
A GPU-Tailored Approach for Training Kernelized SVMs
Andrew Cotter, Nathan Srebro and Joseph Keshet {cotter,nati,jkeshet}@ttic.edu

8. Runtime Breakdown

6. The Problem of Sparsity

9. Speedups

When calculating kernel inner products between a 
set of sparse training vectors and dense working set 
vectors, adjacent threads will not access adjacent 
memory locations.
As a result, memory cannot be accessed using 
coalesced reads, dramatically hurting performance. 
This problem would only be worsened if the 
working set vectors, like the training vectors, were 
sparse.
Due to the difficulty of accessing sparse vectors in a 
coalesced manner, previous GPU SVM optimizers 
have treated all input vectors as dense.

Our solution is to cluster the data by sparsity 
pattern, using a simple greedy heuristic.
As illustrated on the left, when adjacent threads 
work on chunks of vectors with the same sparsity 
pattern, they only access adjacent memory 
locations, permitting memory accesses to be 
coalesced.
This approach is motivated by the observation that 
on many sparse machine learning datasets, certain 
features will be more common than others, and 
certain features will tend to co-occur, resulting in 
distinct training vectors often having similar 
sparsity patterns.

3. GPU Challenges1. Summary
We describe a method for efficiently training binary and multiclass kernelized 
SVMs on a Graphics Processing Unit (GPU).

• Supports both binary classification and multiclass objectives.
• Applies to a broad range of kernels, including the popular Gaussian kernel.
• Handles sparse data through the use of a novel clustering technique.
• Designed for GPU: different priorities than CPU.

We created an easy-to-use, freely-available library.
• Supports C, Matlab and command-line interfaces.
• Orders of magnitude faster than CPU optimizers.
• Up to several times faster than previous GPU SVM optimizers.

2. SVM Objective 4. Algorithm Overview

7. Experimental Setup5. Heuristics

1

2

3

4

5

6

7

Sparse Vectors Working Vectors

1

7

3

6

7

1

2

5

6

2

3

4

6

7

where:

Let xi be a list of training vectors, with associated labels yi. 
Let K(x,x') be a kernel function. The binary SVM objective is:

Most kernel SVM solvers work in the dual:

A prototypical dual-decomposition kernel SVM optimizer 
will repeatedly perform the following steps:

1. Choose a "working set" of k training points.
2. Find the dual-optimal values of αi in the working set, 

while holding all other αis fixed.
Performing many inexpensive updates generally leads to 
faster convergence than performing fewer expensive ones. 
Hence, the best-performing CPU-based solvers tend to use 
very small working sets--in the case of SMO (Platt, 1998) and 
LIBSVM (Chang and Lin, 2001), the working set size is 2, 
while SVM-Light (Joachims, 1998) defaults to 10.
The GPU SVM optimizer of Catanzaro et al. (2008) follows 
the lead of SMO and LIBSVM, and uses size-2 working sets.

Optimization on the GPU has different trade-offs than on the CPU:
• The dominant performance consideration, by far, is main 

memory accesses, not computation.
• A key issue is making use of "coalesced" memory accesses: 

accesses to adjacent addresses by adjacent threads can be 
"coalesced" into a single access.
Reducing the number of memory accesses, and making maximal 
use of coalescing, are of the highest importance. Basing the 
design of a GPU SVM optimizer on these concerns leads to 
different choices than are favored by CPU optimizers.

Our algorithm works by repeatedly performing the following steps:
1. On the GPU, heuristically choose a working set.
2. On the CPU, optimize the dual objective restricted to the working set.
3. On the GPU, update the responses ci based on the changed dual variables.

Step 3 is the most expensive step, requiring nk kernel evaluations, where k is the size of the working set.
• Smaller k gives more "bang for the buck"--more progress is made per working set element.
• Larger k gives fewer memory accesses per element: step 3 requires one pass over the training data.
• If k is too large, we can't fully exploit the GPU's cache-like "shared memory".

We found that size-16 working sets give good performance, balancing the above considerations better 
than the smaller sizes preferred on the CPU.

Dual-decomposition based SVM optimizers choose a working set 
heuristically.

• First-order heuristics are based on the first derivatives of 
the dual objective (easily derived from the responses ci).

• Second-order heuristics are based on the first and second 
derivatives.

• The best CPU optimizers use second-order heuristics (Fan 
et al., 2005), which are easily formulated for size-2 working sets.

• For larger working sets, only first-order heuristics seem to 
be practical.
We have found that, on the GPU, the benefit of using larger 
working sets outweighs that of using a second-order heuristic.

We compared our implementation against the following:
• LIBSVM (Chang & Lin, 2001), a CPU implementation using a second-order heuristic.
• GPUSVM (Catanzaro et al. 2008), a LIBSVM-like GPU implementation.
• Crammer & Singer (2001), a CPU multiclass implementation using a first-order 

heuristic.
We tested using both the binary classification and multiclass (where applicable) 
objectives, and a Gaussian kernel. Additional details, including the regularization and 
Gaussian kernel parameters, may be found in our paper.
Our testing machine has an Intel Core i7 920 CPU and NVIDIA Tesla C1060 graphics card.

Availability
http://ttic.uchicago.edu/~cotter/projects/gtsvm

• Matlab, C and command-line interfaces.
• Binary and multiclass classification.
• Gaussian, polynomial and sigmoid kernels built-in.
• Supports sparse data.
• High-performance, and easy to use.

References
• B. Catanzaro, N. Sundaram, and K. Keutzer. Fast support vector machine training 
and classification on graphics processors. In ICML'08, pages 104-111, 2008.
• K. Crammer and Y. Singer. On the algorithmic implementation of multiclass 
kernel-based vector machines. JMLR, 2:265-292, March 2002.
• C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001. 
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
• R.-E. Fan, P.-S. Chen, and C.-J. Lin. Working set selection using second order 
information for training support vector machines. JMLR, 6:1889-1918, 2005.

1

2

3

4

5

6

7

Working Vectors

2

4

5

2

5

7

4

5

7

2

4

7

One Cluster

and the vector of "responses" c is:

20

40

60

80

100

LIBSVM
Crammer & Singer
Catanzaro et al.
Our implementation

Adult Cov1 MNIST TIMIT MNIST TIMIT

Binary Multiclass

Speedups Over CPU Implementations

8 vs. Rest /k/ vs. Rest




