
TTIC 31010 / CMSC 37000 - Algorithms February 14, 2019
Lecture #10 last changed: February 14, 2019

1 Overview

In this lecture we describe a very nice algorithm due to Seidel for Linear Programming in low-
dimensional spaces. We then discuss the general notion of Linear Programming Duality.

2 Seidel’s LP algorithm

We now describe a linear-programming algorithm due to Raimund Seidel that solves the 2-dimensional
(i.e., 2-variable) LP problem in O(m) time (recall, m is the number of constraints), and more gen-
erally solves the d-dimensional LP problem in time O(d!m).

Setup: We have d variables x1, . . . , xd. We are given m linear constraints in these variables
a1 · x ≤ b1, . . . ,am · x ≤ bm along with an objective c · x to maximize. (Using boldface to denote
vectors.) Our goal is to find a solution x satisfying the constraints that maximizes the objective.

The idea: Here is the idea of Seidel’s algorithm. Let’s add in the constraints one at a time, and
keep track of the optimal solution for the constraints so far. Suppose, for instance, we have found
the optimal solution x∗ for the first m− 1 constraints (let’s assume for now that the constraints so
far do not allow for infinitely-large values of c·x) and we now add in the mth constraint am ·x ≤ bm.
There are two cases to consider:

Case 1: If x∗ satisfies the constraint, then x∗ is still optimal. Time to perform this test: O(d).

Case 2: If x∗ doesn’t satisfy the constraint, then the new optimal point will be on the (d − 1)-
dimensional hyperplane am · x = bm, or else there is no feasible point.

Let’s now focus on the case d = 2 and consider the time it takes to handle Case 2 above. With
d = 2, the hyperplane am · x = bm is just a line, and let’s call one direction “right” and the
other “left”. We can now scan through all the other constraints, and for each one, compute its
intersection point with this line and whether it is “facing” right or left (i.e., which side of that point
satisfies the constraint). We find the rightmost intersection point of all the constraints facing to
the right and the leftmost intersection point of all that are facing left. If they cross, then there is
no solution. Otherwise, the solution is whichever endpoint gives a better value of c ·x (if they give
the same value – i.e., the line am · x = bm is perpendicular to c – then say let’s take the rightmost
point). The total time taken here is O(m) since we have m− 1 constraints to scan through and it
takes O(1) time to process each one.

Right now, this looks like an O(m2)-time algorithm for d = 2, since we have potentially taken O(m)
time to add in a single new constraint if Case 2 occurs. But, suppose we add the constraints in a
random order? What is the probability that constraint m goes to Case 2?

Notice that the optimal solution to all m constraints (assuming the LP is feasible and bounded) is
at a corner of the feasible region, and this corner is defined by two constraints, namely the two sides
of the polygon that meet at that point. If both of those two constraints have been seen already,
then we are guaranteed to be in Case 1. So, if we are inserting constraints in a random order, the

1



probability we are in Case 2 when we get to constraint m is at most 2/m. This means that the
expected cost of inserting the mth constraint is at most:

E[cost of inserting mth constraint] ≤ (1 − 2/m)O(1) + (2/m)O(m) = O(1).

This is sometimes called “backwards analysis” since what we are saying is that if we go backwards
and pluck out a random constraint from the m we have, the chance it was one of the constraints
that mattered was at most 2/m.

So, Seidel’s algorithms is as follows. Place the constraints in a random order and insert them one
at a time, keeping track of the best solution so far as above. We just showed that the expected
cost of the ith insert is O(1) (or if you prefer, we showed T (m) = O(1) + T (m − 1) where T (i) is
the expected cost of a problem with i constraints), so the overall expected cost is O(m).

What if the LP is infeasible? There are two ways we can analyze this. One is that if the LP
is infeasible, then it turns out this is determined by at most 3 constraints. So we get the same
as above with 2/m replaced by 3/m. Another way to analyze this is imagine we have a separate
account we can use to pay for the event that we get to Case 2 and find that the LP is infeasible.
Since that can only happen once in the entire process (once we determine the LP is infeasible, we
stop), this just provides an additive O(m) term. To put it another way, if the system is infeasible,
then there will be two cases for the final constraint: (a) it was feasible until then, in which case we
pay O(m) out of the extra budget (but the above analysis applies to the the (feasible) first m− 1
constraints), or (b) it was infeasible already in which case we already halted so we pay 0.

What about unboundedness? One way we can deal with this is put everything inside a bounding
box −λ ≤ xi ≤ λ (so, for instance, if all ci are positive then the initial x∗ = (λ, . . . , λ)) where we
view λ symbolically as a limit quantity. For example, in 2-dimensions, if c = (0, 1) and we have a
constraint like 2x1 + x2 ≤ 8, then we would see it is not satisfied by (λ, λ), intersect the contraint
with the box and update to x∗ = (4 − λ/2, λ).

So far we have shown that for d = 2, the expected running time of the algorithm is O(m). For
general values of d, there are two main changes. First, the probability that constraint m enters
Case 2 is now d/m rather than 2/m. Second, we need to compute the time to perform the update
in Case 2. Notice, however, that this is a (d− 1)-dimensional linear programming problem, and so
we can use the same algorithm recursively, after we have spent O(dm) time to project each of the
m − 1 constraints onto the (d − 1)-dimensional hyperplane am · x = bm. Putting this together we
have a recurrence for expected running time:

T (d,m) ≤ T (d,m− 1) +O(d) +
d

m
[O(dm) + T (d− 1,m− 1)].

This then solves to T (d,m) = O(d!m).

3 Linear Programming Duality

Given a set of constraints like a1 ·x ≤ b1 and a2 ·x ≤ b2, notice that you can add them to create more
constraints that have to hold, like (a1 + a2) · x ≤ b1 + b2. In fact, any positive linear combination
has to hold.

To get a feel of what this looks like geometrically, say we start with constraints x1 ≤ 1 and x2 ≤ 1.
These imply x1 + x2 ≤ 2, x1 + 2x2 ≤ 3, etc. [draw picture] In fact, you can create any constraint

2



running through the intersection point (1, 1) that has the entire feasible region on one side by using
different positive linear combinations of these inequalities.

Now, suppose you have a linear program in n variables (I’ve switched back from “d” to “n”) with
objective c · x to maximize. As we’ve discussed, unless the feasible region is unbounded (and let’s
assume for this entire discussion that the feasible region is bounded), the optimum point will occur
at some vertex x∗ of the feasible region, which is an intersection of n of the constraints, and have
some value v∗ = c · x∗. An interesting fact is that just as in the simple example above, if you take
the n constraints that define the vertex x∗ and look at all positive linear combinations, you can
again create any constraint you want going through x∗ that has the feasible region on one side. In
particular, it is possible to create the constraint c · x ≤ v∗ using some positive linear combination
of them. [draw another picture]

Notice that if you do this – create the constraint c · x ≤ v∗ using some positive linear combination
of the given constraints – then it gives a proof that x∗ is optimal! (Since clearly you can’t do better
than v∗). In fact, it suggests we might try to solve for the optimal value you can get by trying to
solve for a positive linear combination of the constraints that produces c ·x ≤ v for as small a value
v as possible.

So, let’s say the original LP was Ax ≤ b, where A is the matrix of coefficients aij . Then we can
write what we are trying to do as a new linear program. In particular, we want variables y1, . . . , ym
(these are the multipliers on each constraint) with yi ≥ 0 for all i, such that yTA = c, and subject
to that, we want to minimize yTb (which is what the number on the right-hand-side will be). This
is called the dual to the original LP. The dual has one variable for each constraint of the original
(primal) LP and a constraint for each variable of the primal LP (plus non-negativity of the y’s).
This turns out to be powerful for a number of applications.

To put this into standard form, let’s assume our initial primal LP also has the constraints that
xi ≥ 0 for all i. In that case, it is OK if yTA ≥ c (it is greater than c in every coordinate) since if
a larger linear function of the xi’s can’t be bigger than some value, then the correct function cTx
can’t either. (Equivalently, we are just saying that we can always take the constraints −xi ≤ 0
and just use them to make yTA equal to c.) Doing it this way gives us the standard form for LP
duality.

LP duality: given the primal LP:

maximize cTx

subject to Ax ≤ b

x ≥ 0,

the dual LP is:

minimize yTb

subject to yTA ≥ cT

y ≥ 0,

where we are using “≥” for vectors to mean that the LHS is greater than or equal to the RHS in
every coordinate, and similarly for “≤”.

We then have two main theorems:

Theorem 1 (Weak Duality) If x is a feasible solution to the primal LP and y is a solution to
the dual LP then cTx ≤ yT b.

3



Proof: Immediate: cTx ≤ (yTA)x = yT (Ax) ≤ yTb. �

More interestingly, it’s not just an upper bound, but actually a tight upper bound. The minimum
achievable value of the dual is equal to the maximum achievable value of the primal, just like in
maxflow-mincut (which are duals) and the minimax theorem (which are also duals).

Theorem 2 (Strong Duality) If x∗ is an optimal feasible solution to the primal LP (assume
the primal LP is feasible and the optimal value is not infinite) then the dual LP is feasible and its
optimal solution y∗ satisfies cTx∗ = bTy∗.

4


