Abstract Syntax
- an expression is a tree with every node labeled with a character string

Concrete Syntax
- a character string

Variables
- strings are divided into "variable" and "non-variables".

A inference rule has
1) A sequence of "antecedent"
2) A conclusion expression

\[R = \{ f(x), f(g(x,x)) \} \]
\(\text{rule(ants(f(x)), f(g(x,x)))} \)
\(\vdash_R f(a) \)
\(\vdash_R f(g(a,a)) \)
\(\vdash_R f(g(g(a,a), g(a,a))) \)

A substitution is a mapping from variables to expressions.
If \(\sigma \) is a substitution, then we write \(\sigma(x) \) for the expression \(\sigma \) assigns to variable \(x \).
If \(e \) is an expression, then \(\sigma(e) \) is the result of replacing each variable \(x \) in \(e \) with \(\sigma(x) \).

Consider a rule

\[
\begin{array}{c}
A_1 \\
\vdots \\
A_n \\
\hline \\
C
\end{array}
\]

consider a substitution \(\sigma \).
If

\[
\begin{array}{c}
A_1 \\
\vdots \\
A_n \\
\hline \\
C
\end{array}
\]

is in \(R \) and \(\sigma \) is a substitution and \(\vdash_R \sigma(A_1) \ldots \sigma(A_n) \), then \(\vdash_R \sigma(C) \).
ex) \(\vdash_R f(a) \quad \sigma(x) = a \quad \sigma(x) = g(a, a) \)
\(\vdash_R f(g(a, a)) \quad \vdash_R f(g(g(a, a), g(a, a))) \)