
TTIC 31010 / CMSC 37000 - Algorithms March 5, 2019
Lecture #15 last changed: March 3, 2019

Two lectures ago we looked at algorithms for finding approximately-optimal solutions for NP-hard
problems. Today we’ll be looking at finding approximately-optimal solutions for problems where the
difficulty is not that the problem is necessarily computationally hard but rather that the algorithm
doesn’t have all the information it needs to solve the problem up front.

Specifically, we will be looking at online algorithms, which are algorithms for settings where inputs
or data is arriving over time, and we need to make decisions on the fly, without knowing what
will happen in the future. This is as opposed to standard problems like sorting where you have
all inputs at the start. Data structures are one example of online algorithms (they need to handle
sequences of requests, and to do well without knowing in advance which requests will be arriving
in the future). We’ll talk about some other kinds of examples today.

1 Rent or buy?

Here is a simple online problem that captures a common issue in online decision-making, called the
rent-or-buy problem. Say you are just starting to go skiing. You can either rent skis for $50 or buy
them for $500. You don’t know if you’ll enjoy skiing, so you decide to rent. Then you decide to go
again, and again, and after a while you realize you have shelled out a lot of money renting and you
wish you had bought right at the start.1 The optimal strategy is: if you know you’re going to end
up skiing more than 10 times, you should buy right at the beginning. If you know you’re going to
go fewer than 10 times, you should just always rent. (If you know you’re going to go exactly 10
then either way is equally good.) But, what if you don’t know?

To talk about the quality of an online algorithm, we will look at what’s called its competitive ratio:

Definition 1 The competitive ratio of an online algorithm ALG is the worst case (i.e., maximum)
over possible futures σ of the ratio: ALG(σ)/OPT (σ), where ALG(σ) represents the cost of ALG
on σ and OPT (σ) is the least possible cost on σ.

E.g., what is competitive ratio of the algorithm that says “buy right away”? The worst case is we
only go skiing once. Here the ratio is 500/50 = 10.

What about the algorithm that says “Rent forever”? Now the worst case is that we keep going
skiing. So the competitive ratio of this algorithm is unbounded.

Here’s a nice strategy: rent until you realize you should have bought, then buy. (In our case: rent
9 times, then buy). Let’s call this algorithm better-late-than-never. Formally, if the rental cost is r
and the purchase cost is p then the algorithm is to rent dp/re − 1 times and then buy.

Theorem 2 The algorithm better-late-than-never has competitive ratio ≤ 2. If the purchase cost
p is an integer multiple of the rental cost r, then the competitive ratio is 2− r/p.

Proof: We consider two cases. Case 1: if you went skiing fewer than dp/re times (e.g., 9 or fewer
times in the case of p = 500, r = 50) then you are optimal. The algorithm never purchased and
OPT doesn’t purchase either. Case 2: If you went skiing dp/re or more times, then the optimal

1We are ignoring practical issues such as the type of ski you want depending on your ability level, etc.

1

solution would have been to buy at the start, so OPT = p. The algorithm paid r(dp/re − 1) + p
(e.g., $450 + $500 in our specific case). This is always less than 2p, and equals 2p − r if p is a
multiple of r. In Case 1, the ratio of the algorithm’s cost to OPT was 1, and in Case 2, the ratio
of the algorithm’s cost to OPT was less than 2 ((2p− r)/p = 2− r/p if p was a multiple of r). The
worst of these is Case 2, and gives the claimed competitive ratio. �

Theorem 3 Algorithm better-late-than-never has the best possible competitive ratio for the ski-
rental problem for deterministic algorithms when p is a multiple of r.

Proof: Consider the event that the day you purchase is the last day you go skiing (this is a
legitimate event, since (a) if the algorithm never purchases, we already know its competitive ratio
is unbounded, so we may assume a purchase occurs, and (b) the algorithm is deterministic so this
occurs after some specific number of rentals). Now, if you rent longer than better-late-than-never,
then the numerator in Case 2 goes up (the algorithm’s cost is larger) but the denominator stays
the same, so your ratio is strictly worse. If you rent fewer times (say you rent k fewer times than
better-late-than-never for some k ≥ 1), then the numerator in Case 2 goes down by kr but so does
the denominator, so again the ratio is worse. �

2 The elevator problem

You go up to the elevator and press the button. But who knows how long it’s going to take to
come, if ever? How long should you wait until you give up and take the stairs?

Say it takes time E to get to your floor by elevator (once it comes) and it takes time S by stairs.
E.g, maybe E = 15 sec, and S = 45 sec.

How long should you wait until you give up? What strategy has the best competitive ratio?

Answer: wait 30 sec, then take the stairs (in general, wait for S−E time). This is exactly the better-
late-than-never strategy since we are taking the stairs once we realize we should have taken them
at the start. If elevator comes in less than 30 sec, we’re optimal. Otherwise, OPT = 45. We took
30+45 sec, so the ratio is (30 + 45)/45 = 5/3. Or, in general, the ratio is (S−E+S)/S = 2−E/S.

You may have noticed this is really the same as rent-or-buy where stairs=buy, waiting for E time
steps is like renting, and the elevator arriving is like the last time you ever ski. So, this algorithm
is optimal for the same reason.

Other problems like this: whether it’s worth optimizing code, when your laptop should stop spinning
the disk between accesses, and many others.

3 An aside

Interesting article in NYT Sept 29, 2007: Talking about a book by Jason Zweig on how people’s
emotions affect their investing, called “Your money and your brain”:

“There is a story in the book about Harry Markowitz, Mr. Zweig said the other day. He
was referring to the renowned economist who shared a Nobel for helping found modern
portfolio theory and proving the importance of diversification.... Mr. Markowitz was
then working at the RAND Corporation and trying to figure out how to allocate his

2

retirement account. He knew what he should do: I should have computed the historical
co-variances of the asset classes and drawn an efficient frontier. (That’s efficient-market
talk for draining as much risk as possible out of his portfolio.)

But, he said, I visualized my grief if the stock market went way up and I wasn’t in it or if
it went way down and I was completely in it. So I split my contributions 50/50 between
stocks and bonds. As Mr. Zweig notes dryly, Mr. Markowitz had proved incapable of
applying his breakthrough theory to his own money.”

So, he wasn’t applying his own theory but he was using competitive analysis: 50/50 guarantees
you end up with at least half as much as if you had known in advance what would happen, which
is best possible Competitive Ratio you can achieve.

4 Paging

In paging, we have a disk with N pages, and fast memory with space for k < N pages. When a
memory request is made, if the page isn’t in the fast memory, we have a page fault. We then need
to bring the page into the fast memory and throw something else out if our space is full. Our goal
is to minimize the number of misses. The algorithmic question is: what should we throw out? E.g.,
say k = 3 and the request sequence is 1,2,3,2,4,3,4,1,2,3,4. What would be the right thing to do in
this case if we knew the future? Answer: throw out the thing whose next request is farthest in the
future.

A standard online algorithm is LRU: “throw out the least recently used page”. E.g., what would
it do on above case? What’s a bad case for LRU? 1,2,3,4,1,2,3,4,1,2,3,4... Notice that in this case,
the algorithm makes a page fault every time and yet if we knew the future we could have thrown
out a page whose next request was 3 time steps ahead. More generally, this type of example shows
that the competitive ratio of LRU is at least k. In fact, you can show this is actually the worst-case
for LRU, so the competitive ratio of LRU is exactly k (it’s not hard to show but we won’t prove it
here).

In fact, it’s not hard to show that you can’t do better than a competitive ratio of k with a
deterministic algorithm: you just set N = k + 1 and consider a request sequence that always
requests whichever page the algorithm doesn’t have in its fast memory. By design, this will cause
the algorithm to have a page fault every time. However, if we knew the future, every time we had
a page fault we could always throw out the item whose next request is farthest in the future. Since
there are k pages in our fast memory, for one of them, this next request has to be at least k time
steps in the future, and since N = k + 1, this means we won’t have a page fault for at least k − 1
more steps (until that one is requested). So, the algorithm that knows the future has a page fault
at most once every k steps, and the ratio is k.

Here is a neat randomized algorithm with a competitive ratio of O(log k). Specifically, for any
request sequence σ, we have E[ALG(σ)]/OPT (σ) = O(log k).

Algorithm “Marking”:

• Assume the initial state is pages 1, . . . , k in fast memory. Start with all pages unmarked.

• When a page is requested,

– if it’s in fast memory already, mark it.

3

– if it’s not, then throw out a random unmarked page. (If all pages in fast memory
are marked, unmark everything first. For analysis purposes, call this the end of a
“phase”). Then bring in the page and mark it.

We can think of this as a 1-bit randomized LRU, where marks represent “recently used” vs “not
recently used”.

We will show the proof for the special case of N = k + 1. For general N , the proof follows similar
lines but just is a bit more complicated.

Proof:(for N = k + 1). In a phase, you have k + 1 different pages requested so OPT has at least
one page fault. For the algorithm, the page not in fast memory is a random unmarked page. Every
time a page is requested: if it was already marked, then there is no page fault for sure. If it wasn’t
marked, then the probability of a page fault is 1/i where i is the number of unmarked pages. So,
within a phase, the expected total cost is 1/k + 1/(k − 1) + ...+ 1/2 + 1 = O(log k). �

4

