The Power of Asymmetry in Binary Hashing

Behnam Neyshabur
TTI-Chicago

Payman Yadollahpour
TTI-Chicago

Yury Makarychev
TTI-Chicago

Ruslan Salakhutdinov
University of Toronto

Nathan Srebro
TTI-Chicago, Technion

The Power of Asymmetry in Binary Hashing

Parametric Mappings

- Use \(f(x) = \phi(x) \) in some (typically parametric) family \(\phi \in \mathcal{F} \)
 - Ex. \(\phi(x) = \sin(x) \), \(x \in \mathbb{R} \)
 - Could be more complex e.g. multilayer network, kernel-based, etc.

- Why metric \(f \) is \(\phi \in \mathcal{F} \)?
 - Generalisation: learn \(f \) using objects \(x_1, \ldots, x_n \), then use new objects \(x_{n+1}, \ldots, x_{2n} \) to query
 - Comparison of representation

- Asymmetric extension
 - \(\| x_1 - x_2 \|_A \neq \| x_1 - x_2 \|_B \)
 - learns \(A \), \(B \) from training data (sets of database objects)
 - Hash course using \(\phi \)
 - Hash database objects using \(\phi \)

Optimisation
- Goal: tends to highly asymmetry problem with easy asymptotics
- Make observability objective a sub-set of outputting a stage which can be conditionals

Empirical Results

- For query \(y \), use \(g(y) = \phi(y) \) to approximate \(\sin(x, y) \) e.g. find \(y \) in database with small \(g(y) \)

- Learn parametric \(\phi \) and arbitrary vectors \(x_1, \ldots, x_n \) such that on \(x_{n+1}, \ldots, x_{2n} \)
 - \(\sin(x, y) = g(y) \cdot \phi(x) \)

Asymmetric hashes can enable better approximation with shorter bit-length!