Symbolic Computation: Course Outline

David McAllester

December 29, 2009

• Inference as a model of computation
 – Inference rules and inference relations. Transitive closure of a graph.
 – Turing universality of inference rules.

• Foundations of Mathematics
 – Boolean expressions. Syntax, semantics, inference rules, soundness and completeness.
 – Type variables, pairing, and recursive types. An implementation of the natural numbers.
 – Existential types as an abstraction barrier. The natural numbers with the implementation hidden. The Integers.
 – Functions. Equality on functions. The ordered field of real numbers (with implementation hidden). The field of complex numbers.
 – Vector Spaces. The dual of a vector space.
 – Automorphisms: The symmetry group of an abstract object.
 – Parametricity. The non-existence of a natural isomorphism between a vector space and its dual.
 – Type isomorphism: the many ways to define a group.

• A survey of existential types.
 – Groups and permutation groups. Every group is isomorphic to a permutation group.
 – Boolean Algebras and Fields of sets. Every Boolean algebra is isomorphic to a field of sets.
– Hilbert spaces. Every separable Hilbert space is isomorphic to \(\ell_2 \).
– Inner product spaces. Special relativity. Physical Units.
– The type theory of PCA and CCA.
– Manifolds.
– Measure Theory.

• Symbolic Algebra
 – Polynomial Arithmetic
 – Groebner Bases
 – Automatic Differentiation
 – Symbolic Integration

• Type Theory and Natural Language
 – Montague Grammar and Montagovian Logic
 – Modalities of Natural Language (possibility, likelihood, knowledge, ability, and permission)
 – Tense and Aspect