
TTIC 31010 / CMSC 37000 - Algorithms February 21, 2019
Lecture #12 last changed: February 19, 2019

1 Recap: Formal definitions: P, NP, and NP-Completeness

Let us begin with a quick recap of our discussion in the last lecture. First of all, to be clear in our
terminology, a problem means something like 3-coloring or network flow, and an instance means a
specific instance of that problem: the graph to color, or the network and distinguished nodes s and
t we want to find the flow between. A decision problem is just a problem where each instance is
either a YES-instance or a NO-instance, and the goal is to decide which type your given instance
is. E.g., for 3-coloring, G is a YES-instance if it has a 3-coloring and is a NO-instance if not. For
the Traveling Salesman Problem, an instance consists of a graph G together with an integer k, and
the pair (G, k) is a YES-instance iff G has a TSP tour of total length at most k.

We now define our key problem classes of interest.

P: The class of decision problems Q that have polynomial-time algorithms. Q ∈ P if there exists
a polynomial-time algorithm A such that A(I) = YES iff I is a YES-instance of Q.

NP: The class of decision problems where at least the YES-instances have short proofs (that can
be checked in polynomial-time). Q ∈ NP if there exists a verifier V (I,X) such that:

• If I is a YES-instance, then there exists X such that V (I,X) = YES,

• If I is a NO-instance, then for all X, V (I,X) = NO,

and furthermore the length of X and the running time of V are polynomial in |I|.

co-NP: vice-versa — there are short proofs for NO-instances. Specifically, Q ∈ co-NP if there
exists a verifier V (I,X) such that:

• If I is a YES-instance, for all X, V (I,X) = YES,

• If I is a NO-instance, then there exists X such that V (I,X) = NO,

and furthermore the length of X and the running time of V are polynomial in |I|.

The second input X to the verifier V is often called a witness. E.g., for 3-coloring, the witness that
an answer is YES is the coloring.

Definition 1 Problem Q is NP-complete if:

1. Q is in NP, and

2. For any other problem Q′ in NP, Q′ ≤p Q.

So if Q is NP-complete and you could solve Q in polynomial time, you could solve any problem in
NP in polynomial time. If Q just satisfies part (2) of the definition, then it’s called NP-hard.

We then gave our first NP-complete problem, namely ESP:

1

Definition 2 Existence of a verifiable Solution Problem (ESP): The input to this problem
is in three parts. The first part is a program V (I,X), written in some standard programming
language, that has two arguments. The second part is a string I intended as a first argument, and
the third part is a bound b written in unary (a string of b 1s). Question: does there exist a string
X, |X| ≤ b, such that V (I,X) halts in at most b steps and outputs YES?

2 Circuit-SAT and 3-SAT

Though the ESP is NP-complete, it is a bit unweildy. We will now develop two more natural
problems that also are NP-complete: CIRCUIT-SAT and 3-SAT. Both of them will be obviously
in NP. To show they are NP-complete, we will show that ESP ≤p CIRCUIT-SAT, and then that
CIRCUIT-SAT ≤p 3-SAT. Notice that this is enough: it means that if you had a polynomial-time
algorithm for 3-SAT then you would also have a polynomial-time algorithm for CIRCUIT-SAT; and
if you had a polynomial-time algorithm for CIRCUIT-SAT, then you would also have a polynomial-
time algorithm for ESP; and we already know that if you have a polynomial-time algorithm for
ESP, you can solve any problem in NP in polynomial-time. In other words, to show that a problem
Q is NP-complete, we just need to show that Q′ ≤p Q for some NP-complete problem Q′ (plus
show that Q ∈ NP).

Definition 3 CIRCUIT-SAT: Given a circuit of NAND gates with a single output and no loops
(some of the inputs may be hardwired). Question: is there a setting of the inputs that causes the
circuit to output 1?

Theorem 4 CIRCUIT-SAT is NP-complete.

Proof Sketch: First of all, CIRCUIT-SAT is clearly in NP, since you can just guess the input and
try it. To show it is NP-complete, we need to show that if we could solve this, then we could solve
the ESP. Say we are given V , I, and b, and want to tell if there exists X such that V (I,X) halts
and outputs YES within at most than b steps. Since we only care about running V for b steps we
can assume it uses at most b bits of memory, including the space for its arguments. We will now use
the fact that one can construct a RAM with b bits of memory (including its stored program) and
a standard instruction set using only O(b log b) NAND gates and a clock. By unrolling this design
for b levels, we can remove loops and create a circuit that simulates what V computes within b
time steps. We then hardwire the inputs corresponding to I and feed this into our CIRCUIT-SAT
solver.

Unfortunately, CIRCUIT-SAT is still a little unweildy. What’s especially interesting about NP-
completeness is not just that such problems exist, but that a lot of very innocuous-looking problems
are NP-complete. To show results of this form, we will first reduce CIRCUIT-SAT to the much
simpler-looking 3-SAT problem (i.e., show CIRCUIT-SAT ≤p 3-SAT).

Definition 5 3-SAT: Given: a CNF formula (AND of ORs) over n variables x1, . . . , xn, where
each clause has at most 3 variables in it. E.g., (x1 ∨ x2 ∨ x̄3) ∧ (x̄2 ∨ x3) ∧ (x1 ∨ x3) ∧ Goal:
find an assignment to the variables that satisfies the formula if one exists.

Before giving the proof, the main way we are going to show that A ≤p B is through the following
method called a many-one or Karp reduction:

2

Many-one (Karp) reduction from problem A to problem B: To reduce problem A to prob-
lem B we want a function f that takes arbitrary instances of A to instances of B such that:

1. if x is a YES-instance of A then f(x) is a YES-instance of B.

2. if x is a NO-instance of A then f(x) is a NO-instance of B.

3. f can be computed in polynomial time.

So, if we had an algorithm for B, and a function f with the above properties, we could using it to
solve A on any instance x by running it on f(x).

Theorem 6 CIRCUIT-SAT ≤p 3-SAT. I.e., if we can solve 3-SAT in polynomial time, then we
can solve CIRCUIT-SAT in polynomial time (and thus all of NP).

Proof: We need to define a function f that converts instances C of Circuit-SAT to instances of
3-SAT such that the formula f(C) produced is satisfiable iff the circuit C had an input x such that
C(x) = 1. Moreover, f(C) should be computable in polynomial time, which among other things
means we cannot blow up the size of C by more than a polynomial factor.

First of all, let’s assume our input is given as a list of gates, where for each gate gi we are told
what its inputs are connected to. For example, such a list might look like: g1 = NAND(x1, x3);
g2 == NAND(g1, x4); g3 = NAND(x1, 1); g4 = NAND(g1, g2); In addition we are told which gate
gm is the output of the circuit.

We will now compile this into an instance of 3-SAT as follows. We will make one variable for each
input xi of the circuit, and one for every gate gi. We now write each NAND as a conjunction of 4
clauses. In particular, we just replace each statement of the form “y3 = NAND(y1, y2)” with:

(y1 OR y2 OR y3) ← if y1 = 0 and y2 = 0 then we must have y3 = 1
AND (y1 OR y2 OR y3) ← if y1 = 0 and y2 = 1 then we must have y3 = 1
AND (y1 OR y2 OR y3) ← if y1 = 1 and y2 = 0 then we must have y3 = 1
AND (y1 OR y2 OR y3). ← if y1 = 1 and y2 = 1 we must have y3 = 0

Finally, we add the clause (gm), requiring the circuit to output 1. In other words, we are asking:
is there an input to the circuit and a setting of all the gates such that the output of the circuit
is equal to 1, and each gate is doing what it’s supposed to? So, the 3-CNF formula produced is
satisfiable if and only if the circuit has a setting of inputs that causes it to output 1. The size of the
formula is linear in the size of the circuit. Moreover, the construction can be done in polynomial
(actually, linear) time. So, if we had a polynomial-time algorithm to solve 3-SAT, then we could
solve circuit-SAT in polynomial time too.

Important note: Now that we know 3-SAT is NP-complete, in order to prove some other NP
problem Q is NP-complete, we just need to reduce 3-SAT to Q; i.e., to show that 3-SAT ≤p Q. In
particular, we want to construct a (polynomial-time computable) function f that converts instances
of 3-SAT to instances of Q that preserves the YES/NO answer. This means that if we could solve
Q efficiently then we could solve 3-SAT efficiently. Make sure you understand this reasoning — a
lot of people make the mistake of doing the reduction the other way around. Doing the reduction
the wrong way is just as much work but does not prove the result you want to prove!

3

3 CLIQUE

We will now use the fact that 3-SAT is NP-complete to prove that a natural graph problem called
the Max-Clique problem is NP-complete.

Definition 7 Max-Clique: Given a graph G, find the largest clique (set of nodes such that all
pairs in the set are neighbors). Decision problem: “Given G and integer k, does G contain a clique
of size ≥ k?”

Note that Max-Clique is clearly in NP.

Theorem 8 Max-Clique is NP-Complete.

Proof: We will reduce 3-SAT to Max-Clique. Specifically, given a 3-CNF formula F of m clauses
over n variables, we construct a graph as follows. First, for each clause c of F we create one node
for every assignment to variables in c that satisfies c. E.g., say we have:

F = (x1 ∨ x2 ∨ x4) ∧ (x3 ∨ x4) ∧ (x2 ∨ x3) ∧ . . .

Then in this case we would create nodes like this:

(x1 = 0, x2 = 0, x4 = 0) (x3 = 0, x4 = 0) (x2 = 0, x3 = 0) . . .
(x1 = 0, x2 = 1, x4 = 0) (x3 = 0, x4 = 1) (x2 = 0, x3 = 1)
(x1 = 0, x2 = 1, x4 = 1) (x3 = 1, x4 = 1) (x2 = 1, x3 = 0)
(x1 = 1, x2 = 0, x4 = 0)
(x1 = 1, x2 = 0, x4 = 1)
(x1 = 1, x2 = 1, x4 = 0)
(x1 = 1, x2 = 1, x4 = 1)

We then put an edge between two nodes if the partial assignments are consistent. Notice that
the maximum possible clique size is m because there are no edges between any two nodes that
correspond to the same clause c. Moreover, if the 3-SAT problem does have a satisfying assignment,
then in fact there is an m-clique (just pick some satisfying assignment and take the m nodes
consistent with that assignment). So, to prove that this reduction (with k = m) is correct we need
to show that if there isn’t a satisfying assignment to F then the maximum clique in the graph has
size < m. We can argue this by looking at the contrapositive. Specifically, if the graph has an
m-clique, then this clique must contain one node per clause c. So, just read off the assignment
given in the nodes of the clique: this by construction will satisfy all the clauses. So, we have shown
this graph has a clique of size m iff F was satisfiable. Also, our reduction is polynomial time since
the graph produced has total size at most quadratic in the size of the formula F (O(m) nodes,
O(m2) edges). Therefore Max-Clique is NP-complete.

4 Independent Set and Vertex Cover

An Independent Set in a graph is a set of nodes no two of which have an edge. E.g., in a 7-cycle,
the largest independent set has size 3, and in the graph coloring problem, the set of nodes colored
red is an independent set. The Independent Set problem is: given a graph G and an integer k,
does G have an independent set of size ≥ k?

4

Theorem 9 Independent Set is NP-complete.

Proof: We reduce from Max-Clique. Given an instance (G, k) of the Max-Clique problem, we
output the instance (H, k) of the Independent Set problem where H is the complement of G.
That is, H has edge (u, v) iff G does not have edge (u, v). Then H has an independent set of size
k iff G has a k-clique.

A vertex cover in a graph is a set of nodes such that every edge is incident to at least one of them.
For instance, if the graph represents rooms and corridors in a museum, then a vertex cover is a set
of rooms we can put security guards in such that every corridor is observed by at least one guard.
In this case we want the smallest cover possible. The Vertex Cover problem is: given a graph
G and an integer k, does G have a vertex cover of size ≤ k?

Theorem 10 Vertex Cover is NP-complete.

Proof: If C is a vertex cover in a graph G with vertex set V , then V − C is an independent set.
Also if S is an independent set, then V −S is a vertex cover. So, the reduction from Independent
Set to Vertex Cover is very simple: given an instance (G, k) for Independent Set, produce
the instance (G,n− k) for Vertex Cover, where n = |V |. In other words, to solve the question
“is there an independent set of size at least k” just solve the question “is there a vertex cover of
size ≤ n− k?” So, Vertex Cover is NP-Complete too.

5 Beyond NP

As mentioned earlier, it is an open problem whether P 6= NP (though most everyone believes they
are different). It is also an open problem whether NP 6= co-NP (though again, most people believe
they are different). One can also define even more expressive classes. For instance, PSPACE is
the class of all problems solvable by an algorithm that uses a polynomial amount of memory. Any
problem in NP is also in PSPACE, because one way to solve the problem is to take the given
instance I and then simply run the verifier V (I,X) on all possible proof strings X, halting with
YES if any of the runs outputs YES, and halting with NO otherwise. (Remember, we have a
polynomial upper bound on |X|, so this uses only a polynomial amount of space.) Similarly, any
problem in co-NP is also in PSPACE. Unfortunately, it is not even known for certain that P
6= PSPACE (though all the classes mentioned above are believed to be different). One can also
define classes that are provably larger than P and NP. For instance, EXPtime is the class of all
problems solvable in time O(2n

c
) for some constant c. This class is known to strictly contain P.

The class NEXPtime is the class of all problems that have a verifier which runs in time O(2n
c
)

for some constant c. This class is known to strictly contain NP. The class of all Turing-computable
problems is known to strictly contain all of the above, and some problems such as the Halting
problem (given a program A and an input x, determine whether or not A(x) halts) are not even
contained in that!

5

