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1 Dynamic Programming

Dynamic Programming is a powerful technique that can be used to solve many problems in time
O(n?) or O(n?) for which a naive approach would take exponential time. (Usually to get running
time below that—if it is possible—one would need to add other ideas as well.) Dynamic Program-
ming is a general approach to solving problems, much like “divide-and-conquer”, except that unlike
divide-and-conquer, the subproblems will typically overlap. In this lecture and next, we will present
a few important examples.

Basic Idea: The basic idea of Dynamic Programming is to find a way to break the problem down
into a reasonable number of subproblems (where “reasonable” might be something like n?) in such
a way that we can use optimal solutions to the smaller subproblems to give us optimal solutions
to the larger ones. As mentioned above, it is OK if our subproblems overlap. We just need the
properties that (a) there are not too many subproblems overall, and (b) there is some way of
ordering our subproblems such that given the solutions to the subproblems solved so far, we can
fairly quickly solve the next subproblem. Then finally the last subproblem should be the original
problem we wanted to solve (or something close enough to it that we can use our final subproblem
to quickly solve the original problem).

2 The Bellman-Ford Algorithm

The Bellman-Ford Algorithm is a dynamic programming algorithm for the single-sink (or single-
source) shortest path problem. It is slower than Dijkstra’s algorithm, but can handle negative-
weight directed edges, so long as there are no negative-weight cycles. Let us develop the algorithm
using the following example:

t 60 30
0 \1/ 2

40 -40 10

15 30
3 @ 5

How can we use Dyanamic Programming to find the shortest path from all nodes to t? First of all,
let’s just compute the lengths of the shortest paths first, and afterwards we can use these lengths
to easily reconstruct the paths themselves. Next, to use Dynamic Programming, we need to define
subproblems. The subproblems here will be finding the shortest path from each node v to t that
uses ¢ or fewer edges, if such a path exists. More specifically, the algorithm is as follows:

1. For each node v, find the length of the shortest path to ¢ that uses at most 1 edge, or write
down oo if there is no such path.



This is easy: if v =t we get 0; if (v,t) € E then we get len(v,t); else just put down oo.

2. Now, suppose for all v we have solved for length of the shortest path to ¢ that uses ¢ — 1 or
fewer edges. How can we use this to solve for the shortest path that uses i or fewer edges?

Answer: the shortest path from v to ¢ that uses ¢ or fewer edges will first go to some neighbor
x of v, and then take the shortest path from x to ¢ that uses ¢ — 1 or fewer edges, which we’ve
already solved for! So, we just need to take the min over all neighbors x of v.

3. How far do we need to go? Answer: at most i = n — 1 edges. Why? Because more than that
will create a cycle, and we can then just cut out the cycle to get a shorter path (remember
there are no negative-weight cycles).

Specifically, here is pseudocode for the algorithm. We will use d[v] [i] to denote the length of the
shortest path from v to ¢t that uses i or fewer edges (if it exists) and infinity otherwise (“d” for
“distance”). Also, for convenience we will use a base case of ¢ = 0 rather than i = 1.

Bellman-Ford pseudocode:
initialize d[v][0] = infinity for v != t. d[t][i]=0 for all i.
for i=1 to n-1:

for each v != t:
dlv][i] = minE (len(v,x) + d[x][i-1]1)
v,T)€E

For each v, output d[v][n-1].

Try it on the above graph!

We already argued for correctness of the algorithm. What about running time? The min operation
takes time proportional to the out-degree of v. So, the inner for-loop takes time proportional to
the sum of the out-degrees of all the nodes, which is O(m). Therefore, the total time is O(mn).

So far we have only calculated the lengths of the shortest paths; how can we reconstruct the paths
themselves? One easy way is (as usual for DP) to work backwards: if you're at vertex v at distance
d[v] from ¢, move to the neighbor z such that d[v] = d[z] 4 len(v, z). This allows us to reconstruct
the path in time O(m + n) which is just a low-order term in the overall running time.

3 All-pairs Shortest Paths

Say we want to compute the length of the shortest path between every pair of vertices. This is
called the all-pairs shortest path problem. If we use Bellman-Ford for all n possible destinations ¢,
this would take time O(mn?). We will now see two alternative Dynamic-Programming algorithms
for this problem: the first uses the matrix representation of graphs and runs in time O(n3logn);
the second, called the Floyd- Warshall algorithm uses a different way of breaking into subproblems
and runs in time O(n?).

3.1 All-pairs Shortest Paths via Matrix Products
Given a weighted graph G, define the matrix A = A(G) as follows:

e Ali,i] =0 for all 7.



e If there is an edge from i to j, then A[i, j] = len(i, j).

e Otherwise, A[i, j] = oco.

Le., Ali, 7] is the length of the shortest path from i to j using 1 or fewer edges. Now, following the
basic Dynamic Programming idea, can we use this to produce a new matrix B where B3, j| is the
length of the shortest path from 7 to j using 2 or fewer edges?

Answer: yes. Bli,j] = ming(A[i, k] + A[k, j]). Think about why this is true!

Le., what we want to do is compute a matrix product B = A x A except we change “*” to “+”
and we change “+” to “min” in the definition. In other words, instead of computing the sum of
products, we compute the min of sums.

What if we now want to get the shortest paths that use 4 or fewer edges? To do this, we just need
to compute C' = B x B (using our new definition of matrix product). IL.e., to get from i to j using
4 or fewer edges, we need to go from i to some intermediate node k using 2 or fewer edges, and
then from k to j using 2 or fewer edges.

So, to solve for all-pairs shortest paths we just need to keep squaring O(logn) times. Each matrix
multiplication takes time O(n?) so the overall running time is O(n3logn).

3.2 All-pairs shortest paths via Floyd-Warshall

Here is an algorithm that shaves off the O(logn) and runs in time O(n?). The idea is that instead of
increasing the number of edges in the path, we’ll increase the set of vertices we allow as intermediate
nodes in the path. In other words, starting from the same base case (the shortest path that uses no
intermediate nodes), we’ll then go on to considering the shortest path that’s allowed to use node 1
as an intermediate node, the shortest path that’s allowed to use {1,2} as intermediate nodes, and
SO on.

// After each iteration of the outside loop, A[i] [j] = length of the
// shortest i->j path that’s allowed to use vertices in the set 1..k
for k = 1 to n do:
for each i,j do:
Alil[3] = minC A[i1 (3], (ALil[k] + ALkI[31);

Le., you either go through node k or you don’t. The total time for this algorithm is O(n3). What’s
amagzing here is how compact and simple the code is!

4 Longest Common Subsequence

[If we have time, we’ll do this today, otherwise next lecture]

Definition 1 The Longest Common Subsequence (LCS) problem is as follows. We are given
two strings: string S of length n, and string T of length m. Our goal is to produce their longest
common subsequence: the longest sequence of characters that appear left-to-right (but not necessarily
in a contiguous block) in both strings.

For example, consider:



S = ABAZDC
T = BACBAD

In this case, the LCS has length 4 and is the string ABAD. Another way to look at it is we are finding
a 1-1 matching between some of the letters in S and some of the letters in T" such that none of the
edges in the matching cross each other.

For instance, this type of problem comes up all the time in genomics: given two DNA fragments,
the LCS gives information about what they have in common and the best way to line them up.

Let’s now solve the LCS problem using Dynamic Programming. As subproblems we will look at
the LCS of a prefix of S and a prefix of T', running over all pairs of prefixes. For simplicity, let’s
worry first about finding the length of the LCS and then we can modify the algorithm to produce
the actual sequence itself.

So, here is the question: say LCS[i, j] is the length of the LCS of S[1..i] with T'[1..j]. How
can we solve for LCS[1i,j] in terms of the LCS’s of the smaller problems?

Case 1: what if S[i] # T'[j]7 Then, the desired subsequence has to ignore one of S[i] or T[j] so we
have:
LCS[4, j] = max(LCS[i — 1, j], LCS[i, j — 1]).

Case 2: what if S[i]| = T'[j]7 Then the LCS of S[1..i] and T'[1..j] might as well match them up.
For instance, if I gave you a common subsequence that matched S[i] to an earlier location in
T, for instance, you could always match it to T'[j] instead. So, in this case we have:

LCS[i,j] =14+ LCS[i —1,j — 1].

So, we can just do two loops (over values of i and j) , filling in the LCS using these rules. Here’s
what it looks like pictorially for the example above, with .S along the leftmost column and 7" along
the top row.

B A C B A D
AjoO 1 1 1 1 1
Bj1 1 1 2 2 2
A1l 2 2 2 3 3
Zz|1 2 2 2 3 3
Dj1 2 2 2 3 4
ci1 2 3 3 3 4

We just fill out this matrix row by row, doing constant amount of work per entry, so this takes
O(mn) time overall. The final answer (the length of the LCS of S and T') is in the lower-right
corner.

How can we now find the sequence? To find the sequence, we just walk backwards through
matrix starting the lower-right corner. If either the cell directly above or directly to the right
contains a value equal to the value in the current cell, then move to that cell (if both to, then chose
either one). If both such cells have values strictly less than the value in the current cell, then move
diagonally up-left (this corresponts to applying Case 2), and output the associated character. This
will output the characters in the LCS in reverse order. For instance, running on the matrix above,
this outputs DABA.



