The Power of Asymmetry in Binary Hashing

Behnam Neyshabur Yury Makarychev
Toyota Technological Institute at Chicago

Russ Salakhutdinov Nati Srebro
University of Toronto Technion/TTIC
Search by Image
Search by Image

\[f(\text{image}) = 0110100011110 \]

Database of hashed image patches

- \(1010100111100 \)
- \(1011101001101 \)
- \(0001111001001 \)
- \(0110110010110 \)

\[f(\text{image}) = 0110110010110 \]

"Brompton"

\[f(\text{image}) = 0110110010110 \]
Binary Hashing

\[\{\pm 1\}^k \cup \{\pm 1\}^k \cup 0/1 \]

\[\left[d_{\text{hamming}}(f(x), f(x')) < \theta \right] \approx \text{Sim}(x, x') \]
Binary Hashing

\[\{\pm 1\}^k \cup \{\pm 1\}^k \cup 0/1 \]

\[d_{\text{hamming}}(f(x), g(x')) < \theta \] \approx \text{Sim} (x, x')

Even if \(\text{Sim}(x, x') \) is symmetric and “well behaved”:

- Use \(f(x) \) to hash objects in the database
- Use \(g(x) \) to hash queries

- No additional memory, communication or computation to perform query
- No increase in hash table size or lookup complexity
- We will show: shorter bit length; higher accuracy
Outline

- **Theoretical Observation:**
 Capturing similarity with arbitrary binary hashes

- **Empirical Investigation:**
 Database lookup with linear threshold hashes
Capturing Similarity with an Arbitrary Binary Code

- Given similarity $S(x,x')$ over objects $\mathcal{X} = \{x_1, x_2, \ldots, x_n\}$, want mapping $f: \mathcal{X} \rightarrow \pm 1^k$, s.t.
 $$S_{ij} = S(x_i,x_j) = [d(f(x_i), f(x_j)) < \theta]$$
- $f(\cdot)$ arbitrary, specified by u_1, \ldots, u_n, $u_i = f(x_i)$
- What is shortest k possible?
 $$\exists \ u_1, \ldots, u_n \in \pm 1^k, \ \theta \in \mathbb{R} \ \ \ \forall_{ij} S_{ij} = [d(u_i, u_j) < \theta]$$

- What is shortest k if we allow asymmetry?
 $$\exists \ u_1, \ldots, u_n, v_1, \ldots, v_n \in \pm 1^k, \ \theta \in \mathbb{R} \ \ \ \forall_{ij} S_{ij} = [d(u_i, v_j) < \theta]$$
 $$v_j = g(x_j)$$
The Power of Asymmetry for Arbitrary Binary Hashes

Theorem: For any r, there exists a set of points in Euclidean space, s.t. to capture

$$S(x_i,x_j) = [|x_i-x_j| < 1]$$

using a symmetric binary hash we need $k_{sym} \geq 2^{r-1}$ bits, but using an asymmetric hash, we need only $k_{asym} \leq 2r$ bits.

$$X^T X = \frac{1}{n} \begin{bmatrix} n & -1 & \cdots & -1 & 1 & 1 & \cdots & 1 \\ -1 & n & \cdots & -1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n & 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 & n & -1 & \cdots & -1 \\ 1 & 1 & \cdots & 1 & -1 & n & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 & -1 & -1 & \cdots & n \end{bmatrix}$$

$n=2^r$
Binary Hashing as Matrix Factorization

\[d_{\text{hamming}}(u_i, u_j) < \theta \] \approx \text{Sim}(x, x')
Binary Hashing as Matrix Factorization

\[
[\langle u_i, u_j \rangle < \theta] \approx \text{Sim}(x,x')
\]

Given similarity matrix \(S \in \{\pm 1\}^{n \times n} :

\[
\begin{align*}
\min k & \quad \text{s.t.} \quad U \in \{\pm 1\}^{k \times n} \quad \text{symmetric} \\
\quad \text{sign}(U^T U - \theta) &= S
\end{align*}
\]

\[
\begin{align*}
\min k & \quad \text{s.t.} \quad U,V \in \{\pm 1\}^{k \times n} \quad \text{asymmetric} \\
\quad \text{sign}(U^T V - \theta) &= S
\end{align*}
\]
Bonus: Approximation Algorithm via SDP Relaxation

Given similarity matrix $S \in \{\pm 1\}^{n \times n}$:

$$\min k \quad \text{s.t.} \quad U \in \{\pm 1\}^{k \times n} \quad \text{symmetric}$$
$$\text{sign}(Y - \theta) = S$$
$$Y = U^T U$$

$$\min k \quad \text{s.t.} \quad U,V \in \{\pm 1\}^{k \times n} \quad \text{asymmetric}$$
$$\text{sign}(Y - \theta) = S$$
$$Y = U^T V$$
Bonus: Approximation Algorithm via SDP Relaxation

Given similarity matrix $S \in \{\pm 1\}^{n \times n}$:

\[
\begin{align*}
\min k \quad & \text{s.t.} \quad \|U_i\| \leq \sqrt{k} & \text{symmetric} \\
& S_{ij}(Y_{ij} - \theta) \geq 1 \\
& Y = U^T U
\end{align*}
\]

\[
\begin{align*}
\min k \quad & \text{s.t.} \quad \|U_i\|, \|V_j\| \leq \sqrt{k} & \text{asymmetric} \\
& S_{ij}(Y_{ij} - \theta) \geq 1 \\
& Y = U^T V
\end{align*}
\]
Bonus: Approximation Algorithm via SDP Relaxation

Given similarity matrix $S \in \{-1, 1\}^{n \times n}$:

\[
\begin{align*}
\min & \quad \|Y\|_{\max} \\
\text{s.t.} & \quad S_{ij}(Y_{ij} - \theta) \geq 1 \\
& \quad Y \succeq 0
\end{align*}
\]

\[
\min \|Y\|_{\max} \quad \text{s.t.} \quad S_{ij}(Y_{ij} - \theta) \geq 1
\]

\[
\|Y\|_{\max}^2 = \min_{Y = LR} \|L\|_{\infty,2} \|R\|_{\infty,2}
\]
SDP Relaxation—Rounding

\[\|Y\|_{\text{max}}^2 = \min_{Y=LR} \|L\|_{\infty,2} \|R\|_{\infty,2} \]

Using random vectors \(z_1, \ldots, z_k \):

\[u_i = \text{sign}(L_i^T z_i) \]
\[v_i = \text{sign}(R_i^T z_i) \]

\[k = O((k_{\text{opt}})^2 \log n) \]
The Power of Asymmetry for Arbitrary Binary Hashes

Theorem: For any r, there exists a set of points in Euclidean space, s.t. to capture

$$S(x_i, x_j) = [|x_i - x_j| < 1]$$

using a symmetric binary hash we need $k_{\text{sym}} \geq 2^{r-1}$ bits, but using an asymmetric hash, we need only $k_{\text{asym}} \leq 2r$ bits.

$$X^T X = \frac{1}{n} \begin{bmatrix} n & -1 & \cdots & -1 & 1 & 1 & \cdots & 1 \\ -1 & n & \cdots & -1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n & 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 & n & -1 & \cdots & -1 \\ 1 & 1 & \cdots & 1 & -1 & n & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 & -1 & -1 & \cdots & n \end{bmatrix}$$

$n = 2^r$
Arbitrary Binary Hashes: Empirical Evaluation

10D Uniform

- Symmetric
- Asymmetric

LabelMe

- Symmetric
- Asymmetric
Parametric Mappings

• \(f(x) = \phi_F(x) \) has some parametric form
 – E.g. \(\phi_F(x) = \text{sign}(Fx), \ F \in \mathbb{R}^{k \times d} \)
 – Could be more complex, e.g. multi-layer network, kernel based, etc.

• Why restrict \(f(\cdot) \)?
 – Generalization: learn \(F \) using objects \(x_1, \ldots, x_n \), then receive new objects \(x \) as queries
 – Compactness of representation

• Asymmetric extension:
 \[S(x,x') \approx \left[d(\phi_F(x), \phi_G(x')) < \theta \right] \]
 – Learn params \(F, G \) from training data (= pairs of database objects)
 – Hash database objects using \(\phi_G \)
 – Hash queries using \(\phi_F \)
A bit on optimization

• Loss function : $L(\phi_F(x), \phi_G(x'), S(x,x'))$

• Parameters F, G

• For $\phi_F(x) = \text{sign}(Fx)$:
 – Updating single row of F (responsible for single bit in the hashing) entails solving a single weighted binary classification problem
Empirical Results using Asymmetric Linear Threshold Hashes

Comparison with learning symmetric linear threshold hashes using Minimum Loss Hashing [Norouzi Fleet ICML 2011]

Training on all pairs of database objects, average precision measured on held out query objects.
Even More Power:
Searching a Static Database

\[S(x_{\text{query}}, x_i) \approx \left[d(f(x_{\text{query}}), g(x_i)) < \theta \right] \]
Even More Power: Searching a Static Database

\[S(x_{\text{query}}, x_i) \approx \left[d(\phi_F(x_{\text{query}}), v_i) \right) < \theta \]

- No need to generalize: only used on database objects
- Stored in database hash, no need for compactness
- Can use arbitrary mapping \(g(x_i) = v_i \)

- Learn parametric \(\phi_F(\cdot) \) and arbitrary vectors \(v_1, \ldots, v_n \) such that on \(x_1, \ldots, x_n \):
 \[S(x_i, x_j) \approx \left[d(\phi_F(x_i), v_j) \right) < \theta \]

- For query \(x \), use \(d(\phi_F(x), v_j) \) to aprox \(S(x, x_j) \)
e.g. find \(v_j \) in DB with small \(d(\phi_F(x), v_j) \)
Empirical Results using Linear-Threshold-to-Arbitrary Hashes

- **LabelMe**
 - Symmetric (MLH)
 - Asym Lin:Lin
 - Asym Lin:Arb

- **MNIST**
 - Lin:Arb 64bits
 - MLH 64bits
 - MLH 256bits

- **Recall**
 - Lin:Arb 64bits
 - MLH 64bits
 - MLH 256bits
Summary

• Binary Hashing
 – Fast similarity approximation
 – Approximate retrieval
 – Nearest Neighbor search
 – Locality Sensitive Hashing (LSH)

• In many applications: want short bit-length
 – Smaller hash tables
 – Super-fast hamming distance eval on short words
 – Fewer bits to transmit

• **Asymmetric hashes can enable better approximation with shorter bit-length!**
 – Even if similarity function symmetric and well-behaves
 – In most applications: no additional computational or memory costs