Variational Autoencoders
In a variational autoencoder a distribution on x is modeled by

$$P_{\Theta,\Psi}(x, z) = P_{\Theta}^{\text{gen}}(z) P_{\Psi}^{\text{dec}}(x|z)$$

$$P_{\Theta,\Psi}(x) = \mathbb{E}_{z \sim P_{\Theta}^{\text{gen}}} \left[P_{\Psi}^{\text{dec}}(x|z) \right]$$

We would like

$$\Theta^*, \Psi^* = \arg\min_{\Theta,\Psi} \mathbb{E}_{x \sim D} \left[\log \frac{1}{P_{\Theta,\Psi}(x)} \right] = \arg\min_{\Theta,\Psi} H(D, P_{\Theta,\Psi})$$

However, computing $P_{\Theta,\Psi}(x)$ by sampling z from P_{Θ}^{gen} is very inefficient as z is rarely compatible with x.
The Variational Lower Bound

It would be more efficient to sample z from $P_{\Theta,\Psi}(z|x)$. We approximate this marginal by an encoding distribution $P^\text{enc}_\Phi(z|x)$.

$$
\Phi^*, \Theta^*, \Psi^* = \arg\min_{\Phi, \Theta, \Psi} \mathbb{E}_{x \sim D} [-\mathcal{L}(x, \Phi, \Theta, \Psi)]
$$

$$
\log \frac{1}{P_{\Theta,\Psi}(x)} \leq -\mathcal{L}(x, \Phi, \Theta, \Psi)
$$

$$
\mathcal{L}(x, \Phi, \Theta, \Psi) = \mathbb{E}_{z \sim P^\text{enc}_\Phi(\cdot|x)} [\log P_{\Theta,\Psi}(x, z)] + H(P^\text{enc}_\Phi(\cdot|x))
$$

For Gaussian distributions gradient estimation through sampling is now feasible.
The Variational Lower Bound

\[\mathcal{L}(x, \Phi, \Theta, \Psi) = \mathbb{E}_{z \sim P_{\Phi}^{\text{enc}}(\cdot|x)} \left[\log P_{\Theta,\Psi}(x, z) \right] + H(P_{\Phi}^{\text{enc}}(\cdot|x)) \]

\[= \mathbb{E}_{z \sim P_{\Phi}^{\text{enc}}(\cdot|x)} \left[\log P_{\Theta,\Psi}(x) P_{\Theta,\Psi}(z|x) \right] + H(P_{\Phi}^{\text{enc}}(\cdot|x)) \]

\[= \mathbb{E}_{z \sim P_{\Phi}^{\text{enc}}(\cdot|x)} \left[\log P_{\Theta,\Psi}(x) \right] + \mathbb{E}_{z \sim P_{\Phi}^{\text{enc}}(\cdot|x)} \left[\log P_{\Theta,\Psi}(z|x) \right] + H(P_{\Phi}^{\text{enc}}(\cdot|x)) \]

\[= \log P_{\Theta,\Psi}(x) + \mathbb{E}_{z \sim P_{\Phi}^{\text{enc}}(\cdot|x)} \left[\log P_{\Theta,\Psi}(z|x) - \log(P_{\Phi}^{\text{enc}}(z|x)) \right] \]

\[= \log P_{\Theta,\Psi}(x) - KL(P_{\Phi}^{\text{enc}}(\cdot|x), P_{\Theta,\Psi}(\cdot|x)) \]

\[\leq \log P_{\Theta,\Psi}(x) \]
Consistency Theorem

\[
\Phi^*, \Theta^*, \Psi^* = \arg\min_{\Phi, \Theta, \Psi} E_{x \sim D} \left[-\mathcal{L}(x, \Phi, \Theta, \Psi) \right]
\]

\[
= \arg\min_{\Phi, \Theta, \Psi} E_{x \sim D} \left[\log \frac{1}{P_{\Theta, \Psi}(x)} \right] + KL(P_{\Phi}^{\text{enc}}(\cdot|x), P_{\Theta, \Psi}(\cdot|x))
\]

\[
= \arg\min_{\Phi, \Theta, \Psi} H(D, P_{\Theta, \Psi}) + KL(P_{\Phi}^{\text{enc}}(\cdot|x), P_{\Theta, \Psi}(\cdot|x))
\]

Consistency Theorem: If for all \(\Theta \) and \(\Psi \) there exist \(\Phi \) such that \(P_{\Phi}^{\text{enc}}(z|x) = P_{\Theta, \Psi}(z|x) \) then

\[
\Theta^*, \Psi^* = \arg\min_{\Theta, \Psi} H(D, P_{\Theta, \Psi})
\]
Sampling from Variational Autoencoders

For Gaussian distributions samples from a variational autoencoder appear blurry.

[Alec Radford]
END