Backpropagation

The Educational Framework (EDF)
Feed-Forward Computation Graphs

\[v_{k+1} = f_1(v_0, \ldots, v_k) \]

\[v_{k+2} = f_2(v_0, \ldots, v_{k+1}) \]

\[\vdots \]

\[v_{k+d} = f_d(v_0, \ldots, v_{k+d-1}) \]

\[\ell = f_{d+1}(v_0, \ldots, v_{k+d}) \]

\(\ell \) is a scalar loss.
Backpropagation

\[
y = f(x) \\
z = g(y, x) \\
u = h(z) \\
\ell = u
\]

For now assume all values are scalars.

We can think of each variable as potential input and consider, for example, \(\partial \ell / \partial z \).

Note that \(\partial \ell / \partial z \) depends on the value of \(z \).
Backpropagation

\[y = f(x) \]
\[z = g(y, x) \]
\[u = h(z) \]
\[\ell = u \]

We will “backpropagate” each assignment in the reverse order.
Backpropagation

\[y = f(x) \]
\[z = g(y, x) \]
\[u = h(z) \]
\[\ell = u \]

\[\frac{\partial \ell}{\partial u} = 1 \]
Backpropagation

\[y = f(x) \]
\[z = g(y, x) \]
\[u = h(z) \]
\[\ell = u \]

\[\frac{\partial \ell}{\partial u} = 1 \]
\[\frac{\partial \ell}{\partial z} = \left(\frac{\partial \ell}{\partial u} \right) \left(\frac{\partial h}{\partial z} \right) \] (this uses the value of \(z \))
Backpropagation

\[y = f(x) \]
\[z = g(y, x) \]
\[u = h(z) \]
\[\ell = u \]

\[\frac{\partial \ell}{\partial u} = 1 \]
\[\frac{\partial \ell}{\partial z} = \left(\frac{\partial \ell}{\partial u} \right) \left(\frac{\partial h}{\partial z} \right) \]
\[\frac{\partial \ell}{\partial y} = \left(\frac{\partial \ell}{\partial z} \right) \left(\frac{\partial g}{\partial y} \right) \text{ (this uses the value of } y \text{ and } x) \]
Backpropagation

\[y = f(x) \]
\[z = g(y, x) \]
\[u = h(z) \]
\[\ell = u \]

\[\frac{\partial \ell}{\partial u} = 1 \]
\[\frac{\partial \ell}{\partial z} = \left(\frac{\partial \ell}{\partial u} \right) \left(\frac{\partial h}{\partial z} \right) \]
\[\frac{\partial \ell}{\partial y} = \left(\frac{\partial \ell}{\partial z} \right) \left(\frac{\partial g}{\partial y} \right) \]
\[\frac{\partial \ell}{\partial x} = ??? \] Oops, we need to add up multiple occurrences.
Backpropagation

\[y = f(x) \]
\[z = g(y, x) \]
\[u = h(z) \]
\[\ell = u \]

We let \(x.\text{grad} \) be an attribute (as in Python) of object \(x \).

We will accumulate different contributions to \(\partial \ell / \partial x \) into \(x.\text{grad} \).
Backpropagation

\[y = f(x) \]
\[z = g(y, x) \]
\[u = h(z) \]
\[\ell = u \]

\[z.\text{grad} = y.\text{grad} = x.\text{grad} = 0 \]
\[u.\text{grad} = 1 \]

Loop Invariant: For any variable \(u \) defined above the red circuit, we have that \(u.\text{grad} \) is \(\partial \ell / \partial u \) as defined by the red circuit.
Backpropagation

\[y = f(x) \]
\[z = g(y, x) \]
\[u = h(z) \]
\[\ell = u \]

\[z.\text{grad} = y.\text{grad} = x.\text{grad} = 0 \]
\[u.\text{grad} = 1 \]

Loop Invariant: For any variable \(z \) defined above the red circuit, we have that \(z.\text{grad} \) is \(\partial \ell / \partial z \) as defined by the red circuit.

\[z.\text{grad} += u.\text{grad} \times \partial h / \partial z \]
Backpropagation

\[y = f(x) \]
\[z = g(y, x) \]
\[u = h(z) \]
\[\ell = u \]

\[z.\text{grad} = y.\text{grad} = x.\text{grad} = 0 \]
\[u.\text{grad} = 1 \]

Loop Invariant: For any variable \(y \) defined above the red circuit, we have that \(y.\text{grad} \) is \(\partial \ell / \partial y \) as defined by the red circuit.

\[z.\text{grad} += u.\text{grad} \times \partial h / \partial z \]
\[y.\text{grad} += z.\text{grad} \times \partial g / \partial y \]
\[x.\text{grad} += z.\text{grad} \times \partial g / \partial x \]
Backpropagation

\[y = f(x) \]
\[z = g(y, x) \]
\[u = h(z) \]
\[\ell = u \]

\[z.\text{grad} = y.\text{grad} = x.\text{grad} = 0 \]
\[u.\text{grad} = 1 \]
\[z.\text{grad} += u.\text{grad} \times \partial h / \partial z \]
\[y.\text{grad} += z.\text{grad} \times \partial g / \partial y \]
\[x.\text{grad} += z.\text{grad} \times \partial g / \partial x \]
\[x.\text{grad} += y.\text{grad} \times \partial f / \partial x \]
The EDF Framework

The educational framework (EDF) is a simple Python-NumPy implementation of a “framework” for defining computation graphs and performing backpropagation. In EDF we write

\[y = F(x) \]
\[z = G(y, x) \]
\[u = H(z) \]
\[\ell = u \]

This is Python code where variables are bound to objects.
The EDF Framework

The educational frameword (EDF) is a simple Python-NumPy implementation of a “framework” for defining computation graphs and performing backpropagation. In EDF we write

\[y = F(x) \]
\[z = G(y, x) \]
\[u = H(z) \]
\[\ell = u \]

This is Python code where variables are bound to objects.

- \(x \) is an object in the class \texttt{Value}.
- \(y \) is an object in the class \texttt{F}.
- \(z \) is an object in the class \texttt{G}.
- \(u \) and \(\ell \) are the same object in the class \texttt{H}.
\[y = F(x) \]

class \(F \):
 def _init_(self, x):
 components.append(self)
 self.x = x

 def forward(self):
 self.value = f(self.x.value)

 def backward(self):
 self.x.grad += self.grad* (\partial f/\partial x) # needs x.value
\[z = G(y, x) \]

class \(G \):
 def _init_ (self, y, x):
 components.append(self)
 self.y = y
 self.x = x

 def forward(self):
 self.value = g(self.y.value, self.x.value)

 def backward(self):
 self.y.grad += self.grad*(\(\frac{\partial g}{\partial y} \)) # needs \(y . \text{value} \) and \(x . \text{value} \)
 self.x.grad += self.grad*(\(\frac{\partial g}{\partial x} \)) # needs \(y . \text{value} \) and \(x . \text{value} \)
The EDF Framework

\[y = F(x) \]
\[z = G(y, x) \]
\[u = H(z) \]

This computation graph has one input and three components.

This is equivalent to

\[u = H(G(F(x), x)) \]
Backpropagation

def Forward():
 for c in components: c.forward()

def Backward(loss):
 for c in components: c.grad = 0
 for c in params: c.grad = 0
 for c in inputs: c.grad = 0
 loss.grad = 1
 for c in components[::-1]: c.backward()

def SGD(eta):
 for p in params:
 p.value -= eta*p.grad
The Vector Case

\[y = F(x) \]
\[z = G(y, x) \]
\[u = H(z) \]
\[\ell = u \]

\(x, y \) and \(z \) can be vector-valued.

The loss \(u \) is still a scalar.
The Vector-Valued Class G

class G:
 def __init__(self,y,x):
 components.append(self)
 self.y = y
 self.x = x

 def forward(self):
 self.value = g(self.y.value, self.x.value)

 def backward(self):
 self.y.grad += self.grad $\nabla_y g$ #vector-matrix product
 self.x.grad += self.grad $\nabla_x g$ #vector-matrix product
The Jacobian Matrix

In the vector-valued case $\nabla_x g$ is a Jacobian matrix.

\[\nabla_x g = J \]

\[J[j, k] = \frac{\partial g[j]}{\partial x[k]} \]
The General Case

Inputs v_0, \ldots, v_k

\[v_{k+1} = F_1(v_0, \ldots, v_k) \]
\[v_{k+2} = F_2(v_0, \ldots, v_{k+1}) \]
\[\vdots \]
\[v_{k+d} = F_d(v_0, \ldots, v_{k+d-1}) \]
\[\ell = v_{k+d} \]

In general each v_i is tensor-valued.

The computation is a “tensor flow”.
The Tensor-Valued Class G

class G:

...

```python
def backward(self):
    self.y.grad += self.grad  \n$$ y \ n g \quad \text{#tensor contraction}$$
    self.x.grad += self.grad  \n$$ x \ n g \quad \text{#tensor contraction}$$
```

The indices of `self.grad` are contracted with the value indices of g.