Homework set 1

Note: the homework sets are not for submission. They are designed to help you prepare for the quizzes.

1. Consider the following variation of the Interval Scheduling Problem. You have a processor that can operate 24 hours a day, every day. People submit requests to run daily jobs on the processor. Each job j comes with a start time s_j and an end time t_j. If the job is accepted, then it must run during the time interval $[s_j, t_j)$ every day. Notice however that it is possible that s_j occurs before midnight, and t_j after midnight. Given the input set J of jobs, the goal is to accept as many jobs as possible, subject to the constraint that a processor can run at most one job at a time. Give an efficient algorithm to solve this problem and analyze its running time.

2. We are given a set J of n jobs. The execution of each job consists of two phases. First, it must be pre-processed on a supercomputer, and then it must be finished on a regular computer. Each job j is associated with parameters $p_1(j)$ - the processing time it requires on the supercomputer, and $p_2(j)$ - the processing time it requires on a regular computer. We only have one supercomputer, which can only execute one job at a time. However, we have an unbounded number of regular computers, that can execute any number of jobs simultaneously. Given a schedule S, the finish time $C(S)$ of the schedule is the earliest time by which all the jobs have been completed. Our goal is to find a schedule S of all jobs, with minimum finish time $C(S)$. Design an efficient algorithm, prove its correctness, and analyze the running time.

3. We are given a set of n points $X = \{x_1, \ldots, x_n\}$ on the real line. Design an algorithm that finds a minimum-cardinality set of unit-length intervals, that cover all points in X. Prove the algorithm’s correctness and analyze its running time.

4. In this problem we consider an extension of the activity selection problem to multiple machines. Suppose we are given a set J of n jobs, where each job $j \in J$ is associated with an interval $[s_j, f_j)$ of time during which it needs to be executed. We are also given k machines M_1, \ldots, M_k, each of which can execute at most one job at any given time. That is, if two jobs j, j' are assigned to the same machine M_i, then their intervals $[s_j, f_j), [s_{j'}, f_{j'})$ cannot overlap.

 (a) Given any collection I of intervals, and any point t, we say that the depth of t is the total number of intervals in I containing t, $d(t) = |\{I \in I \mid t \in I\}|$. The depth of the set I of intervals is defined to be the maximum depth of any point t. Prove that the set J of jobs can be scheduled on k machines iff the depth of the set of intervals associated with the jobs in J is at most k. Give an efficient algorithm for computing the schedule, prove its correctness and analyze its running time.

 (b) Assume now that no two jobs in J have the same finish time f_j, and assume that we are given two machines, that is, $k = 2$ (but we do not have any guarantee on the depth of the set of intervals associated with the jobs in J). Design an efficient algorithm that schedules the maximum possible number of jobs in J on two machines. Prove its correctness and analyze its running time.

5. Suppose we have an alphabet with 2^k characters, and a string in which all characters are almost equally common. That is, for all $x, y \in \Sigma$, $f(x) \leq f(y) < 2f(x)$. How will the Huffman tree look like? What is its cost? Prove your answer.