Sequence to Sequence Models and Attention
Encode-Decode Architectures for Machine Translation

In Sutskever et al. (2014) the LSTMs are layered 4 deep.

The input is reversed — “DCBA” is translated to “XYZ”.

[Figure from Luong et al.]
Encode-Decode Architecture for Machine Translation

\[H[0,t] = x[t] \]
\[H[l+1][t+1] = \text{GRU}(H[l+1][t], H[l][t], \Theta[l+1]) \]
\[y[0] = <eos> \]
\[S[l,0] = H[l,T] \]
\[S[l+1][t+1] = \text{GRU}(S[l+1][t], S[l][t], \Psi[l+1]) \]
\[P(y[t+1]) = \text{Softmax } W \begin{bmatrix} e(y[t]) & S[0,t] & \ldots & s[L,t] \end{bmatrix} \]
The Translation Probability Distribution

\[P(y[t+1]) = \text{Softmax } W \left[e(y[t]), S[0,t], \ldots, S[L,t] \right] \]

\[P(XYZ|DCBA) = P(X|DCBA) \ P(Y|DCBDA; X) \ P(Z|DCBA; XY) \]

For the training pair \(DCBA \Rightarrow XYX \) the training loss is

\[\log \frac{1}{P(XYZ \mid DCBA)} \]
Encode-Decode Architecture for Machine Translation

\[H[0,t] = x[t] \]
\[H[l+1][t+1] = \text{GRU}(H[l+1][t], H[l][t], \text{Theta}[l+1]) \]
\[y[0] = \text{<eos>} \]
\[S[l,0] = H[l,T] \]
\[S[l+1][t+1] = \text{GRU}(S[l+1][t], S[l][t], \text{Psi}[l+1]) \]
\[P(y[t+1]) = \text{Softmax} \ W \ [e(y[t]), S[0,t], \ldots, S[L,t]] \]
Greedy Decoding vs. Beam Search

We would like

$$y^* = \arg\max_y P(y|x)$$

A greedy algorithm may do well

$$y_{t+1} = \arg\max_y P(y \mid x, y_1, \ldots, y_t)$$

However a beam search will typically do somewhat better,

$$Y_{t+1} = \text{kbest }_{y} P(y \mid x, Y_1, \ldots, Y_t)$$

Each $y \in Y_t$ is paired with a state vector (Viterbi Algorithm).
Training Details (Sutskever et a. (2014))

We used deep LSTMs with 4 layers, with 1000 cells at each layer and 1000 dimensional word embeddings, with an input vocabulary of 160,000 and an output vocabulary of 80,000.

We used a naive softmax over 80,000 words at each output.

We used batches of 128 sequences for the gradient and divided it by the size of the batch [128].

We used stochastic gradient descent without momentum, with a fixed learning rate of 0.7.

After 5 epochs, we begun halving the learning rate every half epoch. We trained our models for a total of 7.5 epochs.
[We clipped gradients] by scaling [the gradient] when its norm exceeded a threshold. For each training batch, we compute $s = \|g\|^2$ and for $s > 5$ we set $g = 5g/s$.

Different sentences have different lengths. ... To address this problem, we made sure that all sentences within a minibatch were roughly of the same length. [This gave] a 2x speedup.
Training Details

We parallelized our [C++] model using an 8-GPU machine.

Each layer of the LSTM was executed on a different GPU and communicated its activations to the next GPU (or layer) as soon as they were computed.

Our models have 4 layers of LSTMs, each of which resides on a separate GPU.

The remaining 4 GPUs were used to parallelize the softmax, so each GPU was responsible for multiplying by a $1000 \times 20,000$ matrix. [20,000 is $1/4$ of the output vocabulary]

Training took about ten days with this implementation [on a training set of 348M French words and 304M English words].
Attention-Based Translation
BiGRUs

$$\vec{h}_{t+1} = \text{GRU}(\vec{h}_t, x_t, \Theta)$$

$$\vec{h}_{t-1} = \text{GRU}(\vec{h}_t, x_t, \Theta)$$

$$\vec{h}_t = \left[\vec{h}_t, \vec{h}_t \right] \quad ([x, y] \text{ denotes vector concatenation})$$
Basic Sequence to Sequence Model

\[s_0 = \vec{h}_T \]
\[y_0 = \langle \text{eos} \rangle \]

\[P(\cdot | x, y_1, \ldots, y_i) = \text{softmax } W_y [s_i, e(y_i)] \]
\[s_{i+1} = \text{GRU}(s_i, e(y_i), \Theta_s) \]
Adding Attention

\[c_0 = h_T \]
\[s_0 = h_T \]
\[y_0 = <\text{eos}> \]

\[P(\cdot | x, y_1, \ldots, y_i) = \text{softmax } W_y [s_i, e(y_i), c_i] \]
\[s_{i+1} = \text{GRU}(s_i, [e(y_i), c_i], \Theta_s) \]

\[c_{i+1} = \sum_t \alpha_{i,t} h_t \]

\[\alpha_{i+1,t} = \text{softmax } \tanh(W_a [s_i, h_t]) \]
Attention

[Bahdanau, Cho, Bengio (2014)]
Attention in Image Captioning

A woman is throwing a frisbee in a park.

A little girl sitting on a bed with a teddy bear.

Xu et al. ICML 2015
Attention in Image Captioning

A dog is standing on a hardwood floor.

A group of people sitting on a boat in the water.

Xu et al. ICML 2015
Attention in Image Captioning

A stop sign is on a road with a mountain in the background.

A giraffe standing in a forest with trees in the background.

Xu et al. ICML 2015
Phrase Based Statistical Machine Translation (SMT)
Phrased Based SMT

Step I: Learn a phrase table — a set of triples \((p, q, s)\) where

- \(p\) is a (short) sequence of source words.
- \(q\) is a (short) sequence of target words.
- \(s\) is a score.

\((\text{“au”}, \text{“to the”}, .5)\) \hspace{1cm} \((\text{“au banque”}, \text{“the the bank”}, .01)\)

For a phrase \(P\) we will write \(P\).source for the source phrase, \(P\).target for the target phrase, and \(P\).score for the score.
Derivations

Consider an input sentence x of length T.

We will write $x[s : t]$ for the substring $x[s], \ldots, x[t - 1]$.

A derivation d from x is a sequence $(P_1, s_1, t_1), \ldots, (P_K, s_K, t_K)$ where P_k.source $= x[s_k : t_k]$.

The substrings $x[s_k : t_k]$ should be disjoint and “cover” x.

For $d = [(P_1, s_1, t_1), \ldots, (P_L, s_K, t_K)]$ we define

$$y(d) \equiv P_1.target \cdots P_K.target$$

We let $D(x)$ be the set of derivations from x.
Scoring

For $d \in D(x)$ we define a score $s(d)$

$$s(d) = \alpha \ln P_{LM}(y(d)) + \beta \sum_k P_k \cdot \text{score} + \gamma \text{distortion}(d)$$

where $P_{LM}(y)$ is the probability assigned to string y under a language model for the target language

and distortion(d) is a measure of consistency of word ordering between source and target strings as defined by the indeces $(s_1, t_1), \ldots, (s_K, t_K)$.
Translation

\[y(x) = y(d^*(x)) \]

\[d^*(x) = \arg\max_{d \in D(x)} s(d) \]
END