An SGD Progress Theorem
Some Theory

We will prove that minibatch SGD for a sufficiently large batch size (for gradient estimation) and a sufficient small learning rate (to avoid gradient drift) is guaranteed (with high probability) to reduce the loss.

This guarantee has two main requirements.

• A smoothness condition to limit gradient drift.

• A bound on the gradient norm allowing high confidence gradient estimation.
Smoothness: The Hessian

We can make a second order approximation to the loss.

\[
\ell(\Theta + \Delta \Theta) \approx \ell(\Theta) + g^\top \Delta \Theta + \frac{1}{2} \Delta \Theta^\top H \Delta \Theta
\]

\[
g = \nabla_\Theta \ell(\Theta)
\]

\[
H = \nabla_\Theta \nabla_\Theta \ell(\Theta)
\]

here \(H \) is the second derivative of \(\ell \), the Hessian matrix.

\[
H_{i,j} = \frac{\partial^2 \ell(\Theta)}{\partial \Theta_i \partial \Theta_j}
\]
The Smoothness Condition

We will assume

\[\|H \Delta \Theta\| \leq L \|\Delta \Theta\| \]

We now have

\[\Delta \Theta^\top H \Delta \Theta \leq L \|\Delta \Theta\|^2 \]

Using the second order mean value theorem one can prove

\[\ell(\Theta + \Delta \Theta) \leq \ell(\Theta) + g^\top \Delta \Theta + \frac{1}{2}L \|\Delta \Theta\|^2 \]
A Concentration Inequality for Gradient Estimation

Consider a vector mean estimator where the vectors g_n are drawn IID.

$$g_n = \nabla_\Theta \ell_n(\Theta) \quad \hat{g} = \frac{1}{k} \sum_{n=1}^{k} g_n \quad g = \mathbb{E}_n [\nabla_\Theta \ell_n(\Theta)]$$

If with probability 1 over the draw of n we have $|(g_n)_i - g_i| \leq b$ for all i then with probability of at least $1 - \delta$ over the draw of the sample

$$||\hat{g} - g|| \leq \frac{\gamma}{\sqrt{k}} \quad \gamma = b \left(1 + \sqrt{2 \ln(1/\delta)}\right)$$

Norkin and Wets “Law of Small Numbers as Concentration Inequalities...”, 2012, theorem 3.1
\[\ell(\Theta + \Delta \Theta) \leq \ell(\Theta) + g^\top \Delta \Theta + \frac{1}{2}L||\Delta \Theta||^2 \]

\[\ell(\Theta - \eta\hat{g}) \leq \ell(\Theta) - \eta g^\top \hat{g} + \frac{1}{2}L\eta^2||\hat{g}||^2 \]

\[= \ell(\Theta) - \eta(\hat{g} - (\hat{g} - g))^\top \hat{g} + \frac{1}{2}L\eta^2||\hat{g}||^2 \]

\[= \ell(\Theta) - \eta||\hat{g}||^2 + \eta(\hat{g} - g)^\top \hat{g} + \frac{1}{2}L\eta^2||\hat{g}||^2 \]

\[\leq \ell(\Theta) - \eta||\hat{g}||^2 + \gamma \frac{\eta}{\sqrt{k}}||\hat{g}|| + \frac{1}{2}L\eta^2||\hat{g}||^2 \]

\[= \ell(\Theta) - \eta||\hat{g}|| \left(||\hat{g}|| - \frac{\gamma}{\sqrt{k}} \right) + \frac{1}{2}L\eta^2||\hat{g}||^2 \]
Optimizing η

Optimizing η we get

$$||\hat{g}|| \left(||\hat{g}|| - \frac{\gamma}{\sqrt{k}} \right) = -L\eta ||\hat{g}||^2$$

$$\eta = \frac{1}{L} \left(1 - \frac{\gamma}{||\hat{g}||\sqrt{k}} \right)$$

Inserting this into the guarantee gives

$$\ell(\Theta - \eta\hat{g}) \leq \ell(\Theta) - \frac{L}{2}\eta^2||\hat{g}||^2$$
Optimizing k

Optimizing progress per sample, or maximizing $\frac{\eta^2}{k}$, we can optimize for k as follows.

\[
\frac{\eta^2}{k} = \frac{1}{L^2} \left(\frac{1}{\sqrt{k}} - \frac{\gamma}{||\hat{g}||k} \right)^2
\]

\[
0 = -\frac{1}{2}k^{-\frac{3}{2}} + \frac{\gamma}{||\hat{g}||}k^{-2}
\]

\[
k = \left(\frac{2\gamma}{||\hat{g}||} \right)^2
\]

\[
\eta = \frac{1}{2L}
\]
Warning

If SGD is best viewed as a kind of MCMC (performing exploration) then we probably do not want to guarantee progress.
END