
TTIC 31010 / CMSC 37000 - Algorithms January 29, 2019
Lecture #7 last changed: January 25, 2019

1 Overview

In these next two lectures we are going to talk about an important algorithmic problem called the
Network Flow Problem. Network flow is important because it can be used to express a wide variety
of different kinds of problems. So, by developing good algorithms for solving network flow, we
immediately will get algorithms for solving many other problems as well. In Operations Research
there are entire courses devoted to network flow and its variants. Topics in today’s lecture include:

• The definition of the network flow problem

• The basic Ford-Fulkerson algorithm

• The maxflow-mincut theorem

• The bipartite matching problem

2 The Network Flow Problem

We begin with a definition of the problem. We are given a directed graph G, a start node s, and a
sink node t. Each edge e in G has an associated non-negative capacity c(e), where for all non-edges
it is implicitly assumed that the capacity is 0. For example, consider the graph in Figure 1 below.

2

4

3

3

2

4

1
2

CA

B D

S
T

Figure 1: A network flow graph.

Our goal is to push as much flow as possible from s to t in the graph. The rules are that no edge
can have flow exceeding its capacity, and for any vertex except for s and t, the flow in to the vertex
must equal the flow out from the vertex. That is,

Capacity constraint: On any edge e we have f(e) ≤ c(e).

Flow conservation: For any vertex v 6∈ {s, t}, flow in equals flow out:
∑

u f(u, v) =
∑

u f(v, u).

Subject to these constraints, we want to maximize the total flow into t. For instance, imagine we
want to route message traffic from the source to the sink, and the capacities tell us how much
bandwidth we’re allowed on each edge.

1



2[2]

4[3]

2

4[3]
3[3]

1[1]

2[2]

3[3]

CA

B D

S
T

Figure 2: A network flow graph with positive flow shown using “capacity[flow]” notation.

E.g., in the above graph, what is the maximum flow from s to t? Answer: 5. Using “capacity[flow]”
notation, the positive flow looks as in Figure 2. Note that the flow can split and rejoin itself.

How can you see that the above flow was really maximum? Notice, this flow saturates the a → c
and s → b edges, and, if you remove these, you disconnect t from s. In other words, the graph
has an “s-t cut” of size 5 (a set of edges of total capacity 5 such that if you remove them, this
disconnects the sink from the source). The point is that any unit of flow going from s to t must
take up at least 1 unit of capacity in these pipes. So, we know we’re optimal.

We just argued that in general, the maximum s-t flow ≤ the capacity of the minimum s-t cut.1

An important property of flows, that we will prove as a byproduct of analyzing an algorithm for
finding them, is that the maximum s-t flow is in fact equal to the capacity of the minimum s-t cut.
This is called the Maxflow-Mincut Theorem. In fact, the algorithm will find a flow of some value k
and a cut of capacity k, which will be proofs that both are optimal!

To describe the algorithm and analysis, it will help to be a bit more formal about a few of these
quantities.

Definition 1 An s-t cut is a set of edges whose removal disconnects t from s. Or, formally, a cut
is a partition of the vertex set into two pieces A and B where s ∈ A and t ∈ B. (The edges of the
cut are then all edges going from A to B).

Definition 2 The capacity of a cut (A,B) is the sum of capacities of edges in the cut. Or, in
the formal viewpoint, it is the sum of capacities of all edges going from A to B. (Don’t include the
edges from B to A.)

Definition 3 It will also be mathematically convenient for any edge (u, v) to define f(v, u) =
−f(u, v). This is called skew-symmetry. (We will think of flowing 1 unit on the edge from u to
v as equivalently flowing −1 units on a back-edge from v to u.)

The skew-symmetry convention makes it especially easy to add two flows together. For instance,
if we have one flow with 1 unit on the edge (c, b) and another flow with 2 units on the edge (b, c),
then adding them edge by edge does the right thing, resulting in a net flow of 1 unit from b to c. In
fact, let’s now formally define the sum of two flows. If f and g are flows, then h = f + g is defined
as h(u, v) = f(u, v)+g(u, v) for all pairs (u, v). Notice that if f and g satisfy flow-conservation and
skew-symmetry, then h does too. In fact, using skew-symmetry, if we wanted we could rewrite the
flow conservation condition as ∀v 6∈ {s, t},

∑
u f(u, v) = 0, since the total flow out of a node will

always be the negative of the total flow into a node.

How can we find a maximum flow and prove it is correct? Here’s a very natural strategy: find a
path from s to t and push as much flow on it as possible. Then look at the leftover capacities (an
important issue will be how exactly we define this, but we will get to it in a minute) and repeat.

1This immediately implies the value of any s-t flow ≤ maximum s-t flow ≤ minimum s-t cut ≤ any s-t cut.

2



Continue until there is no longer any path with capacity left to push any additional flow on. Of
course, we need to prove that this works: that we can’t somehow end up at a suboptimal solution by
making bad choices along the way. This approach, with the correct definition of “leftover capacity”,
is called the Ford-Fulkerson algorithm.

3 The Ford-Fulkerson algorithm

The Ford-Fulkerson algorithm is simply the following: while there exists an s → t path P of
positive residual capacity (defined below), push the maximum possible flow along P . By the way,
these paths P are called augmenting paths, because you use them to augment the existing flow.

Residual capacity is just the capacity left over given the existing flow, where we will use skew-
symmetry to capture the notion that if we push f units of flow on an edge (u, v), this increases our
ability to push flow on the back-edge (v, u) by f .

Definition 4 Given a flow f in graph G, the residual capacity cf (u, v) is defined as cf (u, v) =
c(u, v)− f(u, v), where recall that by skew-symmetry we have f(v, u) = −f(u, v).

For example, given the flow in Figure 2, the edge (s, a) has residual capacity 1. The back-edge
(a, s) has residual capacity 3, because its original capacity was 0 and we have f(a, s) = −3.

Definition 5 Given a flow f in graph G, the residual graph Gf is the directed graph with all
edges of positive residual capacity, each one labeled by its residual capacity. Note: this may include
back-edges of the original graph G.

Let’s do an example. Consider the graph in Figure 1 and suppose we push two units of flow on the
path s→ b→ c→ t. We then end up with the following residual graph:

2

4

3

3

2

4

3

CA

B D

S
T

Figure 3: Residual graph resulting from pushing 2 units of flow along the path s-b-c-t in the graph in
Figure 1.

If we continue running Ford-Fulkerson, we see that in this graph the only path we can use to
augment the existing flow is the path s→ a→ c→ b→ d→ t. Pushing the maximum 3 units on
this path we then get the next residual graph, shown in Figure 4. At this point there is no longer
a path from s to t so we are done.

We can think of Ford-Fulkerson as at each step finding a new flow (along the augmenting path) and
adding it to the existing flow, using the definition of adding flows we gave before. The definition of
residual capacity ensures that the flow found by Ford-Fulkerson is legal (doesn’t exceed the capacity
constraints in the original graph). We now need to prove that in fact it is maximum. We’ll worry
about the number of iterations it takes and how to improve that later.

Note that one nice property of the residual graph is that it means that at each step we are left with
same type of problem we started with. So, to implement Ford-Fulkerson, we can use any black-box
path-finding method (e.g., DFS).

3



2

1

3

3

2

33

1
3

CA

B D

S
T

Figure 4: Residual graph resulting from pushing 3 units of flow along the path s-a-c-b-d-t in the graph
in Figure 3.

Theorem 6 The Ford-Fulkerson algorithm finds a maximum flow.

Proof: Let’s look at the final residual graph. This graph must have s and t disconnected by
definition of the algorithm. Let A be the component containing s and B be the rest. Let c be the
capacity of the (A,B) cut in the original graph — so we know we can’t do better than c.

The claim is that we in fact did find a flow of value c (which therefore implies it is maximum).
Here’s why: let’s look at what happens to the residual capacity of the (A,B) cut after each iteration
of the algorithm. Say in some iteration we found a path with k units of flow. Then, even if the
path zig-zagged between A and B, every time we went from A to B we added k to the flow from A
to B and subtracted k from the residual capacity of the (A,B) cut, and every time we went from
B to A we took away k from this flow and added k to the residual capacity of the cut2; moreover,
we must have gone from A to B exactly one more time than we went from B to A. So, the residual
capacity of this cut went down by exactly k. So, the drop in capacity is equal to the increase in
flow. Since at the end the residual capacity is zero (remember how we defined A and B) this means
the total flow is equal to c.

So, we’ve found a flow of value equal to the capacity of this cut. We know we can’t do better, so
this must be a max flow, and (A,B) must be a minimum cut.

Notice that in the above argument we actually proved the nonobvious maxflow-mincut theorem:

Theorem 7 In any graph G, for any two vertices s and t, the maximum flow from s to t equals
the capacity of the minimum (s, t)-cut.

We have also proven the integral-flow theorem: if all capacities are integers, then there is a maximum
flow in which all flows are integers. This seems obvious, but it turns out to have some nice and
non-obvious implications.

In terms of running time, if all capacities are integers and the maximum flow is F , then the algorithm
makes at most F iterations (since each iteration pushes at least one more unit of flow from s to t).
We can implement each iteration in time O(m + n) using DFS. So we get the following result.

Theorem 8 If the given graph G has integer capacities, Ford-Fulkerson runs in time O(F (m+n))
where F is the value of the maximum s-t flow.

In the next lecture we will look at methods for reducing the number of iterations the algorithm
can take. For now, let’s see how we can use an algorithm for the max flow problem to solve other
problems as well: that is, how we can reduce other problems to the one we now know how to solve.

2This is where we use the fact that if we flow k units on the edge (u, v), then in addition to reducing the residual
capacity of the (u, v) edge by k we also add k to the residual capacity of the back-edge (v, u).

4



4 Bipartite Matching

Say we wanted to be more sophisticated about assigning groups to homework presentation slots.
We could ask each group to list the slots acceptable to them, and then write this as a bipartite
graph by drawing an edge between a group and a slot if that slot is acceptable to that group. For
example:

A

B

C

1

2

3

group slot

This is an example of a bipartite graph: a graph with two sides L and R such that all edges go
between L and R. A matching is a set of edges with no endpoints in common. What we want here
in assigning groups to time slots is a perfect matching: a matching that connects every point in
L with a point in R. For example, what is a perfect matching in the bipartite graph above?

More generally (say there is no perfect matching) we want a maximum matching: a matching
with the maximum possible number of edges. We can solve this as follows:

Bipartite Matching:

1. Set up a fake “start” node s connected to all vertices in L. Connect all vertices in R to a fake
“sink” node T . Orient all edges left-to-right and give each a capacity of 1.

2. Find a max flow from s to t using Ford-Fulkerson.

3. Output the edges between L and R containing nonzero flow as the desired matching.

This finds a legal matching because edges from R to t have capacity 1, so the flow can’t use two
edges into the same node, and similarly the edges from s to L have capacity 1, so you can’t have
flow on two edges leaving the same node in L. It’s a maximum matching because any matching
gives you a flow of the same value: just connect s to the heads of those edges and connect the tails
of those edges to t. (So if there was a better matching, we wouldn’t be at a maximum flow).

What about the number of iterations of path-finding? This is at most the number of edges in the
matching since each augmenting path gives us one new edge.

Let’s run the algorithm on the above example. Notice a neat fact: say we start by matching A to
1 and C to 3. These are bad choices, but the augmenting path automatically undoes them as it
improves the flow!

Matchings come up in many different problems like matching up suppliers to customers, or cell-
phones to cell-stations when you have overlapping cells. They are also a basic part of other algo-
rithmic problems.

5


