Universiteit Leuven, May 2005.

J. Platt. Sequential minimal optimization: A fast algorithm for training support vector machines. Tech-

nical Report MSR-TR98 -14, Microsoft Research, 1998.

T. Poggio and F. Girosi. A sparse representation for function approximation. Neural Computation, 10:

1445–1454, 1998.

R. Raina, A. Y. Ng, and D. Koller. Constructing informative priors using transfer learning. In Proceed-

ings of the Twenty-Third International Conference on Machine Learning, 2006.

R. M. Rifkin and R. A. Lippert. Value regularization and fenchel duality. Journal of Machine Learning

Research, 8:441–479, 2007.

R. T. Rockafellar and R. J-B. Wets. Variational Analysis. Springer, 1998.

D. Rosenberg and P. L. Bartlett. The Rademacher complexity of co-regularized kernel classes. In

M. Meila and X. Shen, editors, Proceedings of the Eleventh International Conference on Artificial

Intelligence and Statistics, 2007. To appear.

H. L. Royden. Real Analysis. Macmillan, New York, 1988.

K. Schittkowski. Optimal parameter selection in support vector machines. Journal of Industrial and

Management Optimization, 1(4):465–476, November 2005.

BIBLIOGRAPHY 119

I. J. Schoenberg. Metric spaces and completely monotone functions. Annals of Mathematics, 39:811–

841, 1938.

B. Schölkopf and A. J. Smola. Learning with Kernels. The MIT Press, 2002.

M. Seeger. Bayesian model selection for support vector machines, gaussian processes and other kernel

classifiers. In S. A. Solla, T. K. Leen, and K-R. Müller, editors, Advances in Neural Information

Processing Systems, volume 12, pages 603–609. MIT Press, 2000.

T. Serre, M. Kouh, C. Cadieu, U. Knoblich, G. Kreiman, and T. Poggio. Theory of object recognition:

computations and circuits in the feedforward path of the ventral stream in primate visual cortex. AI

Memo 2005-036, Massachusetts Institute of Technology, 2005.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University Press,

2004.

D. L. Silver and R. E. Mercer. The parallel transfer of task knowledge using dynamic learning rates

based on a measure of relatedness. Connection Science, 8(2):277–294, 1996.

V. Sindhwani, P. Niyogi, and M. Belkin. A co-regularized approach to semi-supervised learning with

multiple views. In Proceedings of the Twenty-Second ICML Workshop on Learning with Multiple

Views, 2005.

S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale multiple kernel learning. Journal

of Machine Learning Research, 7:1531–1565, 2006.

N. Srebro and S. Ben-David. Learning bounds for support vector machines with learned kernels. In

Proceedings of the Nineteenth Conference on Learning Theory, volume 4005 of LNAI, pages 169–

183. Springer, 2006.

N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-margin matrix factorization. In Advances in

Neural Information Processing Systems 17, pages 1329–1336. MIT Press, 2005.

J. Steinig. A rule of signs for real exponential polynomials. Acta Mathematica Hungarica, 47(1):187–

190, 1986.

D. M. J. Tax and R. P. W. Duin. Support vector data description. Machine Learning, 54(1):45–66, 2004.

S. Thrun and J. O’Sullivan. Discovering structure in multiple learning tasks: The TC algorithm. In

Proceedings of the Thirteenth International Conference on Machine Learning, 1996.

A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing features: efficient boosting procedures for

multiclass object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), volume 2, pages 762–769, 2004.

K. Tsuda and W. S. Noble. Learning kernels from biological networks by maximizing entropy. Bioin-

formatics, 20:i326–i333, 2004.

BIBLIOGRAPHY 120

K. Tsuda, H. Shin, and B. Schölkopf. Fast protein classification with multiple networks. Bioinformatics,

21, Suppl. 2:ii59–ii65, 2005.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, 2000.

G. Wahba. Spline Models for Observational Data, volume 59 of Series in Applied Mathematics. SIAM,

Philadelphia, 1990.

K. Weinberger, J. Blitzer, and L. Saul. Distance metric learning for large margin nearest neighbor classi-

fication. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing

Systems 18, pages 1473–1480. MIT Press, 2006.

S. Wold, A. Ruhe, H. Wold, and W. J. Dunn III. The collinearity problem in linear regression. The

partial least squares (PLS) approach to generalized inverses. SIAM Journal of Scientific Computing,

3:735–743, 1984.

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning with application to clus-

tering with side-information. In S. Thrun S. Becker and K. Obermayer, editors, Advances in Neural

Information Processing Systems 15, pages 505–512. MIT Press, 2003.

Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-task learning for classification with Dirichlet

process priors. Journal of Machine Learning Research, 8:35–63, 2007.

K. Yu, V. Tresp, and A. Schwaighofer. Learning Gaussian processes from multiple tasks. In Proceedings

of the Twenty-Second International Conference on Machine Learning, 2005.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of

the Royal Statistical Society, Series B (Statistical Methodology), 68(1):49–67, 2006.

A. L. Yuille and A. Rangarajan. The concave-convex procedure. Neural Computation, 15:915–936,

2003.

J. Zhang, Z. Ghahramani, and Y. Yang. Learning multiple related tasks using latent independent com-

ponent analysis. In Advances in Neural Information Processing Systems 18, pages 1585–1592. MIT

Press, 2006.

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and global consis-

tency. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing

Systems 16. MIT Press, 2004.

X. Zhu, Z. Ghahramani, and J. Lafferty. Semi–supervised learning using Gaussian fields and harmonic

functions. In Proceedings of the Twentieth International Conference on Machine Learning, 2003.

X. Zhu, J. Kandola, Z. Ghahramani, and J. Lafferty. Nonparametric transforms of graph kernels for semi-

supervised learning. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information

Processing Systems 17, pages 1641–1648. MIT Press, 2005.

